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Quantum metric tensor of the Dicke model: Analytical and numerical study
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We compute both analytically and numerically the quantum metric tensor and its scalar curvature for the Dicke
model. In the analytical setting we consider the thermodynamic limit and carry out the computations by means
of the truncated Holstein-Primakoff approximation. We also study the exactly solvable case ω0 = 0 and find that
the corresponding non-Abelian QMT effectively reduces to just one metric tensor with zero determinant. In the
numerical case we use an efficient basis to diagonalize the Hamiltonian for four different system’s sizes. For
the components of the quantum metric tensor and their derivatives, we find a remarkable agreement between the
numerical and analytical results, with the metric’s peaks signaling the precursors of the quantum phase transition.
In the case of the scalar curvature, there are some differences between the numerical and analytical results that
can be traced back to the behavior of the combination of the metric components’ derivatives. Notably, the scalar
curvature in the thermodynamic limit is continuous across the quantum phase transition and, in that zone, it
approximately matches the numerical results.
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I. INTRODUCTION

Studying the geometry of the quantum parameter space
has given rise to exciting descriptions of various physical sys-
tems [1–5]. One of the preponderant elements in these studies
is the quantum geometric tensor (QGT), which contains in
its real part the quantum metric tensor (QMT) and in its
imaginary part the Berry curvature. It is relevant for applica-
tions in quantum information processing, including adiabatic
and holonomic quantum computing, where geodesics over the
manifold of control parameters correspond to paths which
minimize errors [6]. This tensor is essential in describing the
quantum phase transitions (QPT) in the thermodynamic limit
and gives much information about the precursors of these
transitions if we consider systems with a finite number of
particles. In the present work we study in detail the geometry
of the quantum parameter space of the Dicke model. To our
knowledge, the geometry of the quantum parameter space of
the Dicke model has only been studied in the thermodynamic
limit [7,8]. In this case, it is interesting that the Riemman
curvature constructed from the QMT does not present a di-
vergence in the QPT, and in the present article, we elaborate
more on this point.

The Dicke model describes a system of N two-level atoms
atoms collectively coupled with a quantized field, charac-
terized by one bosonic mode. It provides a description of
the superradiance phenomenon in light-matter systems [9–14]
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and is useful to understand nonequilibrium dynamics [15–21]
and in the study off the ultrastrong coupling regime in sev-
eral systems [22–25]. In the thermodynamic limit its ground
state exhibits a second order phase transition, has two clas-
sical degrees of freedom, and displays regular and chaotic
dynamics, depending of the Hamiltonian parameters and the
energy region analyzed [13,26–31]. Recently it was employed
to analyze the relationship between classical chaos and the
evolution of out-of-time-ordered correlators [32–34] and the
presence of quantum scars [35,36].

The Dicke model has been realized in experiments
with cavity assisted Raman transitions [37,38], trapped ions
[39,40], and circuit quantum electrodynamics [41].

In this article we present a detailed study of the geometry
of the quantum parameter space of the Dicke model, which
has been previously studied only in the thermodynamic limit
[7,8]. Analytical descriptions of the quantum metric tensor
and its scalar curvature are obtained in the thermodynamic
limit employing the truncated Holstein-Primakoff approxima-
tion, and also in the integrable limiting case ω0 = 0, which
due to a degeneration of the system, has a non-Abelian
QMT [42] with only one non-null metric tensor with zero
determinant. These expressions are compared with extensive
numerical results, performed employing an efficient basis,
which allows the exact diagonalization of the Dicke Hamilto-
nian in a truncated basis, for different size systems, exploring
wide parameter regions.

The most remarkable results are
(i) There is a very good agreement between the numerical

and analytical result for the components of the quantum metric
tensor and their derivatives.

(ii) The extreme points in the metric are clear precursors
of the quantum phase transition, approaching the thermody-
namic limits as the number of atoms is increased.
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(iii) There are differences between the numerical
and analytical results of the scalar curvature, associated
with the combination of the derivatives of the metric
components.

(iv) The scalar curvature in the thermodynamic limit is
continuous across the quantum phase transition and, in that
zone, it approximately matches the numerical results.

(v) The components of the Ricci tensor provide informa-
tion about the behavior of the geodesics of the parameter
space. Close to the phase transition, the area between two
geodesics increases, implying that the quantum states are
more separate for a slight variation of the parameters.

The paper is structured as follows. In Sec. II we provide a
brief account of the basic elements to describe the parameter
space geometry of a given quantum system. Then, Sec. III is
devoted to the analytical computation of the QMT in the ther-
modynamic limit for both phases. In Sec. IV we present the
analytical non-Abelian QMT of the case ω0 = 0. Section V
describes the process of numerically computing the QMT
and shows the analytical results along with their numerical
counterparts close to resonance and far from it. After this,
in Sec. VI we state our conclusions and suggest some future
work. Finally, the Appendixes show some complementary
computations and results.

II. GEOMETRY OF THE PARAMETER SPACE

The fundamental object that endows the parameter space
with a geometrical structure is the QGT, also known as the
Fubini-Study metric. Given two quantum states |ψ (x)〉 and
|ψ (x + δx)〉, whose parameters x = {xi} (i = 1, . . . , M ) differ
infinitesimally, the components of the QGT are given by [1]

Qi j = 〈∂iψ |∂ jψ〉 − 〈∂iψ |ψ〉〈ψ |∂ jψ〉, (1)

where ∂i := ∂
∂xi . The imaginary part of the QGT gives rise to

the Berry curvature as

Fi j = −2ImQi j, (2)

and its flux across an open surface in parameter space yields
the celebrated Berry phase [43]. On the other hand, the real
part of the QGT is the QMT, denoted as gi j . This rank-two
covariant tensor allows us to measure the distance between
two quantum states infinitesimally apart, and has components
given by

gi j = ReQi j . (3)

We observe that the quantum metric tensor is a direct general-
ization of the fidelity susceptibility when we take into account
simultaneously several directions of the parameter space [4],
and it measures the distance between quantum states for in-
finitesimal variations of the parameters, that is, how much
a quantum state varies given a variation of the parameters.
In particular, if we take |ψ (x)〉 = |n(x)〉, where |n(x)〉 is the
eigenstate corresponding to a nondegenerate eigenvalue En(x)
of the system’s Hamiltonian Ĥ (x), then the adiabatic theorem
guarantees that the system will remain in the nth state during
evolution as long as the M parameters are slowly varying
functions of time [44]. In this case, the QMT can be expressed

in a perturbative form as [2]

g(n)
i j = Re

∑
m �=n

〈n|Ôi|m〉〈m|Ô j |n〉
(Em − En)2

, (4)

where the Ôi’s are the Hamiltonian deformations defined by

Ôi := ∂iĤ . (5)

It is worth noting that in this nondegenerate case, the QGT
(1) is invariant under the U (1) gauge transformation |n(x)〉 →
eiαn (x)|n(x)〉, where αn(x) is a smooth parameter-dependent
function. Of course this property is also inherited by both the
Berry curvature and the QMT.

Expression (4) stands out for the apparent singularities that
would occur at level crossings, which are hallmarks of QPTs.
In this sense, to determine whether or not the QMT has a
genuine singularity, i.e., a singularity that cannot be removed
by changing coordinates, we can use the scalar curvature R.
This quantity is independent of the coordinates (parameters)
and, for a two-dimensional manifold endowed with a metric
tensor gi j (x), it can be found as

R = 1√|g| (A + B), (6)

where g = det[gi j] and A and B are given by

A := ∂1

(
g12

g11
√|g|∂2g11 − 1√|g|∂1g22

)
, (6a)

B := ∂2

(
2√|g|∂1g12 − 1√|g|∂2g11 − g12

g11
√|g|∂1g11

)
. (6b)

In two dimensions, all components of the Riemann tensor can
be written in the form

Ri jkl = (gikg jl − gil g jk )
R

2
, (7)

from this automatically follows the Ricci tensor

Ri j = gi j
R

2
, (8)

In this case, the Ricci tensor describes the change of an area
element along the geodesics selected. In what follows, we
study analytically and numerically the QMT, its scalar cur-
vature, and the Ricci tensor for the Dicke model and discuss
the information that these geometrical quantities are able to
provide.

III. QMT IN THE THERMODYNAMIC LIMIT

We begin this section with a succinct description of the
main features of the Dicke model. The Dicke Hamiltonian is
given by

Ĥ = ω0Ĵz + ωâ†â + γ√
N

(â† + â)(Ĵ+ + Ĵ−), (9)

where ω0 is the excitation energy of the N two-level atoms, ω
is the frequency of the single-mode radiation field described
by the bosonic operators â and â†, γ is the interaction pa-
rameter, and Ĵz, Ĵ+, Ĵ− are the collective spin operators of the
atomic part with pseudospin j = N /2. Along this work we
fix h̄ = 1.
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The Dicke Hamiltonian (9) is invariant under the unitary
transformation �̂ = eiπ
̂ with 
̂ = â†â + Ĵz + j. This sym-
metry allows the separation of the Hamiltonian matrix into
two subspaces of definite parity [13,45], which is particularly
useful for the numerical computations, as we show in Sec. V.
We must notice that Z2 symmetry induced by the parity
transformation is a global symmetry, in contrast with the con-
tinuous symmetry that we will find in Sec. IV. An important
feature of the Dicke model is the ground-state quantum phase
transition that appears in the thermodynamic limit, j → ∞,
at the critical coupling γc = √

ωω0/2, which separates the
system into two phases: the normal phase and the superra-
diant phase. The normal phase exists for γ � γc, whereas the
superradiant phase exists for γ > γc. The ground-state energy
is given by

Eg =
{− jω0, γ � γc,

− j ω0
2

(
γ 2

c
γ 2 + γ 2

γ 2
c

)
, γ > γc.

(10)

We devote the next two subsections to the computation
of the QMT of the ground state of the Dicke model in the
thermodynamic limit j → ∞. We fix ω0 and take as our
parameters x = {xi} = (γ , ω) with i = 1, 2.

A. Normal phase

We begin the analysis with the normal phase (γ � γc). The
deformation operators associated with γ and ω are

Ô1 = ∂Ĥ

∂γ
= 1√

2 j
(â† + â)(Ĵ+ + Ĵ−), (11a)

Ô2 = ∂Ĥ

∂ω
= â†â. (11b)

We use the Holstein-Primakoff transformation [46], which
is a way to associate bosonic operators to angular momentum
operators, and is given by

Ĵ+ =
√

2 j b̂†

√
1 − b̂†b̂

2 j
, (12a)

Ĵ− =
√

2 j

√
1 − b̂†b̂

2 j
b̂, (12b)

Ĵz = b̂†b̂ − j. (12c)

To consider the thermodynamic limit, we make the assump-
tion that 〈b̂†b̂〉/2 j → 0 when j → ∞, thus expanding the
square roots in Eq. (12) and truncating to zeroth order, which
leads to

Ĵ+ 	
√

2 j b̂†, Ĵ− 	
√

2 j b̂, Ĵz = b̂†b̂ − j. (13)

In this way the quadratic approximation of the Hamiltonian
(9) turns out to be

Ĥ 	 − jω0 + ω0b̂†b̂ + ωâ†â + γ (â† + â)(b̂† + b̂), (14)

and the approximated deformation operators (11) are

Ô1 	 (â† + â)(b̂† + b̂), (15a)

Ô2 = â†â. (15b)

We clearly see from Eq. (14) that we are left with two
coupled harmonic oscillators, so we need to diagonalize this
Hamiltonian. To achieve this, we perform a Bogoliubov trans-
formation to the operators ĉ1 and ĉ2 [see Eq. (A1)]. This
process yields the diagonal Hamiltonian

Ĥ 	 − jω0 + ω1ĉ†
1ĉ1 + ω2ĉ†

2ĉ2 + 1

2
(ω1 + ω2 − ω − ω0),

(16)
with the frequencies ω1 and ω2 given by

ω1 =
√

1

2

(
ω2 + ω2

0 −
√(

ω2 − ω2
0

)2 + 16γ 2ωω0

)
, (17a)

ω2 =
√

1

2

(
ω2 + ω2

0 +
√(

ω2 − ω2
0

)2 + 16γ 2ωω0

)
. (17b)

Notice that at the QPT (γ = γc) the frequency ω1 vanishes.
Furthermore, we can read off the ground-state energy looking
at the dominant contribution in (16) when j → ∞, which is
Eg = − jω0 [cf. Eq. (10)].

With all these elements at hand, we can compute the QMT
for the ground state via Eq. (4) as

g(0)
i j = Re

∑
n1,n2 �=0

〈0, 0|Ôi|n1, n2〉〈n1, n2|Ô j |0, 0〉
(ω1n1 + ω2n2)2

. (18)

Once the QMT components are obtained, Eq. (6) can be used
to compute the scalar curvature. We do not show the result-
ing expressions due to their length; instead, the plots of the
QMT and R will be shown in Sec. V hand-in-hand with their
numerical counterparts.

B. Superradiant phase

We now analyze the superradiant phase. The relations Ĵ± =
Ĵx ± iĴy allow us to write the Hamiltonian (9) as

Ĥ = ω0Ĵz + ωâ†â + γ

√
2

j
(â† + â)Ĵx. (19)

The first step to treat the superradiant phase is to displace
the ground state. We can achieve this by rotating the angular
momentum operators as⎛

⎝Ĵx

Ĵy

Ĵz

⎞
⎠ =

⎛
⎝ cos δ 0 sin δ

0 1 0
− sin δ 0 cos δ

⎞
⎠

⎛
⎝Ĵ ′

x
Ĵ ′

y

Ĵ ′
z

⎞
⎠, (20)

and displacing the bosonic operators as

â = â′ + �, â† = â′† + �, (21)

where δ and � have to be determined. To find the values
of δ and �, we then use the truncated Holstein-Primakoff
transformation but on the rotated operators Ĵ ′

x and Ĵ ′
z, i.e.,

Ĵ ′
x 	

√
j

2
(b̂′† + b̂′), Ĵ ′

z = b̂′†b̂′ − j. (22)
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In this way we arrive at the Hamiltonian

Ĥ ′ 	 ω�2 + ωâ′†â′ + ω0 cos δ (b̂′†b̂′ − j) + γ cos δ (â′† + â′)(b̂′† + b̂′) + 2

√
2

j
γ� sin δ (b̂′†b̂′ − j)

+
√

2

j
γ sin δ (â′† + â′)b̂′†b̂′ + (â′† + â′)(ω� −

√
2 jγ sin δ) + (b̂′† + b̂′)

(
−ω0 sin δ

√
j

2
+ 2γ� cos δ

)
, (23)

which is valid for γ > γc and whose ground state corresponds
to the superradiant phase.

We now require the vanishing of the terms in (23) that
are linear in (â′† + â′) and (b̂′† + b̂′), which leads to the two
equations

ω� −
√

2 jγ sin δ = 0, (24a)

−ω0 sin δ

√
j

2
+ 2γ� cos δ = 0. (24b)

This allows us to solve for δ and �, obtaining

� =
√

2 j
(
16γ 4 − ω2ω2

0

)
4ωγ

, cos δ = ωω0

4γ 2
. (25)

Thus, plugging these values back into Eq. (23) and retaining
only the quadratic terms in the creation and annihilation oper-
ators, we are left with

Ĥ ′ 	 − j

(
2γ 2

ω
+ ωω2

0

8γ 2

)
+ ωâ′†â′ + 4γ 2

ω
b̂′†b̂′

+ ωω0

4γ
(â′† + â′)(b̂′† + b̂′). (26)

As in the normal phase, we now use a Bogoliubov
transformation [see Eq. (A3)]. This results in the diagonal
Hamiltonian for the superradiant phase

Ĥ ′ 	 − j

(
2γ 2

ω
+ ω2

0ω

8γ 2

)
+ ω′

1ĉ′†
1 ĉ′

1 + ω′
2ĉ′†

2 ĉ′
2 − ω

2
− 2γ 2

ω
,

(27)
with the frequencies ω′

1 and ω′
2 given by

ω′
1 = 1

ω

√
1

2

(
16γ 4 + ω4 −

√
(16γ 4 − ω4)2 + 4ω6ω2

0

)
,

(28a)

ω′
2 = 1

ω

√
1

2

(
16γ 4 + ω4 +

√
(16γ 4 − ω4)2 + 4ω6ω2

0

)
.

(28b)

The energy of the ground state in the superradiant phase is
easily identified as the leading contribution in j in Eq. (27),
which is [cf. Eq. (10)]

Eg = − j

(
2γ 2

ω
+ ω2

0ω

8γ 2

)
. (29)

We are ready to compute the QMT for the superradiant
phase. We first read the approximated deformation operators

from the quadratic Hamiltonian (26), finding that

Ô′
1 	 8γ

ω
b̂′†b̂′ − ωω0

4γ 2
(â′† + â′)(b̂′† + b̂′), (30a)

Ô′
2 	 â′†â′ − 4γ 2

ω2
b̂′†b̂′ + ω0

4γ
(â′† + â′)(b̂′† + b̂′), (30b)

where we have omitted the terms that do not contain creation
or annihilation operators since they will not contribute to the
QMT. All that remains is to substitute (30) into (18) using the
frequencies (28). The corresponding plots of the QMT and R
for this phase will be shown in Sec. V hand-in-hand with their
numerical counterparts.

We close this section with a remark. As opposed to
Refs. [7,8], we considered all the expressions in terms of the
creation and annihilation operators without recourse to the
quadratures q̂ and p̂. This leads to QMT components that are
similar to those of Refs. [7,8], but that have a different scalar
curvature. At first, this may seem contradictory because it is
well known that the scalar curvature is invariant under param-
eter transformations; however, the employed transformations
combine both operators and parameters. In this sense, the
most consistent approach is to take the original Hamiltonian
to derive the deformation operators (5) that are required to
compute the QMT.

IV. EXACTLY SOLVABLE CASE

Here we draw our attention to the case ω0 = 0 for which
the Hamiltonian (9) can be solved exactly. The resulting de-
generate spectrum requires the utilization of the non-Abelian
QMT [42,47]. We first provide a brief description of the non-
Abelian QMT and then carry out its computation.

Consider a Hamiltonian whose nth state has degeneracy gn,
i.e.,

Ĥ |n, I〉 = En|n, I〉, (31)

where I = 1, . . . , gn distinguishes vectors from the same
eigensubspace. The non-Abelian QGT for the nth state is
given by [42,47]

Q(n)
i jIJ = 〈∂i(n, I )|∂ j (n, J )〉−

gn∑
K=1

〈∂i(n, I )|n, K〉〈n, K|∂ j (n, J )〉,
(32)

and the corresponding non-Abelian QMT is

g(n)
i jIJ = 1

2

(
Q(n)

i jIJ + Q(n)∗
i jJI

)
. (33)

The corresponding non-Abelian Berry curvature, known as
the Wilczek-Zee curvature [48], is given by F (n)

i jIJ = i(Q(n)
i jIJ −
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Q(n)∗
i jJI ). Note that there are two types of indices: those cor-

responding to the parameter space (i, j, k, . . . ), and those
corresponding to the nth degenerate subspace (I, J, K, . . . ).
It is also worth noting that in this degenerate case, the QGT
(32) is invariant under the SU(gn) gauge transformation

|n, I〉 →
gn∑

J=1

|n, J〉U (n)
JI (x), (34)

where U (n)
JI (x) are the components of a gn × gn parameter-

dependent unitary matrix.
If we now differentiate (31) with respect to the parameters,

it is not hard to arrive at the perturbative form of (32) given by

Q(n)
i jIJ =

∑
m �=n

gm∑
K=1

〈n, I|Ôi|m, K〉〈m, K|Ô j |n, J〉
(Em − En)2

, (35)

where, just like in Eq. (5), the Hamiltonian deformations are
Ôi = ∂iĤ .

We now return to the Dicke model and put ω0 = 0 in (9),
thus obtaining our Hamiltonian of interest which we call Ĥ0:

Ĥ0 = ωâ†â + 2γ√
N

(â† + â)Ĵx. (36)

To find the exact solution, we perform the operator transfor-
mation â = Â − 2γ

ω
√
N Ĵx and then the rotation Ĵx = Ĵ ′

z, Ĵy =
Ĵ ′

y, Ĵz = −Ĵ ′
x (see, for example, Ref. [49]), so that the Hamil-

tonian (36) becomes

Ĥ0 = ωÂ†Â − 4γ 2

ωN Ĵ ′2
z . (37)

The eigenstates of Ĥ0 are formed as tensor products of boson
states |N〉 and angular momentum states | j, m′〉, and satisfy
the equations

Â†Â|N ; j, m′〉 = N |N ; j, m′〉, (38a)

Ĵ
′2|N ; j, m′〉 = j( j + 1)|N ; j, m′〉, (38b)

Ĵ ′
z|N ; j, m′〉 = m′|N ; j, m′〉, (38c)

with j = N /2, N = 0, 1, 2, . . . and m′ = − j, . . . , j, which
in turn implies that the spectrum is given by

EN ; j,m′ = ωN − 2γ 2

ω j
m′2. (39)

It is easily seen from (39) that, for every N , the states with
m′ and −m′ are degenerate, so the energy actually depends
on the absolute value of m′; we will make this explicit for
our purposes, thus writing EN ; j,|m′ |. Furthermore, we single out
the degeneracy index, labeling every state as |N ; j, |m′|,±〉,
where ± indicates the sign of m′. In particular, the ground
states |0; j, j,±〉 have the energy

E0; j, j = −2γ 2

ω
j. (40)

We are now ready to compute the non-Abelian quantum
geometric tensor of the ground state which we denote as Q(0)

i jIJ .
Since the ground state is twofold degenerate, we will have four
components in the uppercase subscripts that correspond to the
possible combinations of the signs of m′: Q(0)

i j++, Q(0)
i j+−, Q(0)

i j−+,

and Q(0)
i j−−. We begin by reading the deformation operators

from the Hamiltonian (36) and then transforming them to act
on the eigenstates |N ; j, m′〉:

Ô1 = 2√
N

(â† + â)Ĵx = 2√
N

(
Â† + Â − 4γ

ω
√
N

Ĵ ′
z

)
Ĵ ′

z,

(41a)

Ô2 = â†â = Â†Â − 2γ

ω
√
N

(Â† + Â)Ĵ ′
z + 4γ 2

ω2N Ĵ ′2
z . (41b)

Specializing formula (35) to our case, the non-Abelian quan-
tum geometric tensor reads as

Q(0)
i jIJ =

∞∑
N=0

{ j−1, j}∑
|m′|=0

∑
K={+,−}

〈0; j, j, I|Ôi|N ; j, |m′|, K〉〈N ; j, |m′|, K|Ô j |0; j, j, J〉
(EN ; j,|m′ | − E0; j, j )2

, (42)

where { j − 1, j} means that, to exclude the ground state, the
sum in |m′| runs up to j − 1 for N = 0, but up to j for N > 0,
and where I, J = {+,−} to form the four possible sign com-
binations. We have also assumed that j is an integer so that
the sum in |m′| starts at zero. In the case that j is half-integer,
the sum in |m′| would start at 1/2.

We see that the only contribution to Eq. (42) comes from
the expectation value of the operator �̂ := (Â† + Â)Ĵ ′

z, which
is readily evaluated to give

〈0; j, j, I|�̂|N ; j, |m′|,±〉= ±|m′|
√

Nδ0,N−1δ j,|m′ |δI,±. (43)

This greatly simplifies the computation of the non-Abelian
quantum geometric tensor Q(0)

i jIJ , which turns out to be real
and symmetric and, due to Eq. (33), equal to the non-Abelian

QMT g(0)
i jIJ . The result is

g(0)
i j++ = g(0)

i j−− = 2 j

ω2

⎛
⎜⎝ 1 −γ

ω

−γ

ω

γ 2

ω2

⎞
⎟⎠ (44)

and

g(0)
i j+− = g(0)

i j−+ =
(

0 0
0 0

)
. (45)

Therefore, the non-Abelian QMT effectively reduces to one
matrix. It is worth noting that the determinant of Eq. (44)
vanishes. This is easily understood because the elimination of
the parameter ω0 makes it possible to factor out ω or γ in the
Hamiltonian (36), thus leaving one effective parameter. This
behavior has also been observed in a previous work [50].
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V. QMT FOR FINITE SIZES

In this section we first provide the required elements for the
numerical computation of the QMT and its scalar curvature
for finite j, and then we show the results and compare them
with their analytical counterparts in two regions: close to
resonance and far from it.

A. Description of the method

In order to diagonalize the Dicke Hamiltonian, we use an
efficient basis [49,51], which corresponds to the eigenstates
of the Dicke models in the integrable limit ω0 → 0 described
above. We write it as |N ; j, m′〉, where m′ are the eigenvalues
of Ĵx and N is the eigenvalue of the Â†Â operator, with Â =
â + 2γ

ω
√
N Ĵx,

|N ; j, m′〉 = 1√
N!

(Â†)N |N = 0; j, m′〉. (46)

The vacuum for a given m′ is a boson coherent state (|α〉)
times an eigenstate of the Ĵx operator:

|N = 0; j, m′〉 =
∣∣∣∣α = − 2γ m′

ω
√
N

〉
| jm′〉. (47)

Employing the parity properties of the state |N = 0; j, m′〉
discussed in Appendix B, the kth excited-state wave function
of the Dicke Hamiltonian can be written as

|k〉 =
Nmax∑
N=0

j∑
m′=0

Ck
N,m′ |N ; j, m′; p = +〉. (48)

Here Ck
N,m′ are the coefficients of the kth wave function in

terms of the extended bosonic basis with parity well defined
and Nmax is the value of the truncation or cutoff in the number
of displaced excitations (0 � N � Nmax).

We define the departure for exact precision in the calcu-
lated wave function as

�Pk =
j∑

m′=0

|Ck
Nmax,m′ |2. (49)

For a given value of Nmax, the set of converged eigenstates
includes the ground state, and all with higher excitation ener-
gies up to the first whose value of �Pk is larger than certain
tolerance (usually 10−3) Nmax.

Employing the efficient basis with well-defined parity, we
calculate the elements of the metric tensor gi j (x) for the
ground state as follows:

g(0)
i j =

∑
k �=0

〈0|Ôi|k〉〈k|Ô j |0〉
(Ek − E0)2

. (50)

The cutoff Nmax is selected to guarantee that this expres-
sion, evaluated using the converged eigenstates |k〉, has also
converged. In what follows, analytical and numerical results
for the QMT and the scalar curvature are presented in three
regions. One is in resonance: ω = ω0 = 1.0, the second is
close to it, with ω = 1.0, ω0 = 0.8, in both cases with γ ∈
{0.3, 2.0}. The third region is close to the integrable limit
ω0 = 0. We selected ω0 = 0.01, and studied the region ω ∈
{0.16, 020} and γ ∈ {0.01, 0.05}.

FIG. 1. QMT components and its determinant in the thermody-
namic limit (dashed blue) and in the case j = 5 (solid blue), j = 10
(solid orange), j = 15 (solid green), and j = 20 (solid red) with
ω0 = 1 and ω = 0.8. The critical value γc = 0.447 is indicated by
the vertical gray dashed line.

The numerical calculations presented are extremely de-
manding in terms of computational resources. The details are
given in Appendix C. To obtain the derivatives of the QMT
needed to calculate the scalar curvature, a large number of di-
agonalizations of the Hamiltonian must be performed for each
value of j, varying ω0 and γ in steps as small as 0.0002. Even
for the calculations done along the line ω0 = 1.0 (or 0.8), at
least 16 values around the central one were needed to obtain
the derivatives with respect to this parameter. For the third
region, in the rectangle γ ∈ [0.01, 0.05] and ω ∈ [0.16, 0.2]
40 000 diagonalizations were performed for each value of j,
with Nmax = 70.

B. Results close to resonance

In Figs. 1 and 2 we compare the analytical QMT compo-
nents and its determinant with their numerical counterparts
for four different values of j. Having set ω = 1, we study two
regions around the value ω0 = 1 and ω = 0.8, varying γ in
the range {0.3, 2.0}.

It can be observed in Fig. 1 there is a good agreement
between the analytical and numerical results except near the
critical region. However, in the numerical curves we clearly
see that the peaks grow (positively for g11, g22, and g, and
negatively for g12) and get closer to the critical point γc as
j increases, thus approaching the analytical curves. This in-
dicates that the peaks signal the precursors of the QPT for
finite j and implies that for j → ∞ those peaks will turn into
singularities. The insets show a zoom over a small region to
better display the good matching between the analytical and
numerical curves. Similarly, Fig. 2 shows the QMT compo-
nents and its determinant under resonance at ω = ω0 = 1,
whose behavior is analogous to that of the previous figure.

Figure 3 shows a three-dimensional plot of the analytical
scalar curvature R for ω0 = 1, as a function of ω and γ . The
surface takes a furrowlike shape along the separatrix which
is marked by the cyan line. We observe that R has a singu-
larity at γ = 0, where it diverges positively. As we begin to
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FIG. 2. QMT components and its determinant in the thermody-
namic limit (dashed blue) and in the case j = 5 (solid blue), j = 10
(solid orange), j = 15 (solid green), and j = 20 (solid red) with
ω0 = 1 and ω = 1. The critical value γc = 0.5 is indicated by the
vertical gray dashed line.

move away from γ = 0, the scalar curvature keeps descending
until it reaches γc at the QPT, where it takes the value of
−4. After this, the curve starts growing with a sharp slope,
reaching a local maximum and then falling asymptotically to
a constant value. It is worth noting that, despite the singularity
that the QMT components and the determinant show at the
critical coupling γc, the scalar curvature is continuous there,
although not smooth. This means, as stated in Sec. II, that the
singularity in the metric components and the determinant is
removable. We also observe that the local maximum to the
right of the separatrix decreases as ω approaches zero, and it
completely flattens out at ω = 0.

In Fig. 4 we compare the analytical and numerical scalar
curvatures. However, the curves are similar near the critical re-
gion. One piece of information that the curvature scalar gives
us exclusively is whether the singularity associated with the
phase transition is a singularity independent of the coordinate
system, in this case of the selected parameters, or depends on

FIG. 3. Scalar curvature R of the QMT in the thermodynamic
limit with ω0 = 1. The cyan line indicates the separatrix of the QPT.

FIG. 4. Scalar curvature R of the QMT in the thermodynamic
limit and in the case j = 5 (solid blue), j = 10 (solid orange), j = 15
(solid green), and j = 20 (solid red) with ω0 = 1. The case ω = 0.8
is shown in (a) and the case ω = 1 is shown in (b). The insets show
a zoom over the critical region.

the selected parameters. In our case, we observe from Fig. 4
that both the analytical and numerical results tell us that the
curvature scalar does not suffer a discontinuity or a divergence
in the phase transition, which clearly shows that this quantum
phase transition is dependent on the parameters. Furthermore,
we note that the behavior of the analytical and numerical
is strikingly different before and after the QPT. Note that
the analytical scalar curvature diverges positively at γ = 0,
whereas the numerical R falls to −∞ at that same point.
Moreover, for γ > γc, the analytical curve sharply ascends,
while the numerical one has a small local maximum and a
local minimum, and then it slowly goes up. It can be noticed
that as j increases, the slope of the scalar curvature decreases,
although we cannot infer the behavior for bigger values of
γ since the study of that region requires increased numerical
efforts.

To understand the discrepancy between the analytical and
numerical curves of the scalar curvature, we draw our at-
tention to the derivatives of the QMT components and its
determinant, which are the required functions to compute R
[see Eqs. (6a) and (6b)]. All the first and second derivatives are
shown in Fig. 17 in Appendix D, where we see that, just like
with the QMT components, there is a remarkable agreement
between the analytical and numerical derivatives. While both
the analytical and numerical curves of the QMT components
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FIG. 5. Components of the Ricci tensor in the thermodynamic
limit (dashed blue) and in the case j = 5 (solid blue), j = 10 (solid
orange), j = 15 (solid green), and j = 20 (solid red) with ω0 = 1
and ω = 0.8. The critical value γc = 0.447 is indicated by the verti-
cal gray dashed line.

and their derivatives vary smoothly with γ and ω, the scalar
curvature has a high sensitivity of the combination of the
QMT components’ derivatives in Eqs. (6a) and (6b), causing
the strong deviation between the analytical and numerical
results far from the phase transition.

An additional ingredient that we study is to consider the
components of the Ricci tensor that tell us in the directions de-
fined by the unit vectors of the parameter space x̂1 = γ̂ , x̂2 =
ω̂, if the geodesics of the space of parameters repel or attract
each other in the considered directions, depending on whether
the Ricci tensor is negative or positive, respectively. Thus, we
see from Figs. 5(a), 5(c), 6(a), 6(c), 7(a), and 7(c) that the
negative Ricci tensor causes the geodesics to repel each other
in that direction, which is equivalent to the metric compo-
nents growing in these directions as the distances between the
quantum states become larger and larger, and an area moving
in these directions grows. Furthermore, in the analytical case,

FIG. 6. Components of the Ricci tensor in the thermodynamic
limit (dashed blue) with ω0 = 1 and ω = 0.8. The critical value γc =
0.447 is indicated by the vertical gray dashed line. In the case γ → 0,
the component R22 takes the value 1.0307.

FIG. 7. Components of the Ricci tensor of the QMT in the ther-
modynamic limit with ω0 = 1. The cyan line indicates the separatrix
of the QPT.

the transition is not traversable by the geodesics, while in the
numerical case, since the Ricci tensor only reaches a finite
value, the geodesics can cross it, and in this sense, we can
only say that the minimum only marks the precursor of the
phase transition. In addition, we observe from Figs. 5(b), 6(b)
and 7(c) that in the case of the nondiagonal direction, the Ricci
tensor is positive, which implies that the geodesics attract in
this direction.

C. Results far from resonance

The third region mentioned above is close to the inte-
grable limit ω0 = 0, having ω0 = 0.01, ω ∈ {0.16, 020}, and
γ ∈ {0.01, 0.05}.

The components of the QMT and its determinant in the
thermodynamic limit are presented in Figs. 8(a), 8(c). 8(d),
and 8(g). They show a clear divergence along the phase tran-
sition, and nearly no structure far from it.

The scalar curvature in the thermodynamic limit is shown
in Fig. 9. Its behavior is similar as in the previous regions: it
diverges at γ → 0, decreases approaching the phase transition
line, shown in cyan, reaches its minimum, grows again to
attain a local maximum, and slowly decreases as γ keeps
growing. In Fig. 10, it is shown that the scalar curvature is
negative near the phase transition.

The components of the QMT and its determinant, obtained
numerically for j = 20, are displayed in Figs. 8(b), 8(d). 8(f),
and 8(h). As in the previous regions, their qualitative behavior
is similar to the analytical analysis, exhibiting the precursors
of the phase transitions as local maxima (minimum for g12),
for values of γ slightly larger the cyan line, which depicts the
thermodynamic limit.

In Fig. 11 those maxima are plotted in the ω-γ plane as
colored dots, and their averages as black lines, and compared
with the separatrix in the thermodynamic limit, shown in
magenta. It is clear that they follow the same directions, but
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FIG. 8. Components of the QMT and its determinant in the ther-
modynamic limit [(a), (c), (e), and (g)] and in the case j = 20 [(b),
(d), (f), and (h)] with ω0 = 0.01. The cyan line is the separatrix.

FIG. 9. Scalar curvature R of the QMT in the thermodynamic
limit with ω0 = 0.01. The cyan line is the separatrix.

FIG. 10. Scalar curvature R of the QMT in the thermodynamic
limit for ω = 0.18 and ω0 = 0.01. The critical value γc = 0.0212 is
indicated by the vertical gray dashed line.

the numerical results run along larger values of γ than the
separatrix. The stepped structure of the dots corresponds to
the step 0.0002 employed to vary γ in the calculations.

As in this region we selected ω0 = 0.01, the expression
for the separatrix is γc = √

ωω0/2 = 0.05ω0.5. The functions
fitting the points of Fig. 11 are

γ = 0.0555ω0.4997 for gmax
11 , (51)

γ = 0.0557ω0.5006 for gmax
12 , (52)

γ = 0.0557ω0.4994 for gmax
22 , (53)

γ = 0.0570ω0.5019 for gmax, (54)

FIG. 11. γc and γ for the maximum of QMT components and its
determinant in the case j = 20 with ω0 = 0.01. The plot also shows
the separatrix (solid magenta line) and the fit of Eqs. (51), (52), (53),
and (54) for gmax

11 (dashed black line), gmin
12 (solid black line), gmax

22

(dotted black line), and gmax (dot-dashed black line), respectively.
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FIG. 12. Maximum of QMT components and its determinant in
the case j = 20 with ω0 = 0.01.

which confirm that the numerical and analytical curves are
parallel, with the same exponent very close to 1/2.

The fact that the numerical calculations of the components
of the QMT and its determinant exhibit a finite maxima,
instead of the divergent behavior, along the phase transition,
allows us to determine the value of these maxima as functions
of ω. Their numerical values are displayed in blue in Fig. 12,
showing small numerical fluctuations, and the red curves are
smoothed fits, whose explicit expressions are presented in
Eqs. (55), (56), (57), and (58):

gmax
11 = 27741.6

ω
, (55)

gmin
12 = −773.4

ω3/2
, (56)

gmax
22 = 21.55

ω2
, (57)

gmax = 0.0067

ω6
. (58)

These are quite interesting results, which can be compared
with the analytical ones obtained in the integrable limit ω0 =

FIG. 13. Scalar curvature R of the QMT in the case j = 20 with
ω0 = 0.01. The cyan line is the separatrix.

FIG. 14. Scalar curvature R of the QMT in the case j = 20 with
ω = 0.18 and ω0 = 0.01. The critical value γc = 0.0212 is indicated
by the vertical gray dashed line.

0. In this case, the components of the QMT, shown in Eq. (44),
decay as ω−2, ω−3, and ω−4 for g11, g12, and g22, respectively,
for the cases ++ and −−, and are null for the cases +− and
−+. Our fit shows that, when the exact symmetry is broken,
with ω0 very small but not zero, the exponents of ω of the
components of the QMT have the average values of these
extreme cases.

The determinant is also interesting. Its values are far
smaller of those of the individual components of the QMT,
anticipating its null value at the exact limit. It goes as ω−6,
which would be the behavior of the analytical expression, if it
were non null, as it is.

The scalar curvature in this region is presented in Fig. 13. It
acquires finite but very large positive and negative values close
to the phase transition. A cut at ω = 0.18 is shown in Fig. 14
to exhibit that the scalar curvature diverges to negative values
as γ → 0, at variance with the analytical results, which di-
verge in the positive direction. We should note here that in the
limit γ → 0, the Hamiltonian for the analytical results (14)
goes to two decoupled oscillators while in the limit γ → 0
the Hamiltonian (9) used for the numerical results goes to a
harmonic oscillator and a rigid rotor and is quite remarkable
that scalar curvature uncovers this difference. For large values
of γ the scalar curvature decreases slowly to positive values.

As in the other regions, the behavior of the numerical
results for the components of the QMT and its determinant,
as functions of γ and ω, resemble closely the analytical ones,
obtained in the thermodynamic limit, and be understood as
their precursors. The scalar curvature, on the other hand, only
has similitudes close to the phase transitions. Additional anal-
ysis are needed to fully understand their differences. Figure 15
shows the components of the Ricci tensor, comparing the
numerical and the analytical results in the thermodynamic
limit for j = 20.

VI. CONCLUSIONS

In this paper we have computed the QMT and its scalar
curvature for the Dicke model using analytical and numerical
techniques. On the analytical side we considered the thermo-
dynamic limit and employed the truncated Holstein-Primakoff
approximation to yield quadratic Hamiltonians for the normal
and superradiant phases. On the numerical side we fixed the
values of j and ω0 and defined a grid in parameter space that
allowed us to diagonalize the Hamiltonian matrix at every
point using the efficient coherent basis. We showed that there
is a good agreement between the analytical and numerical
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FIG. 15. Components of the Ricci tensor in the thermodynamic
limit [(a), (c), and (e)] and in the case j = 20 [(b), (d), and (f)] with
ω0 = 0.01. The cyan line is the separatrix.

QMT components even for small values of j, and that the be-
havior of the peaks signal the singularities that will appear in
the thermodynamic limit. Furthermore, we also compared the
analytical and numerical scalar curvatures, observing close
concordance near the QPT, but important discrepancies away
from it. By studying the derivatives of the QMT components,
we concluded that the differences are due to the combination
of the various terms that appear in Eqs. (6a) and (6b).

The integrable case ω0 = 0 was also studied analytically,
and compared with numerical results for ω0 = 0.01. It was
shown that the maxima of the components of the QMT have
a functional dependence on ω which is closely related to the
exact case, and the numerical determinant is far smaller that
any of the components, anticipating its null analytical value.

We would like to make two fundamental observations
drawn from our results. First, the analytical computation of
the QMT made use of the quadratic Hamiltonians that cor-
respond to every phase in terms of the original creation and
annihilation operators. As was discussed in Sec. III, we did not
use a parameter-dependent operator transformation to arrive
at our effective Hamiltonians since that would alter the value
of the QMT and its scalar curvature; this was validated by
the numerical results. Furthermore, it is remarkable that the
curvature scalar is quite sensitive to the difference in the limits
of γ → 0 of our two analytical and the numerical results,
showing that this quantity is worth analyzing independently
of the quantum metric tensor components.

It must be mentioned that in a previous work concerning
the Lipkin-Meshkov-Glick model [52], we also observed a
difference in the analytical and numerical scalars near the
point of zero coupling. And second, the numerical results

that we obtained provide the only known QMT and scalar
curvature for finite j and constitute one of the most valuable
results of this paper. Remarkably, the numerical results also
show that the peaks in all the metric components and the
scalar curvature are signs of the QPT precursor, and they even
appear for relatively small values of j. Naturally the exigence
on computing resources grows as j increases, which makes it
difficult to study the higher system’s sizes for the moment.

The implementation of numerical techniques allows an
extension of this work to study the ESQPT in the Dicke
model and find out if there is a special behavior of the QMT
and the scalar curvature in the known chaotic regions of the
phase space [28,31,53]. Along these lines we could also use
a chaos indicator like the Frobenius norm of the adiabatic
gauge potential [54], which can be written in terms of a sum
of elements of the QMT. Moreover, with the QMT at hand, it
would be worth studying the Fubini-Study and Nielsen com-
plexities which are of importance in the context of information
theory and quantum computing [55,56]. Of course we could
also explore other geometrical aspects like geodesics and their
relation to QPTs [3].
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APPENDIX A: BOGOLIUBOV TRANSFORMATIONS

1. Normal phase

The Bogoliubov transformation that diagonalizes Hamilto-
nian (14) is

â = cos α

2
√

ωω1

[
(ω − ω1)ĉ†

1 + (ω + ω1)ĉ1
]

+ sin α

2
√

ωω2

[
(ω − ω2)ĉ†

2 + (ω + ω2)ĉ2
]
, (A1a)

â† = cos α

2
√

ωω1
[(ω − ω1)ĉ1 + (ω + ω1)ĉ†

1]

+ sin α

2
√

ωω2
[(ω − ω2)ĉ2 + (ω + ω2)ĉ†

2], (A1b)

b̂ = − sin α

2
√

ω0ω1
[(ω0 − ω1)ĉ†

1 + (ω0 + ω1)ĉ1]

+ cos α

2
√

ω0ω2
[(ω0 − ω2)ĉ†

2 + (ω0 + ω2)ĉ2], (A1c)

b̂† = − sin α

2
√

ω0ω1
[(ω0 − ω1)ĉ1 + (ω0 + ω1)ĉ†

1]

+ cos α

2
√

ω0ω2
[(ω0 − ω2)ĉ2 + (ω0 + ω2)ĉ†

2], (A1d)
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where α is such that

tan 2α = 4γ
√

ωω0

ω2
0 − ω2

. (A2)

2. Superradiant phase

The Bogoliubov transformation that diagonalizes Hamilto-
nian (26) is

â′ = cos α′

2
√

ωω′
1

[(ω − ω′
1)ĉ′†

1 + (ω + ω′
1)ĉ′

1]

+ sin α′

2
√

ωω′
2

[(ω − ω′
2)ĉ′†

2 + (ω + ω′
2)ĉ′

2], (A3a)

â′† = cos α′

2
√

ωω′
1

[(ω − ω′
1)ĉ′

1 + (ω + ω′
1)ĉ′†

1 ]

+ sin α′

2
√

ωω′
2

[(ω − ω′
2)ĉ′

2 + (ω + ω′
2)ĉ′†

2 ], (A3b)

b̂′ = − sin α′

4γ
√

ωω′
1

[(4γ 2 − ωω′
1)ĉ′†

1 + (4γ 2 + ωω′
1)ĉ′

1]

+ cos α′

4γ
√

ωω′
2

[(4γ 2 − ωω′
2)ĉ′†

2 + (4γ 2 + ωω′
2)ĉ′

2],

(A3c)

b̂′† = − sin α′

4γ
√

ωω′
1

[(4γ 2 − ωω′
1)ĉ′

1 + (4γ 2 + ωω′
1)ĉ′†

1 ]

+ cos α′

4γ
√

ωω′
2

[(4γ 2 − ωω′
2)ĉ′

2 + (4γ 2 + ωω′
2)ĉ′†

2 ],

(A3d)

where α′ is such that

tan 2α′ = 2ω3ω0

16γ 4 − ω4
. (A4)

APPENDIX B: BASIS WITH DEFINED PARITY

The extended bosonic basis we used in this work to diag-
onalize the Dicke Hamiltonian is given by the eigenstates of
the effective basis, which are (46). The previous states are not
eigenvalues of the parity operator �̂ = eiπ
̂ = eiπ (Ĵz+ j)eiπ â†â.
In order to analyze the statistical properties of the Dicke spec-
trum, we have to separate the energy eigenstates according to
their parity (p = ±). To this end, we construct a basis which
is also an eigenbasis of the parity operator. It is easy to prove
that

|N ; j, m′〉 = 1√
N!

(
â†+ 2γ

ω
√
N

m′
)N ∣∣∣∣α= − 2γ m′

ω
√
N

m′
〉
| jm′〉.

(B1)
This result shows that states (46) are proportional to | jm′〉. It
can be shown that the action of the rotation operator eiπ (Ĵz+ j)

over | jm′〉 gives

eiπ (Ĵz+ j)| jm′〉 = | j − m′〉. (B2)

FIG. 16. Schematic diagram of the grid constructed in param-
eter space. In the calculations the values δγ = δω = 0.0002 were
employed.

Therefore, we have

eiπ (Ĵz+ j)|N ; j, m′〉

= 1√
N!

(
â† + 2γ

ω
√
N

m′
)N ∣∣∣∣α = − 2γ m′

ω
√
N

m′
〉
| j − m′〉.

(B3)

On the other hand, by using the properties of the coher-
ent states, it is straightforward to show that eiπ â†â(â†)k|α〉 =
(−1)k (â†)k| − α〉. With the previous result we obtain

eiπ â†â|N ; j, m′〉

= (−1)N 1√
N!

(
â† − 2γ

ω
√
N

m′
)N ∣∣∣∣α = 2γ m′

ω
√
N

m′
〉
| jm′〉.

(B4)

By putting together Eqs. (B3) and (B4) we obtain
�̂|N ; j, m′〉 = (−1)N |N ; j,−m′〉.

Then, the invariant subspaces of the parity operator are
generated by states (46) with the same values N and |m′|.
It is straightforward to diagonalize the parity operator in
these subspaces, and we obtain the eigenstates of the Dicke
Hamiltonian in the limit ω0 → 0, which are simultaneously
eigenstates of the parity operator �̂,

|N ; j, m′; p = ±〉
= 1√

2(1 + δm′,0)
[|N ; j, m′〉 ± (−1)N |N ; j,−m′〉]. (B5)

Using this basis we can separate from the beginning the
two parity sectors of the Dicke model and the extended coher-
ent basis, which has been shown [49,51] to be very efficient to
study large Dicke systems.

APPENDIX C: NUMERICAL CALCULATIONS AND GRID
IN PARAMETER SPACE

Numerical effort was indispensable in our shown results,
in this way we construct rectangular grids in the parameter
space according to the zone of study, this grids are com-
posed for a significant number of points in which each point
correspond to the calculation of Ĥ with their eigenstates
and energies, respectively, as was mentioned in Appendix B.
In special to solve computationally the Dicke model with

214106-12
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FIG. 17. Derivatives of the QMT components and its determinant in the thermodynamic limit (dashed blue) and in the case j = 5 (solid
blue), j = 10 (solid orange), j = 15 (solid green), and j = 20 (solid red) with ω0 = 1 and ω = 0.8.

j = 20 and Nmax = 70 we require approximately 200 MB of
computer resources by point fixed in the parameter space.
Once we have eigenstates, energies, and the respective op-
erators defined in Eq. (5) we have all the tools to calculate
numerically the elements of the QMT g(0)

i j point by point.
Subsequently, to obtain QMT elements numerically with a
high resolution in the parameter space (see Fig. 16) we use
the command Interpolation[..., Method->Hermite]
defined in Mathematica to have gi j as a continuous function,
in this way we can use the analytical Eq. (6) and finally we
obtain Ricci scalar R.

To give us one idea of the quantity of resources
employed to obtain Figs. 8(b), 8(d), 8(f), 8(h), and

13, we have a parameter space domain defined in γ ∈
[0.01, 0.05] and ω ∈ [0.16, 0.2] which implies 40 000
points that together are equivalent to 8 TB of com-
puter resources. Fortunately, to do this calculations ef-
ficiently we employ around 50 parallelized institutional
clusters (each cluster having Architecture: x86_64, Proces-
sor: Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz,
CPUS: 32) and in few days we obtained our results.

APPENDIX D: DERIVATIVES OF THE QMT

All first and second derivatives of the QMT components
and its determinant are shown in Fig. 17.
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