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Relaxation effects in thermoelastically generated ultrasound in stressed dielectric
and conductive materials
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In this paper, we demonstrate that the standard theory of thermoelasticity fails in describing stress depen-
dence of laser-exited ultrasound in real dielectric and especially conductive materials. A theoretical model of
thermoelasticity considering the thermal perturbation of nonstationary defect states with relaxation is presented
and analyzed. To explain the obtained experimental data for metals, it is necessary to also consider a change in
the pressure of the electron gas due to the defect perturbation. The proposed model is used to describe linear and
nonlinear behavior of the laser ultrasonic signals near a hole in a dielectric ceramic and a metal alloy submitted
to a uniform compression. The model introduces an effective dynamic coefficient of thermal expansion for
real stressed materials. The obtained results provide an opportunity to estimate mechanical stresses in different
materials. In this paper, we describe the calibration of the laser ultrasonic signals on stress in combination with
hole drilling. The approach also allows us to estimate relaxation times of the laser-excited defects in stressed
materials.
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I. INTRODUCTION

In materials with a complex multicomponent structure,
dynamic deformation, excitation of acoustic vibrations, and
propagation of waves are often characterized by the appear-
ance of special properties that cannot be explained with
the standard theory of elasticity. In disordered materials, it
is often necessary to consider relaxation processes in their
defect subsystems [1–3]. To study and explain wave propa-
gation properties of such materials, a special approach called
slow dynamics has been developed [4,5]. Over the years,
attention has been paid to the development of slow dynamic
methods for studying the features of mechanical processes in
heterogeneous and defective materials [6,7]. Slow dynamics
helped to explain the wide range of dynamic deformation
processes in materials and objects with a complex internal
structure, a characteristic feature of which is the presence of
relaxation processes. Such materials include complex glassy
structures [8–10], ceramics [6,11], geological media [12–14],
and cement [15,16]. Recently, similar behavior has been ob-
served in the phenomena of creep [17] and contact phenomena
in metals [7] and in metal alloys [18]. The phenomena of slow
dynamics turn out to be quite diverse and manifest themselves
on various spatial scales from nano- to meso- and macrolevels,
which ensured their wide applications for diagnostics of vari-
ous inhomogeneous materials [19–21].

Usually, studies carried out within the framework of slow
dynamics cover elastic properties of materials, while thermal
and thermoelastic ones do not receive much attention. Insuf-
ficient attention was also paid to the investigation of stressed
materials with relaxation properties, while their study is of
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particular interest from both fundamental and practical points
of view. It may result in the development of effective nonde-
structive, noncontact methods for assessing full-field residual
stress information. It is known that the influence of stresses
on the elastic characteristics of materials without relaxation
processes leads to several acoustoelastic effects [22,23]. These
effects are usually small and do not exceed a few percent. It
was also shown in Ref. [21] that the effect of deformation on
the speed of sound is several units per thousand for polycrys-
talline metals with multirelaxation processes with relaxation
times in the range of 10−4 to 104 s. As for thermal processes,
it is known from our experiments on studying areas near crack
tips in silicon nitride ceramics [24,25] and experiments with
metals and metal alloys [26,27] that stress has a weak effect
on thermophysical parameters of materials. This influence
results in the appearance of a weak anisotropy of the thermal
conductivity of a material and in the phase shift of the thermal
wave signal by several degrees [28].

Our experimental results on stressed materials with re-
laxation presented in the experimental sections of this paper
demonstrate significantly stronger influence of stresses on
parameters of laser ultrasound (LU) signals generated by ther-
moelastic mechanisms. These signal variations could reach
100% of the average signal level, and signal phase changes
could exceed 100°. Thus, the effects associated with the stress
influence on the elastic and thermophysical properties of ma-
terials can hardly be useful for explaining our experimental
results. In this regard, the main focus of this paper is on
studying the stress dependence of the thermal expansion co-
efficient that determines thermoelastic processes in materials.
The relaxation behavior of a material due to some disorder of
its structure is considered to explain noticeable phase delays
of the LU signals relative to the exciting laser radiation. The
results obtained can be useful in expanding the slow dynamic
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approaches to investigation of thermoelastic processes occur-
ring during the generation and propagation of acoustic waves
in materials with the relaxation of nonstationary defects.

For a better understanding of the results obtained, let us
first consider the generalized Thompson thermoelastic effect
which is widely used for residual stress evaluation in materi-
als. It considers the dependence of mechanical parameters of a
material on temperature. The corresponding method is called
thermoelastic stress analysis (TSA). It has been developed for
various materials and objects [29]. The idea of the method
is based on detecting the local variations of the surface tem-
perature of a stressed sample under the action of periodical
external loads. The interpretation of the TSA experimental
data is usually carried out within the thermodynamic approach
[30], in which the presence of uniaxial stresses σ in a material
can be considered by introducing the effective coefficient of
thermal expansion:

αeff = α0 − 1

E2

∂E

∂T
σ, (1)

where α0 is the coefficient of linear thermal expansion for the
undeformed state, and E is Young’s modulus of the material.
Since ∂E/∂T < 0 for practically all materials, in accordance
with Eq. (1), the presence of tensile stress (σ > 0) in a
material always leads to an increase in the coefficient of
thermal expansion, whereas compression (σ < 0) leads to its
decrease.

In this paper, the peculiarities of the generation of ul-
trasonic waves and vibrations in stressed dielectric and
conductive solids with a defect subsystem are experimen-
tally and theoretically investigated. The experiments were
carried out considering the situation in which the acoustic
wavelength significantly exceeds the thermal wavelength and
sample size. In this case, in accordance with the results re-
ported in Refs. [31,32], the LU signals from the samples can
be considered proportional to the local value of the thermal
expansion coefficient in the irradiated region of the sample.
The relationship between the LU signals from a sample in free
and stressed states in the frequency domain is

S(�r, ω) = α(�r)

α0
S0(�r, ω), (2a)

or for the case of the linear dependence of the coefficient of
thermal expansion on stress:

S(�r, ω) = (1 + bσ )S0(�r, ω), (2b)

where �r is the radius vector of the center of the laser beam
on the surface, ω is the cyclic modulation frequency of laser
radiation, S0 is the LU signal, and σ is the first stress invari-
ant. Note that, within the framework of the thermodynamic
approach, in accordance with Eq. (1), the coefficient b is

b = − 1

α0E2

∂E

∂T
. (3)

Earlier, in works on Vickers-indented ceramics [24,25,33]
and metals [26,34], we have found the strong influence of
residual and external stresses on LU signals. However, it was
impossible to quantitatively relate the experimental signal to

the residual stresses due to the complex geometry of the
indented zones and the stress distribution close to them. In
this paper, experiments were performed on model samples
with a round hole. A predictable stress field was induced in
the samples by a controllable external load. The availability
of precise analytical solutions for the distribution of stresses
in such samples [35] allowed us to reveal the quantitative
correlation between the experimental signal and internal stress
and consequently to check the dependence of the coefficient
of thermal expansion on stresses. To elucidate the specific
features of the LU signals in stressed materials of different
natures, experiments were performed on dielectric materials
(ceramics) and on conducting materials (metal). To explain
the results obtained, a slow dynamic model of thermoelastic
excitation of ultrasound considering the presence of relaxation
of defect states in real materials was proposed and analyzed.

II. MATERIAL PREPARATION
AND EXPERIMENTAL SETUP

Experiments were carried out on samples made from two
different materials: nonconductive silicon nitride ceramic NC
132 and aluminum alloy D16 (analogue 2024). Rectangular
plates with a small round blind hole, i.e., a hole with a depth
less than the plate thickness, in the center were chosen as
model objects. In the silicon nitride ceramic, a hole was made
in the center of the large face using a CO2 laser. The hole
diameter on the surface was 0.6 mm, and the depth was
0.5 mm. In D16 alloy, a hole of 0.26 mm in diameter and
0.4 mm in depth was also drilled in the center of the large
face. Under uniaxial loading, the stress distribution in such an
object is known analytically.

The Si3N4 ceramic was made by hot pressing in the direc-
tion perpendicular to the face where the hole was made. It was
chosen as a dielectric material. The investigated specimen was
8.5 × 8.1 × 2.4 mm3 in size. The surface with the hole has
been polished. D16 aluminum alloy was chosen as a conduc-
tive material. The specimen size was 8.9 × 6.9 × 4.0 mm3.
The surface was finally ground with aluminum oxide grinding
powder with an average particle size of 1 μm.

Ultrasonic vibrations in the samples were generated by
532 nm laser radiation modulated in time and focused on the
surface of the samples. The modulated radiation power on the
sample surface was 8 mW. The laser spot diameter was 12
μm. A round piezoelectric transducer of 25 mm in diameter
and 5 mm in height made from lead zirconate titanate was
used as a detector of ultrasonic waves at the opposite side of
the samples. The detector was coupled to the sample surface
with a thin layer of glycerol-based acoustic contact gel. The
operating frequency was chosen close to the minimum natural
resonant frequency of the transducer of 101.4 kHz.

The main idea of the experimental research in this paper
was to study the dependence of the excited acoustic waves
on mechanical stress. To this purpose, a uniaxial compres-
sive load was applied to the lateral sides of the samples,
which were placed between two jaws subjected to a com-
pressive load. As a result of the action of external uniaxial
stress, nonuniform stress fields with a predictable distribution
were formed around the holes. For the data acquisition, the
signal from the piezoelectric transducer was fed through a
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FIG. 1. Experimental set-up. AOM is the acousto-optic modula-
tor, PZT is the piezoelectric transducer.

preamplifier to a lock-in amplifier and then collected by
a computer. The general scheme of the setup is shown in
Fig. 1. The LU images of the samples were formed by two-
dimensionally (2D) scanning the position of the focused laser
beam on a surface. All experiments with external loads were
carried out in the range of elasticity of materials. The absence
of plastic deformations in the samples during the experiment
was controlled by the coincidence of the LU images near the
hole before and after loading.

Thermal waves excited at the modulation frequency de-
cayed rapidly at distances of 10 μm for silicon nitride and
20 μm for aluminum alloy. Then the spatial resolution deter-
mined by the size of the laser spot and the thermal wavelength
was ∼30 and 50 μm, respectively.

III. EXPERIMENTAL RESULTS

A. Introduction into the Kirsch problem:
Stress distribution around a hole

Let us consider in more detail the stress disturbance near a
hole. For a plate with a through-hole subjected to the uniform
load P along the line with ϕ = 0, the radial and circumfer-
ential stresses σr and σϕ around the hole are found using the
expressions [35]:

σr (r, ϕ) = P

2

(
1 − a2

r2

)
+ P

2

(
1 + 3a4

r4
− 4a2

r2

)
cos 2ϕ, (4)

σϕ (r, ϕ) = P

2

(
1 + a2

r2

)
− P

2

(
1 + 3a4

r4

)
cos 2ϕ, (5)

where r is the radial distance, the polar angle ϕ is measured
as shown in Fig. 2, and a is the hole radius. In this case, the
radial stress on the inner surface of the hole is equal to zero,

FIG. 2. The field of the first stress invariant around a hole under
uniaxial unit compression.

i.e., σr (a, ϕ) = 0, and the circumferential stress have maxima
and minima:

σϕ (a, 0) = σϕ (a, π ) = −P,

σϕ

(
a,

π

2

)
= σϕ

(
a,−π

2

)
= 3P.

The first invariant of the stress tensor near the surface is
determined by the equality:

σ = σr + σϕ = P − P
2a2

r2
cos 2ϕ, (6)

where it is considered that, on the surface, σz = 0. Figure 2
shows the stress distribution σ around the hole for the uniaxial
compression in the form of a 2D color map.

Strictly speaking, Eq. (6) describes the behavior of stresses
around a through-hole in sufficiently thick plates. Under
the experimental conditions, the thermoelastic generation of
the acoustic waves occurred in a thin near-surface region of
the sample. In accordance with the work by Folias and Wang
[36], the stress on the surface and in the bulk may differ by
15% for the ratios of the hole radius to the plate thickness
mentioned in Sec. II, but the stress distribution around the
hole remains close to that given by Eq. (6). Therefore, this
difference is not considered further, and the analysis of the
obtained experimental data will be carried out using Eq. (6).

Substituting Eq. (6) into Eq. (2a), we obtain the assumed
theoretical dependence of the LU signal on the applied load in
the form:

S = S0

(
1 + bP − bP

2a2

r2
cos 2ϕ

)
. (7)

B. Ceramic sample

First, we experimentally examine the ceramic sample. Fig-
ure 3(a) shows the LU image of the area around the hole in the
unloaded sample. The signal distribution is almost uniform.
Figures 3(b) and 3(c) depict the same part of the sample under
the loads of −16 and −30 MPa. The images of the uniaxially
loaded sample clearly show the strong redistribution of the
signal amplitude near the hole. Moreover, the areas with in-
creased and decreased signals have diametrically symmetrical
location around the hole, as in Fig. 2.
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FIG. 3. Laser ultrasound (LU) images of a silicon nitride sample
region. (a) The signal amplitude for the sample in the initial state.
(b) The signal amplitude for sample under uniaxial compression
P1 = −16 MPa. (c) The signal amplitude for sample under uniaxial
compression P2 = −30 MPa. (d) The signal phase for sample un-
der uniaxial compression P2 = −30 MPa. The size of the images is
1.8 × 1.8 mm2. The scan step is 20 μm.

From Eqs. (2a) and (3) and the data in Figs. 2 and 3, it
can be seen that there is a qualitative agreement between the
experimental and theoretical images; namely, the LU signal

FIG. 4. Distribution of signals corresponding to the images in
Fig. 3 along a circle with a radius of 0.4 mm; black crosses for
experimental data for a sample without load; blue circles for the
sample under the compressive load of −16 MPa; red triangles for
the sample under the compressive load of −30 MPa. The lines of the
corresponding colors are fitting curves derived using Eq. (8).

decreases in zones of compressive stresses and increases in
zones of tensile stresses, in accordance with the behavior of
the thermal expansion coefficient as in Eq. (2a).

For a quantitative analysis, we will approximate the LU
signal from the sample under the load P by the function:

S = S∞

{
1 − 2bPa2

(1 + bP)r2
cos [2(ϕ − ϕ0)]

}
, (8)

with parameters S∞, b, and ϕ0 which can be used for fitting the
data. Here, S∞ is the signal far from the hole, and ϕ0 is the an-
gle between the load direction and the reference direction. For
the quantitative analysis of the experimental data, a nonlinear
fitting procedure was carried out according to the Levenberg-
Marquardt method using OriginPro software. The fitting was
performed for several images at different external loads.

Figure 4 shows the distribution of experimental signals
along the circumference with the radius of 0.4 mm and the
theoretical approximation derived from Eq. (8). For the silicon
nitride ceramic, the results of the fit at the radius a = 0.30 ±
0.01 mm are b = 17 ± 3 GPa−1 at the load P1 = −16 ±
2 Mpa and b = 13 ± 2 GPa−1 at the load P2 = −30 ± 2 Mpa.

The main uncertainty in all experiments is due to the mea-
surement uncertainty of the applied load P and the hole radius
a. The standard error of the fit was <3% in all cases. The
presented results show that Eq. (8) approximates reasonably
well the experimental signal for Si3N4 ceramics. This sug-
gests that the amplitude of acoustic vibrations, as expected,
is a function of the first stress invariant. This dependence is
associated with the isotropy of sample properties on the
surface and temperature fields in the region of ultrasound
generation.

The stress field around a hole demonstrates strong gradi-
ents, and one can suppose that stress or strain gradient also
affects the LU signal. To assess the possible influence of stress
and strain gradients on the coefficient b, we analyzed the av-
eraged data for the absolute LU signal S outside a concentric
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circle of radius r = 4a. From Saint-Venant’s principle, the
hole practically does not affect the stress distribution at this
distance, and we can neglect stress gradient effects. The signal
amplitude demonstrated monotonic behavior in accordance
with Eq. (2a). A linear fit gives b = 13 ± 2 GPa−1, which is
in good agreement with the value obtained from the angular
signal distribution near the hole. Thus, the stress and strain
gradients do not noticeably affect the LU signal.

For the silicon nitride ceramic studied in this paper,
∂E/∂T = −0.014 GPa K−1 [37], α0 = 3.3 × 10−6K−1, the
average Young’s modulus E = 315–320 GPa [38], and thus,
in accordance with thermodynamic result [Eq. (1)], in the
zones of uniaxial stresses, the thermal expansion coefficient
should depend on the stress as

α ≈ α0(1 + 0.043[GPa–1]σ ). (9)

Thus, the experimentally found average value of the coeffi-
cient b turns out to be much larger than the theoretical value of
the similar coefficient determined by Eq. (3) which considers
only the thermodynamic dependence of the elastic modulus
on temperature. The large discrepancy in the values of the
coefficients of the linear dependence on stress indicates the
presence of an additional mechanism that affects the coeffi-
cient of thermal expansion along with the dependence of the
elastic modulus on temperature.

Above, we considered the behavior of the LU signal mag-
nitude, which only quantitatively differs from that predicted
by classical thermodynamics. More surprising, however, is
the behavior of the LU signal phase. According to Eq. (2a),
the phase of the signal does not depend on stress. Figure 3(d)
presents the phase distribution of the LU signal around the
hole at the external compressive load of −30 Mpa. The dis-
tribution shows a clear relationship between phase and stress.
The phase changes by ∼140◦ with an increase in stress from
−90 to 30 Mpa.

In Sec. IV, we discuss some theoretical arguments con-
firming the existence of the slow dynamic mechanism in
investigated stressed samples, which help to explain the ob-
tained experimental data.

C. Metal sample

Let us now consider the excitation of acoustic vibrations in
a stressed metal sample. Anomalous slow dynamic acoustic
effects were previously observed in aluminum alloys [18].
Elastic properties of a material like the D16 aluminum al-
loy analyzed here were reported in Ref. [39], E = 73 GPa,
∂E/∂T = −0.042 GPa K−1, and α0 = 23 × 10−6K−1. Sub-
stituting these values in Eqs. (1) and (2a), we expected a
positive value for b : b ≈ 0.34 GPa−1.

The LU images of the area around the hole in the D16
aluminum alloy in the initial state and under load are shown
in Fig. 5. Figure 5(a) shows that the image of the sample in
the initial state presents a characteristic distribution of the LU
signal around the hole, which indicates the presence of resid-
ual stress in the sample. The comparison of the LU images of
the loaded metallic sample with similar images for ceramics

FIG. 5. Laser ultrasound (LU) images of the sample area for the
D16 aluminum alloy. (a) The sample in the initial state. (b) The
sample under compression P1 = −21 MPa. (c) The sample under
compression P2 = −34 MPa. (d) The signal phase for sample un-
der uniaxial compression P2 = −34 MPa. The size of the images is
0.9 × 0.9 mm. Scan step is 10 μm.
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FIG. 6. Distribution of the signals corresponding to the images
in Fig. 5 along a circle with the radius of 0.2 mm. Black crosses are
experimental data for the sample without loading; blue circles for
the sample under the compressive load of −21 MPa; red triangles for
the sample under the compressive load of −34 MPa. The lines of the
corresponding colors are fitting curves according to Eq. (8).

shows that the LU signal changes in the opposite way un-
der the load, namely, it increases in zones with compressive
stresses and decreases in zones with tensile stresses.

The experiment with an external load makes it possible
to determine the coefficient b if the residual stress σ ′ in the
sample far from the hole in the initial state is also uniaxial.
The residual stress distribution could be due to two alternative
cases: compressive stress along the direction ϕ = 0 or tensile
stress along the direction ϕ = π/2. This ambiguousness will
slightly affect b. In the following, we will consider only the
first case, i.e., that of compressive residual stress. For signal
approximation, we use two equations in the form of Eq. (8)
for the initial and loaded states. The fitting procedure is the
same as described in Sec. III B. The fit results are b = −15 ±
6 GPa−1 and σ ′ = −12 ± 2 MPa for the load P1 = −21 ± 2
MPa and b = −22 ± 11 GPa−1 and σ ′ = −10 ± 2 MPa for
the load P2 = −34 ± 2 MPa. Figure 6 shows the distribu-
tion of experimental signals along the circumference with the
radius of 0.2 mm and the theoretical approximation derived
from Eq. (8). Thus, in accordance with the experiment, in both
cases, the coefficient b is negative, and its absolute value is
much larger than predicted by the thermodynamic theory. For
the case of tensile residual stress σ ′ along the direction ϕ =
π/2, the fitting procedure gives a slightly different value of
the coefficient b, but its sign is still negative. As will be shown
in the theoretical Sec. IV, the dependence of the coefficient
of thermal expansion on stress is nonlinear, which resulted
in slightly different estimated values of the coefficients b for
different loads.

With increasing load on the sample, an increase of the
signal is observed in the regions where a minimum is theoret-
ically expected. To explain the discrepancy, a deviation from
the linear dependence on stress must be considered by adding
a quadratic term in Eq. (2a):

S(�r, ω) = (
1 + bσ + cσ 2

)
S0(�r, ω). (10)

FIG. 7. Residuals for fitting the laser ultrasound (LU) image of
the area of the sample from D16 aluminum alloy under the uniaxial
load of −34 MPa. The image size is 0.9 × 0.9 mm. Scan step is
10 μm.

The expression for the stress distribution [Eq. (6)] becomes

S(r, ϕ) = S0

[
1 + bP + cP2

(
1 + 2a4

r4

)
− 2(bP + 2cP2)

× a2

r2
cos 2ϕ + 2cP2 a4

r4
cos 4ϕ

]
. (11)

Figure 7 shows residuals when approximating the experi-
mental image using Eq. (8), that is, considering only the linear
dependence. The 2D residual distribution clearly shows four
maxima around the hole, corresponding to a term proportional
to cos(4ϕ). As can be seen from Eq. (11), this term decreases
as r−4. Therefore, it appears much closer to the edge of the
hole. The experimental data for the signal along circles with
radii of 0.16 and 0.2 mm are shown in Fig. 8(a). Fitting
curves obtained in accordance with Eqs. (8) and (11) are also
shown there. The points in Fig. 8 represent the residuals when
a signal is approximated by a linear dependence [Eq. (8)]
and approximation of the residuals by the function propor-
tional to cos(4ϕ). Thus, at moderate stresses, a noticeable
nonlinear component of the dependence of the LU signal on
stress for the D16 alloy is observed. Considering the quadratic
term when approximating the signal leads to an insignificant
change in the coefficient b and makes it possible to deter-
mine the coefficient c. Assuming the presence of compressive
stress along the direction ϕ = 0 in the unloaded sample, we
get b = −16 ± 7 GPa−1 and с = 400 ± 200 GPa−2. Since the
coefficient c is positive, both compressive and tensile stresses
lead to an increase of the nonlinear LU signal. The specific
feature of the observed type of nonlinearity is that it appears at
the modulation frequency, whereas classical thermodynamics
predicts nonlinear dependence on stress only at higher har-
monics [40].

For the aluminum sample, we also analyzed the absolute
signal at a distance of four hole radii from the center of the
hole. The obtained coefficient of linear dependence on load
is b = −16 ± 1 GPa which, as in the case of the ceramic
sample, corresponds to the values obtained during the previ-
ous experiment.
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FIG. 8. (a) Distribution of the signal corresponding to the image
of the sample under the compressive load of −34 MPa in Fig. 5 along
a circle with the radius of 0.16 mm; black triangles for experimental
data; red solid curve is a fitting curve for the linear dependence of the
signal on stress; blue dashed curve is a fitting curve for the square-
law dependence of the signal on the stress; black circles for residuals
at linear fit; green solid curve is the difference between the fitting
blue and red curves. (b) The same as (a) but detected on a radius of
0.2 mm. We recall that the hole radius in the aluminum alloy sample
was of 0.13 mm.

IV. THEORETICAL MODELING ANALYSIS

This section presents the modified theory of thermoelastic
generation of ultrasonic vibrations in stressed imperfect solids
to explain the observations reported before and the discrep-
ancy with respect to the expected theoretical value for b. The
proposed approach is based on the slow dynamic concepts.
The slow dynamic approach describes the material behavior
based mainly on the defect subsystem change under various
external actions. Vakhnenko et al. [41,42] proposed a gen-
eral kinetic equation for the dynamics of a defect subsystem
within the framework of slow dynamics. They introduced two
distributions of energy barriers for the activation and deactiva-
tion of a defect that are characterized by two different times.
These times depend generally on the activation energies and

temperature. To explain the experimental results, we need to
determine a function of the defect activation in the material.

When analyzing the problems of fracture of stressed mate-
rials, Zhurkov [43] and Zhurkov and Korsukov [44] obtained
good results by choosing the following expression for the
probability rate of the defect activation:

p = 1

τ0
exp

(
−U − 	σ

kbT

)
, (12)

where τ0 is the oscillation period or inverse Debye frequency
(τ0 ≈ 0.1 ps), U is the energy of the defect activation, σ is the
first invariant of the mechanical stress tensor in the case of an
isotropic material, 	 is the activation volume of the defect,
кb is the Boltzmann constant, and T is the local absolute
temperature of the material. Note here that Zhurkov studied
the lifetime of solid samples by applying uniaxial quasistatic
tension, that is, assuming σ > 0.

In our experiments, LU was generated due to local varia-
tion of the sample temperature produced by the laser radiation.
The laser power was too weak to generate new defects in
the sample: the generation time of a vacancy in aluminum
by a weak thermal effect of radiation is on the order of
10−3 s [45], which is much longer than the period between the
laser pulses at the used modulation frequencies of ∼100 KHz.
Therefore, we will assume that defects in the samples were
already present before the measurements. Notice that, since
we performed the experiments with compressive loading, we
should change the sign before σ in Eq. (12). Then we can
write the local defect concentration n(d )

σ in the stressed sam-
ples as

n(d )
σ = n(d ) exp

(
−U + 	σ

kbT0

)
, (13)

where n(d ) is the concentration of potential defects in the
material when the activation barrier U is fully compensated
by stress, σ is the total stress distribution forced in the sample
by an external load and possible residual stress, and T0 is the
absolute temperature of the sample before laser exposure.

In Refs. [41,42], a kinetic equation for local relaxation
events was proposed with two relaxation times that consider
an essential asymmetry in processes of rupture and recovery
of intergrain cohesive bonds in sedimentary rocks. When con-
sidering stress relaxation processes in liquids as an elastic
medium, a kinetic equation with one relaxation time was
proposed [46]. We assume that (i) the concentration of de-
fects in the investigated ceramic and metal samples is low
enough to neglect the interaction between them, (ii) defects
are localized, and (iii) there is no diffusion process under laser
exposure. Under these conditions for local relaxation events
of excited defects, the kinetic equation for concentration 
nσ

can be written in a simple general form [46]:

∂
nσ

∂t
+ 
nσ

τ
= G(�r, t ), (14)

where τ = τ0exp[(U + 	σ )/kbT0] is the relaxation time of
the excited defect, and G(�r, t ) is the generation function.

Let us suppose that the initial concentration of defects
in the material is created by applying an external stress to
the sample. A change in temperature under laser irradiation
leads additionally to a change in the value of the activation
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energy U of the defect at temperature T0 to a new value U ′ at
temperature T which is related with U by a linear expression
U ′ ≈ U + 3α0	σ
T , where 
T = T − T0. By considering
these assumptions, the function G(�r, t ) may be represented by
the relation:

G(�r, t ) = n(d )
σ

τ0

[
exp

(
−3α0	σ
T

kbT0

)
− 1

]

= n(d )
0

τ0
exp

(
− 	σ

kbT0

)[
exp

(
−3α0	σ
T

kbT0

)
− 1

]
,

(15)

where the concentration n(d )
0 = n(d ) exp(−U/kbT0) corre-

sponds to the unstressed state of the sample with σ = 0.
When the condition 3α0	σ
T � kbT0 is satisfied, the

kinetic equation for 
nσ can be linearized, and it takes the
form:

∂
nσ

∂t
+ 
nσ

τ
= −n(d )

0

τ0
exp

(
− 	σ

kbT0

)
3α0	σ

kbT0

T . (16)

In Eq. (16), 
nσ depends on the spatial coordinates
through σ , τ , and 
T . However, going back to the exper-
imental conditions, the temperature variations at the used
frequencies in the sample occurred at distances significantly
smaller than those over which stress varies around the holes.
Therefore, σ and τ can be considered slowly varying func-
tions of coordinates in comparison with 
T . A solution of
Eq. (16) is


nσ = −n(d )
0

τ0

3α0	σ

kbT0
exp

(
− 	σ

kbT0

)

×
∫ t

−∞
dt ′ exp

(
− t − t ′

τ

)

T (�r, t ′). (17)

According to Kosevich [47], the presence of defects with
the concentration nσ in the material lattice leads to a change
of its free energy:


F = K	
nσ uii, (18)

where K = λ + 2μ/3 is the modulus of uniform compression,
λ and μ are Lamé coefficients, and uik is the deformation ten-
sor. As usual, repeated indices indicate summation. It follows
that the equation of state of the material in the presence of
defects can be written in the form:

σi j = σ
(el )
i j − K (3α0
T − 	
nσ )δi j, (19)

where σ
(el )
i j = λukkδi j + 2μui j , and δik is the Kronecker delta.

Deformations in the material with the stress tensor
given by Eq. (19) are obtained from the equation of
motion:

ρ
∂2ui

∂t2
= ∂σ

(el )
ik

∂xk
− K

(
3α0

∂
T

∂xi
− 	

∂
nσ

∂xi

)
, (20)

with �r = (x1, x2, x3).

Since 
nσ is determined by Eq. (17), the equation of
motion becomes

ρ
∂2ui

∂t2
= ∂σ

(el )
ik

∂xk
− 3α0K

[
∂
T (�r, t ′)

∂xi
+ 	2 n(d )

0

τ0

σ

kbT0

× exp

(
− 	σ

kbT0

) ∫ t

−∞
dt ′ exp

(
− t − t ′

τ

)

× ∂
T (�r, t ′)
∂xi

]
. (21)

Assuming a harmonic law of the temperature variations
due to the laser action 
T (t ) = 
T̃ (ω) exp(iωt ) as expected
from the experimental conditions, the equation of motion can
be written as

−ρω2ũi = ∂σ̃
(el )
ik

∂xk
− 3α0K

[
∂
T̃ (�r, ω)

∂xi
+ 	2 n(d )

0 τ

τ0

σ

kbT0

× 1

1 + iωτ
exp

(
− 	σ

kbT0

)
∂
T̃ (�r, ω)

∂xi

]
. (22)

Equation (22) shows that the presence of defect states in the
material can be considered by introducing an effective thermal
expansion coefficient of dielectric materials in a stressed state
in the presence of relaxation processes. We obtain

αeff = α0

[
1 + n(d )

0 τ

τ0

	2

kbT0

σ

1 + iωτ
exp

(
− 	σ

kbT0

)]
. (23)

To determine the deformations arising in conducting ma-
terials during relaxation processes, it is necessary to also
consider changes in the state of the electronic subsystem.
Fluctuations in the defect subsystem of a conductor may result
in changes of electronic pressure. We have considered this
phenomenon to explain thermoelastic vibrations of aluminum
membranes [48]. For this purpose, we need to add one more
term to the equation of motion:

ρ
∂2ui

∂t2
= ∂σ

(el )
ik

∂xk
− K

(
3α0

∂
T

∂xi
− 	

∂
nσ

∂xi

)
− ∂ pe

∂xi
, (24)

where pe is the electronic pressure.
In metals, the electron pressure is given as

pe = 2

5
neEF + π2

6
neEF

(
kbT

EF

)2

, (25)

where EF is the Fermi energy, and ne is the concentration of
electrons.

The chemical bond between the metal lattice atoms is due
to free conduction electrons. Electrons associated with defect
structures in the lattice in the general case are in a quasilo-
calized state and are not included in the number of electrons
filling the conduction band. The excitation of defect states of
the metal lattice due to the temperature modulation is accom-
panied by the transition of an electron or electrons from one
potential well to another [49]. Between the two quasilocalized
states, such electrons behave in a quasifree manner, at least
during the relaxation time τ . This behavior of electrons is
confirmed by the excitation and relaxation of the electronic
conductivity of highly disordered metal thin films [49]. For
such films, the authors observed a slow decay of conductivity
after its rise forced by a heat pulse. Based on these ideas, we
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assume that a change in the concentration of excited defect
states in metals is accompanied by a change in the concen-
tration of quasifree electrons. The volume of a defect in a
material coincides roughly with the volume of an elementary
crystal cell [45]. Since the activation of a defect in aluminum
may affect also the nearest six atoms [50] and these atoms
are trivalent, we will assume 
ne ≈ 18
nσ . In accordance
with Eq. (26), a change in the pressure of the electron gas
will take place. The estimates show that, in this case, the first
term on the right-hand side of Eq. (25) significantly exceeds
the second one, which could thus be considered negligible
and will be neglected in our calculations. In conclusion, we
obtain the following link between electron pressure variation
and defects concentration variation:


pe = 2
3 EF
ne

∼= 12EF
nσ . (26)

Thus, the equation of motion in Eq. (21) needs to be mod-
ified for aluminum as

ρ
∂2ui

∂t2
= ∂σ

(el )
ik

∂xk
− 3α0K

[
∂
T

∂xi
+ 	

n(d )
0 σ

τ0kbT0

× exp

(
− 	σ

kbT0

)(
	 − 12

EF

K

) ∫ t

−∞
dt ′

× exp

(
− t − t ′

τ

)
∂
T (�r, t ′)

∂xi

]
. (27)

The effective value of the coefficient of thermal expansion
for aluminum may be determined similarly to that discussed
for Eq. (22). We obtain

αeff = α0 + α0	n(d )
0 τ

τ0kbT0
exp

(
− 	σ

kbT0

)
σ

1 + iωτ

(
	 − 12

EF

K

)
.

(28)
With known values of αeff , it is possible to analyze the

behavior of the LU signals in stressed regions of materials.
As noted above, under our experimental conditions, the LU
signals are proportional to the local value of the thermal
expansion coefficient. Then in the presence of relaxation in
the material, the coefficients bd for dielectric ceramics and bc

for metals (instead of the coefficient b given by Eq. (3) for
classical thermoelastic theory) will be modified according to
Eqs. (23) and (28). It follows

bd = n(d )
0 τ

τ0

	2

kbT0

1

1 + iωτ
, (29)

bc = n(d )
0 τ

τ0

	

kbT0

1

1 + iωτ

(
	 − 12

EF

K

)
. (30)

Equations (23) and (28) show that the stress dependence
of αeff for dielectrics and metals can differ significantly. The
thermal expansion coefficient and the LU signal for dielectric
materials always increase with an increase in tensile stress
while σ < kbT0/	, whereas for metals, they can decrease at
EF > 	K/12. It can be seen from Eqs. (23) and (28) that,
in the general case, the stress dependence of the effective
thermal expansion coefficient is nonlinear. Therefore, to get
the linear dependence coefficients bd and bc in both cases,
we must assume 	σ/kbT0 < 1 and expand the exponent into
a series. The expressions in Eqs. (23) and (28) also make it

possible to obtain the coefficients c for dielectrics and metals
that determine the square-law dependence of the LU signals
on stress:

cd = −n(d )
0 τ

τ0

	3

(kbT0)2

1

1 + iωτ
, (31)

cc = −n(d )
0 τ

τ0

(
	

kbT0

)2 1

1 + iωτ

(
	 − 12

EF

K

)
. (32)

The obtained values of the coefficients b are in good
agreement with the observed behavior of the LU signals for
ceramics and metals vs stress in the linear approximation.
They show that the different features of the LU signal behavior
with stress for a metal are related to the contribution of the
electron gas pressure. The obtained result for the coefficient
cc also provides a correct contribution of the quadratic part of
the LU signal for metal in comparison with its linear stress
dependence. They also show that the phase of the LU signals
can depend strongly on stress at ωτ > 1.

V. DISCUSSION

A. Ceramics

Equations (23) and (28) allow estimating the dependence
of the effective thermal expansion coefficient on stress for
well-studied ceramics and metals. Let us assume that the
maximal initial concentration of defects in ceramics is of the
order of n(d ) ∼= 1020 cm−3. To estimate the concentration of
defects excited in ceramics due to the presence of stress, it
is necessary to know the activation energy in the exponent in
Eq. (13). In silicon nitride ceramics, there are defects with
rather high activation energy at ∼2.2 eV [51]. According to
the data from Ref. [52], defects in the bulk regions of the
lattice of this ceramic are also present with lower activation
energy in the range from 33.9 to 40.4 kJ mol−1, which cor-
responds to 0.351–0.419 eV. Due to the presence of grain
boundaries, cavities, and defects in silicon nitride ceramics,
there is also an even lower activation energy, amounting
to only 15.46–17.49 kJ mol−1 [52], which corresponds to
0.160–0.181 eV. For Si3N4 ceramics, the average grain size
was of ∼10–20 μm. If we take the thickness of the near-
surface layer of ceramic grains to be about several atomic
layers, then the ratio of near-surface atoms to total bulk atoms
situated inside grains is ∼10−3. With the indicated ratio of
bulk and surface defects and considering the lower values
of activation energies for surface defects, it follows that the
contribution of bulk and surface defects to the LU signal can
be comparable. Therefore, in the following, we assume the
activation energy of defects equal to 0.160 eV. The value of
the exponent in the coefficient bd at room temperature is of
the order of 10−3. When a defect is formed in a material, its
volume is usually comparable with the volume of a lattice unit
cell [45]. In silicon nitride ceramics, for the α and β phases,
the volume of unit cells is 	 ≈ 10−28m3.

In the experiments, a considerable change in the phase
of the LU signals was observed for areas with different
stresses, which is inconsistent with the classical thermody-
namic model. The slow dynamic approach developed here
explains the phase behavior through the relaxation time. As
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seen in Fig. 3(d), a phase difference of ∼140◦ (2.44 rad) cor-
responds to a stress of 120 MPa. Phase 2.44 rad corresponds to
ωτ = 0.84, which gives approximately τ ≈ 10−6s. This value
correlates with Eq. (23) at the specified parameters of the
Si3N4 ceramics if we consider the period of atomic vibrations
in the lattice τ0 of the order of 10−13s. However, the phase
behavior of the LU signals in Fig. 3(d) shows that relaxation
is faster for weaker mechanical stresses. Note that, in other
works, we also observed similar amplitude and phase changes
of the LU signal in zones with tensile stresses near crack tips
in Si3N4 ceramics [24,25].

B. Metal alloy

As for metals, the activation energies can have significantly
lower values. In the D16 aluminum alloy, the Al content
ranges from 90.8 to 94.7%. Impurities such as Cu, Mg, Fe,
Si, and other metals are present. The most typical defects for
metals are vacancies and interstitial atoms. Their characteris-
tic activation energies for crystalline aluminum are 0.54 and
2.43 eV, respectively [53]. The binding energy of a vacancy
with a dislocation in aluminum is 0.181 eV [54]. Low ener-
gies are also characteristic of the bonding of vacancies with
impurity atoms. For example, the binding energy of a vacancy
with copper atoms is only 0.02 eV, while for silicon atoms,
it is in the range 0.03–0.08 eV; for zinc atoms, 0.02–0.03 eV;
and for silver atoms, it has a value of ∼0.05–0.07 eV [55]. The
activation energy for the vacancy–hydrogen-atom complex in
aluminum is also relatively low and equal to 0.16 eV [56].

Features with low activation energies in the range
0.02–0.08 eV apparently do not play a significant role in the
generation of the LU signals since they are already strongly
excited at room temperature. In accordance with the volume of
the face-centered cubic (fcc) aluminum unit cell, the activation
volume 	 of the defect should be ∼6.6 × 10−29m3. It should
be noted that the presented data on the nonlinear behavior
of the LU signals from aluminum approximately confirm this
value.

If we take the concentration of hydrogen atoms in the D16
aluminum alloy at the level of 10−4 to 10−6 of the total con-
centration of atoms, then considering the activation energy of
the vacancy with a dislocation 0.181 eV, Eq. (28) allows us to
estimate their characteristic relaxation time. To be consistent
with the experimental data obtained, the relaxation time of
such defects τ should be approximately (105 to 107)τ0 at max-

imum stresses near the hole in the aluminum alloy. The known
inverse Debye frequency τ0 for aluminum is 6.5 × 10−14s.
This value is also reasonable for vacancy defects with the
activation energy of 0.54 eV at room temperature if their
concentration is ∼1015cm−3. This concentration of defects is
sufficient to ensure their relaxation time also at the level of
10−6 s for the aluminum alloy. This relaxation time is in good
correspondence with the observed changes in the phase of the
LU signals under the action of mechanical stresses. Therefore,
at the used modulation frequencies of laser radiation, both
types of defects could contribute to the LU signal.

The relations in Eqs. (27) and (29) explain the peculiari-
ties of the LU signal dependence on stresses. For aluminum,
the Fermi energy is 11.7 eV. Considering the value of
Young’s modulus for the D16 aluminum alloy 73 GPa and
Poisson ratio ν ≈ 0.32, we obtain EF/K = 3EF(1−2ν)/E ≈
2.8 × 10−29m3. Therefore, in accordance with the relations
in Eqs. (27) and (29), the signs of the coefficients bd and
bc are different, namely, bd is positive, and bc is negative, in
agreement with our results reported in Figs. 3 and 5.

To compare the experimental coefficients of stress depen-
dence and the proposed model of the thermoelastic generation
of ultrasound, we calculated the coefficients b and c in accor-
dance with Eqs. (29)–(32). The results are given in Table I.
The table contains the experimental coefficients bc and cc for
the D16 aluminum alloy and bd for silicon nitride. The coeffi-
cient cd is not included in the table because the standard error
for its fitting was too large. The reason for this is a noticeable
inhomogeneity of the signal over the surface due to the grain
structure of the silicon nitride ceramic. The table shows that
the proposed model may describe adequately the experimental
results at reasonable parameters of materials with defects.
The most noteworthy fact is that the coefficient ratio cc/bc

is determined by a single material parameter 	, and it is equal
to kbT0cc/bc ≈ (1 ± 0.6) × 10−28m3, i.e., very close to the
volume of the fcc aluminum unit cell: 0.66 × 10−28m3.

To estimate a possible influence of strain and stress gra-
dients on the obtained results, the coefficients b and c were
estimated in two ways. First, the values of the normalized LU
signals at all distances r > a from the center of the hole were
used for fitting. The other fitting used only the values of the
original LU signals at r > 4a, where the hole does not affect
the stress field. In this case, the stress was not high enough to
reveal the nonlinear behavior of the signal. The corresponding
results are also shown in Table I. The coefficients obtained by

TABLE I. Comparison of experimental and theoretical values of the coefficients b and c.

Material
Si3N4 D16

Coefficient b, GPa−1 c, GPa−2 b, GPa−1 c, GPa−2

Thermodynamic theory 0.043 0 0.34 0
Our theory 18a −420a −22b 350b

Nonlinear fitting of 2D distribution of the
normalized LU signal

14 ± 2 – −16 ± 7 400 ± 200

Linear fitting of the absolute LU signal far from
the hole at different loads

13 ± 2 – −16 ± 1 –

aThe value is calculated at n(d ) = 1018cm−3; U = 0.16 eV; τ = 10−6s; τ0 = 10−13s; 	 = 10−28m3.
bThe value is calculated at n(d ) = 1018cm−3; U = 0.18 eV; τ = 10−6s; τ0 = 6.5 × 10−14s; 	 = 6.6 × 10−29m3.
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both methods are close. Thus, we can state that the strain and
stress gradients do not significantly affect the LU signal.

VI. SUMMARY AND CONCLUSIONS

In this paper, we experimentally demonstrated different
behaviors of the LU signals near a hole in stressed dielec-
tric and conductive materials. The theoretical analysis shows
that the thermodynamic approach to thermoelasticity, i.e.,
the approach considering only the dependence of mechanical
properties of materials on temperature, is insufficient to ex-
plain the obtained experimental data on the stress dependence
of thermoelastically generated ultrasound. The known models
considering the stress influence only on thermophysical or
elastic properties predict an effect by several orders of magni-
tude weaker than that observed in the experiments.

We proposed considering the excitation and relaxation of
unsteady defect states as the main reason for the anomalous
behavior of the LU signals in stressed materials. The nature of
signal variations can be described in terms of slow dynamics
with the relaxation time depending on stress. The effects of
slow dynamics were previously reported by Korobov et al.
[18] for the D16 alloy with residual stresses and rocks under
dynamic loading when studying elastic properties by resonant
ultrasound spectroscopy. We applied similar ideas to explain
anomalous thermoelastic properties observed in the experi-
ments.

Our main hypothesis is related to the presence of a suffi-
cient number of defects or irregularities whose state depends
on the deformation; their excitation energy is determined by
the average local temperature of the ultrasound generation
region. For metals, we propose additionally considering the
change of the pressure of the electron gas upon the excita-
tion of defect states. This excitation is accompanied by the

temporary transition of electrons from a quasibound state to a
quasifree one.

The theoretical analysis within the framework of slow dy-
namics explained the peculiarities of the behavior of the LU
signals in strained dielectric and conductive materials. The
expressions obtained for the thermal expansion coefficient
correctly describe the LU signal behavior near holes under
the submission to uniaxial mechanical stresses in the D16
aluminum alloy and the dielectric Si3N4 ceramic as typical
materials with a mesoscopic structure. The coefficients of
the stress dependence calculated for reasonable parameters of
materials are in good agreement with the experimental data.
The present approach shows that the observed nonlinear stress
dependence of the LU signals can appear at the modulation
frequency of laser radiation, while the generally accepted TSA
thermodynamic approach predicts a quadratic stress depen-
dence of the thermal expansion coefficient only at the second
harmonic of the modulation frequency.

The presented theoretical and experimental results demon-
strate that the laser method for generating ultrasonic vibra-
tions in combination with hole drilling can be used to assess
mechanical stresses in various real materials.

Further steps to study the effect of relaxation processes
on the thermoelastic properties of real materials and to test
the hypotheses put forward may involve expanding the list of
materials with different mesoscopic structures and methods,
including TSA and resonant ultrasound spectroscopy.
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