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Elasticity of two-dimensional ferroelectrics across their paraelectric phase transformation
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The mechanical behavior of two-dimensional (2D) materials across 2D phase changes is unknown, and
the finite temperature (T ) elasticity of paradigmatic SnSe monolayers—ferroelectric 2D materials turning
paraelectric as their unit cell turns from a rectangle into a square—is described here in a progressive manner. To
begin with, their zero-T total energy landscape gives way to (Boltzmann-like) averages from which the elastic
behavior is determined. These estimates are complemented with results from the strain-fluctuation method, which
employs the energy landscape or ab initio molecular dynamics data. All approaches capture the coalescence
of elastic moduli 〈C11(T )〉 = 〈C22(T )〉 due to the structural transformation. The broad evolution and sudden
changes of elastic parameters 〈C11(T )〉, 〈C22(T )〉, and 〈C12(T )〉 of these atomically thin phase-change membranes
establishes a heretofore overlooked connection among 2D materials and soft matter.
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I. INTRODUCTION

Two-dimensional (2D) materials have held promise as con-
stituents in electronics, energy harvesting devices, spintronic
applications, and optoelectronics [1–3]. Controlling their me-
chanical properties, one can tune their electronic and optical
behavior [4]. Some 2D materials with rectangular unit cells
–such as SnO or SnSe monolayers (MLs)—undergo structural
transformations [5–8], and the same can be said of 2D meta-
materials such as Ising-like puckered sheets [9]. The purpose
of this paper is to predict sudden changes in elastic parameters
on 2D materials undergoing phase transformations at finite
temperature, whose magnitudes tend to be estimated only at
zero temperature (zero T ).

Understanding finite-T behavior is relevant, as zero-T
estimates of elastic parameters (sometimes called elastic
constants) lose meaning on materials undergoing phase tran-
sitions (transformations) at finite T , where elastic behavior is
expected to change drastically. For example, zero-T elastic
parameters C(0)

11 and C(0)
22 have different magnitudes on mate-

rials with a rectangular [or orthorhombic in three dimensions
(3D)] unit cell, but these elastic moduli must turn identical at
a critical T (Tc) in which the unit cell turns square (tetragonal,
or cubic in 3D).

Noncentrosymmetric materials undergo nonaffine relax-
ations at finite temperature that result in softened elastic
moduli [10,11]. Here, we present a study on the elastic
behavior of SnSe MLs, noncentrosymmetric materials be-
longing to the group-IV monochalcogenide materials family.
Group-IV monochalcogenide MLs are experimentally avail-
able [12–14] 2D ferroelectrics with a puckered rectangular
unit cell and a Pnm21 group symmetry in their zero-T phase,
whereby each atom is threefold coordinated [1,7,15–22]. They
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display metavalent bonding [23], characterized by large
atomic effective charges, structural anharmonicity, and sig-
nificant linear and nonlinear optical responses. Their low-T
crystal structure also underpins anisotropic elasticity [24,25].
Nevertheless, these 2D materials undergo a firmly established
structural change onto a fivefold coordinated square structure
with P4/nmm symmetry at a critical temperature Tc ranging
between 200 and 300 K [7,12–14,20,21], at which their prop-
erties turn isotropic. Nothing has been said about the elastic
behavior on their P4/nmm phase yet, and approaches based
on (i) an analytical form of the zero-T total energy landscape
[26] and (ii) the strain-fluctuation method [27] are deployed
to answer this open question here.

This paper is structured as follows: Computational meth-
ods are specified in Sec. II, and the results are provided
in Sec. III. More specifically, the evolution of elasticity as
obtained from second-order derivatives of the total energy
landscape is reported in Sec. III A, while the results de-
termined from the strain-fluctuation method are reported in
Sec. III B. Conclusions are presented in Sec. IV.

II. METHODS

The total energy landscape and molecular dynamics (MD)
data were calculated with the SIESTA density functional theory
code [28,29] employing an exchange-correlation functional
with self-consistent van der Waals corrections [30]. We em-
ployed the NPT ensemble here, as it permits lattice parameters
a1 and a2 to vary. The experimentally observed phase transi-
tion on this material is triggered by a change in the rhombic
angle �α [12], which relates to a1 and a2 (a1 > a2) as a1

a2
−

1 = �α [20]. Other choices of ensemble that constrain the
area of the material (e.g., the NVT ensemble) do not allow for
lattice vectors (and hence ε1 and ε2) to change with temper-
ature and thus are inconsistent with experimental observation
(see Ref. [7] for an extended discussion). The ab initio MD
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FIG. 1. (a) SnSe monolayer (ML) unit cell for points A, C, D,
and D′ on an analytical U (a1, a2) [subplot (b)]. The solid curve
connecting points A, C, and B on subplot (b) is the minimum-energy
pathway among the two energy degenerate basins A and B, and the
inset displays the energy barrier JC = U (aC, aC ). Straight lines pass-
ing through point A were used to determine zero-T elastic moduli.
Some isoenergy lines were drawn, too.

data was collected on samples containing 1024 atoms for at
least 50 000 fs. Additional details can be found in Ref. [20].

III. RESULTS

A. Elasticity from the total energy landscape

As illustrated in Fig. 1(a), for a SnSe ML (a paradig-
matic group-IV monochalcogenide ML), a crystal elongated
or compressed along two orthogonal directions a1 and a2

with a subsequent structural optimization of atomic positions
for given values of a1 and a2 leads to a zero-T total en-
ergy E (a1, a2) per unit cell, which includes electronic, dipole,
and elastic contributions. The change of energy U (a1, a2) =
E (a1, a2) − E (a1A, a2A) with respect to a degenerate local
minimum energy configuration—labeled A and having coordi-
nates a1A and a2A—seen in Fig. 1(b) is a total energy landscape
[31]. To simplify an eventual extraction of partial derivatives,
the landscape U (a1, a2) in Fig. 1(b) is an analytical fit to raw
ab initio data [20]. The raw data sets an energy barrier separat-
ing the two degenerate minima equal to JC,r = 149.25 K/u.c.,
lattice parameters a1A,r = 4.4873 Å and a2A,r = 4.3264 Å at

TABLE I. Fitting parameters for U (X,Y ). JC = 149 K/u.c.

U1 −3660.5 ± 12.3% K/Å2

U2 24 849 ± 4.3% K/Å2

U3 −109 410 ± 8.2% K/Å3

U4 −42 945 ± 21.2% K/Å3

U5 188 100 ± 9.2% K/Å4

U6 114 840 ± 43.4% K/Å4

U7 −3568.5 ± 13.4% K/Å
U8 −88 140 ± 12.4% K/Å2

g1 0.0583 ± 9.3% Å
g2 0.0536 ± 8.1% Å

the energy minima A, and aC = 4.3590 Å for the square unit
cell of lowest energy [20,32].

Here, U (a1, a2) is mirror symmetric with respect to the
a1 = a2 line on Fig. 1(b), thus calling for new variables:

X = a1 − a2√
2

and Y = a1 + a2 − 2aC√
2

, (1)

where X = 0 and Y = 0 at point C (whose coordinates
are a1 = a2 = aC), which thus becomes the new origin of
coordinates.

The mirror symmetry of the landscape about the X = 0 line
makes U (X,Y ) even on X , and the following expression was
used to fit numerical data [20]:

U (X,Y ) = JC + U1X 2 + U2Y
2 + U3Y X 2 + U4Y

3 + U5X 4

+U6Y
4 +

[
U7X exp

(
−

√
X 2

g1

)

+U8Y X exp

(
−

√
X 2

g2

)]
tanh(100X ), (2)

with parameters and numerical uncertainties provided in
Table I. With the exception of the terms on tanh(100X )—
whose sole purpose is to smooth the cusp observed at the
barrier in the numerical data [20]; see inset of Fig. 1(b)—the
total energy landscape is a polynomial of order four. The
quality of the fitting can be ascertained by noticing that its
minima A is located at (a1A, a2A) = (4.4896 Å, 4.3173 Å) [or
XA = 0.1218 Å, YA = 0.0629 Å], which is <0.25% different
from the raw ab initio data. One also notices that the saddle
point on U (X,Y ) (i.e., the minimum energy barrier separating
the two ground states A and B) occurs exactly at point aC

as determined in the raw data and that U (XA,YA) = 0.0245
K/u.c., leading to an energy barrier of 148.9755 K/u.c. which
is only 0.2745 K/u.c. smaller than the one seen from the raw
data.

Zero-T elastic moduli C(0)
11 , C(0)

22 , and C(0)
12 are customarily

obtained by fitting U (a1, a2) to parabolas [24,25]:

U � U = 1

2
εT C (0)ε = C(0)

11 ε2
1

2
+ C(0)

22 ε2
2

2
+ C(0)

12 ε1ε2, (3)

where strain coordinates ε = (ε1, ε2)T , with

ε1 = a1 − a1A

a1A
, ε2 = a2 − a2A

a2A
, (4)
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FIG. 2. Cuts of U along straight lines passing through point A on
Fig. 1(b) and harmonic (i.e., quadratic) fits—thinner solid curves ob-
tained within the shaded regions on the zoom-in plots—from which
C (0)

11 , C (0)
22 , and C (0)

12 were extracted.

were employed. We recall that a1A and a2A in Eq. (4) are
zero-T equilibrium lattice parameters defining point A in the
total energy landscape.

Here, C (0) is the harmonic approximation to the elasticity
tensor, and U is the harmonic approximation to U . As acutely
seen in Fig. 2(a), the prescription within Eq. (3) neglects the
strong anharmonicity of group-IV monochalcogenide MLs by
definition. Further, given that elastic moduli are thermody-
namical averages after all, this approach misses a finite-T
understanding of elasticity altogether.

Also, U (X,Y ) leads to zero-T elastic moduli consistent
with prior work [24,25]: Eq. (2) is calculated along three
straight lines [(a1, a2A), (a1A, a2), and (XA,Y ), corresponding
to the brown (horizontal), green (vertical), and red (at 45◦)
straight lines passing through point A on Fig. 1(b), respec-
tively], and Eq. (3) is fitted against the parabolas displayed on
Fig. 2. Here, C(0)

i j are listed in Table II (i, j = 1, 2). Discrep-
ancies with previous results (such as the smaller magnitude of
C(0)

11 and the slightly larger value of C(0)
12 than C(0)

11 here) are
due to the use of different computational tools and exchange-
correlation functionals in ab initio calculations. The softer C(0)

11
here leads to a smaller Tc when contrasted to results using
the numerical methods of Refs. [24,25]; see Refs. [7,21] for a
discussion.

To go beyond the zero-T paradigm, we make use of
U (X,Y ) to determine elastic behavior next. A function of
X and Y has an expectation value within the total energy
landscape 〈 f (Umax)〉 as an average over classically accessible
states [26]:

〈 f (Umax)〉 =
∮

exp
[−U (X,Y )

Umax

]
f (X,Y )dXdY∮

exp
[−U (X,Y )

Umax

]
dXdY

, (5)

TABLE II. Zero-T in-plane elastic moduli (N/m).

Elastic modulus Prior work This paper

C (0)
11 19.9 [24], 19.2 [25] 12.7

C (0)
22 44.5 [24], 40.1 [25] 51.8

C (0)
12 18.6 [24], 16.0 [25] 20.9

with dXdY an area element within the confines of an isoen-
ergy contour Umax around structure A, like those seen in
Fig. 1(b).

Within this paradigm, U (X,Y ) is a classical potential en-
ergy profile, and a set of accessible crystalline configurations
lies within isoenergy confines (Umax is the largest kinetic en-
ergy of a hypothetical particle in the landscape and is thus
indirectly linked to T that way). For example, sampled unit
cells will all have a1 > a2 when the Umax isoenergy curve
is smaller than JC . That is, the sampled structures will all
be ferroelectric, having an in-plane polarization along the x
direction [20]; see structure A in Fig. 1(a). When Umax � JC

nevertheless, the average structure encompasses minima A
and B, yielding a1 = a2, and it thus is a square. The fact
that a1 = a2 on average when Umax � JC is illustrated by
structures D and D′ in Fig. 1(b), which have x and y coordi-
nates swapped. In this sense, the averaging among crystalline
configurations within the energy landscape up to an energy
Umax achieves an effect like T : a transformation whereby the
average unit cell turns from a rectangle into a square. A caveat
to this model is that it is based on averaging over independent
crystalline unit cells, while 2D structural transformations in
2D are driven by disorder [18,19].

Energy average values for Ci j are determined by [26]

〈Ci j (Umax)〉 = kB

{〈
∂2u

∂εi∂ε j

〉
− 1

Umax

[〈
A ∂u

∂εi

∂u

∂ε j

〉

−〈A〉
〈
∂u

∂εi

〉〈
∂u

∂ε j

〉]}
, (6)

with kB Boltzmann’s constant, A = a1a2, and u = U/A.
Equation (6) was evaluated numerically for energy isoval-

ues Umax starting at 1 K/u.c and up to 400 K/u.c. [Fig. 3(a)].
Near Umax = 0, the averaging procedure yields elastic moduli
smaller than those listed in Table II. Within this method, 〈C12〉
quickly decays to a nearly zero value, and it becomes negative
(for an auxetic behavior). On the other hand, 〈C22〉 > 〈C11〉 by
a factor in between 3 and 5 for energies up to Umax = JC , at
which a sharp change occurs whereby 〈C22〉 ≈ 〈C11〉.

The fact that 〈C22〉 	= 〈C11〉 for isovalues Umax � JC , in
which the average structure already turned isotropic [see
Fig. 3(b)], represents an inaccuracy of the approach in
Ref. [26]. It originates from the fact that strain was writ-
ten out with respect to the zero-T ground state structure
(a1A, a2A) in Eq. (4). Experimentally, strain at finite T is
measured with respect to a structure in thermal equilib-
rium, calling for a calculation of elastic moduli in which
average values of a1 and a2 are employed. Strain is then
redefined as

ε1 = a1 − 〈a1〉
〈a1〉 and ε2 = a2 − 〈a2〉

〈a2〉 , (7)

which is still valid at zero T in which 〈ai〉 = aiA (i = 1, 2).
The resulting elastic parameters are shown in Fig. 3(c). Now
〈C22〉 = 〈C11〉 for isovalues Umax � JC . The use of Eq. (7)
instead of Eq. (4) is thus a correction to our previous
method [26].

Here, 〈C12〉 is the softest elastic modulus in this model.
On the other hand, 〈C11〉 hardens significantly at the transi-
tion (Umax = JC), while 〈C22〉 suddenly softens at Umax = JC .
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According to Fig. 3, a SnSe ML is much softer than graphene,
for which C(0)

11 = C(0)
22 = 336 N/m and C(0)

12 = 75 N/m (see
Ref. [33], and multiply by half of the unit cell thickness of
Bernal graphite � 3.4 Å).

We propose—by direct comparison of JC and TC from nu-
merical calculations [21]—a linear correspondence between
these two variables (T ∝ 1.42Umax) for this material, such that
TC = 212 K, and finite-T elastic behavior can be extracted
from Fig. 3(c) at a low computational cost.

B. Elasticity from the strain-fluctuation method

We next employ the strain-fluctuation method to de-
termine the elastic moduli. The expression to work with
is [27]

〈C−1
i j〉 = 〈A〉

kBT
(〈εiε j〉 − 〈εi〉〈ε j〉), (8)

which is less convoluted than Eq. (6) and also amenable for
MD input.

Computed using U (X,Y ), 〈εi〉 = 〈ai−〈ai〉〉
〈ai〉 = 〈ai〉−〈ai〉

〈ai〉 = 0
(i = 1, 2) for additional simplification, and 〈Ci j〉 (i, j = 1, 2)
are displayed as an inset on Fig. 3(c). One notes that 〈Ci j〉 > 0
now, so that auxetic behavior cannot be confirmed within
the strain-fluctuation method. A second point to notice is
that 〈C22〉 now becomes three times larger than its biggest
magnitude obtained using Eq. (6). For Umax < JC , 〈C11〉 is
about twice as large as its magnitude from Eq. (6), too. Here,
〈C11〉 = 〈C22〉 for Umax � JC , with a magnitude now compara-
ble with that obtained from Eq. (6). The two takeaways from
the strain-fluctuation approach [inset on Fig. 3(c)] are that
〈C22〉 is much larger than its estimate using partial derivatives
of U (X,Y ) and that 〈C12〉 remains >0 .

The Pnm21-to-P4/nmm structural transformation is sig-
naled by a collapse of the rhombic distortion angle 〈�α〉
[related to a1 and a2 as 〈�α〉 = (〈 a1

a2
〉 − 1) 180◦

π
] to a zero value

[12,20]. As seen in the inset of Fig. 3(b), U (X,Y ) yields the
required collapse of 〈�α〉, but it does not display a gradual
decrease with a critical exponent of 1

3 [12,20], as seen in the

inset of Fig. 4(a)—obtained from MD. This is so because
U (X,Y ) makes 〈a1〉 plow to larger values, while 〈a2〉 remains
relatively unchanged up to Umax = JC , when both lattice pa-
rameters change discontinuously into an identical value [see
Fig. 3(b) and its upper inset].

Thus, while an estimation of elastic properties based on
U (X,Y ) [using either Eq. (6) or (8)] is relatively inexpen-
sive, MD data were also utilized to estimate 〈C11〉, 〈C22〉, and
〈C12〉 within the strain-fluctuation approach. Briefly, 16 × 16
supercells containing 1024 atoms were employed in NPT ab
initio MD calculations for 16 different T between 100 and
400 K. Here, 20 000 individual time steps with a 1.5 fs
resolution were obtained for each T . Thermal averages were
obtained for times >5 ps to allow for proper thermalization. In
this approach, εi = 1

2 [(〈h〉−1T hT h〈h〉−1)ii − 1] (i = 1, 2) [27].
Here, h = (a1, a2) and 〈h〉 = (〈a1〉, 〈a2〉) are 2 × 2 matrices
containing the in-plane magnitudes of supercell lattice vectors
a1 and a2, which are written in column form. The matrix h
contains the in-plane superlattice constants for one MD step,
and 〈h〉 is its average over the available MD steps past ther-
malization. Here, 〈A〉 is replaced by the area thermal average
of the supercell.

The results, shown in Figs. 4(b) and 4(c), indicate a magni-
tude of 〈C22〉 comparable with that of graphene at 100 K [33]
but a softer magnitude of 〈C11〉 that is four times smaller, as
expected due to the anisotropy of the SnSe ML. All elastic
constants then decrease, in a manner like that seen in the
inset of Fig. 3(c). Here, 〈Cii〉 (i = 1, 2) turn similar despite
the method employed at energies/temperatures above the
transition.

IV. CONCLUSIONS

The finite-T elastic behavior of a paradigmatic 2D ferro-
electric was estimated from second-order partial derivatives
of the energy on their zero-T total energy landscape and
following the prescriptions of the strain-fluctuation method
as well. Within the latter method, average strain was intro-
duced utilizing either the total energy landscape or dedicated
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ab initio MD data. Regardless of method, 〈C11〉 are shown to
coalesce past the transition energy JC or temperature TC , and
the elastic moduli turn much softer than that determined on
graphene. The results contained here thus show how to under-
stand the finite-T elastic behavior of 2D materials undergoing
2D transformations.
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