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Discriminant indicators with generalized inversion symmetry are computed only from data at the high-
symmetry points. They allow a systematic search for exceptional points. In this paper, we propose discriminant
indicators for two- and three-dimensional systems with generalized n-fold rotational symmetry (n = 4, 6). As
is the case for generalized inversion symmetry, the indicator taking a nontrivial value predicts the emergence
of exceptional points and loops without ambiguity of the reference energy. A distinct difference from the case
of generalized inversion symmetry is that the indicator with generalized n-fold rotational symmetry (n = 4, 6)
can be computed only from data at two of four high-symmetry points in the two-dimensional Brillouin zone.
Such a difference is also observed in three-dimensional systems. Furthermore, we also propose how to fabricate
a two-dimensional system with generalized fourfold rotational symmetry for an electrical circuit.
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I. INTRODUCTION

In recent decades, many efforts have been devoted to
understanding the topological properties of wave func-
tions [1–8]. In particular, it turns out that symmetry enriches
topological structure [9], which is exemplified by Z2 topo-
logical insulators with time-reversal symmetry [10–15] and
topological crystalline materials [16–24]. Intriguingly, crys-
talline symmetry also plays a key role in determining
topological properties. For instance, in the presence of the
inversion symmetry and time-reversal symmetry, the topologi-
cal invariant can be computed only from the parity eigenvalues
at high-symmetry points in the Brillouin zone (BZ) [17]. This
notion is generalized in Refs. [25–29], which introduced sym-
metry indicators as powerful tools for the systematic search
for topological materials.

In parallel with this progress, recent extensive studies have
opened up a new arena of topological physics: non-Hermitian
systems [30–37]. In these systems, the eigenvalues of the
Hamiltonian may become complex, which induces exotic
phenomena [38–51] such as the emergence of exceptional
points [52–61] and skin effects [62–72]. At the exceptional
points, non-Hermitian topological properties protect band
touching for both of the real and imaginary parts of the
eigenvalues, which are further enriched by symmetry [73–78].
The skin effects result in anomalous sensitivity of the energy
spectrum to the presence or absence of boundaries [62–69].
The exceptional points and skin effects have been reported for
a wide range of systems such as open quantum systems
[53,79–82], electrical circuits [83–88], phononic sys-
tems [89–92], photonic crystals [93–96], and so on.

For the systematic search for non-Hermitian topological
systems, symmetry indicators are powerful tools. Indeed,
recent works have introduced indicators for non-Hermitian
systems [70,82,97–100]. Among them, the discriminant indi-
cator [101] captures exceptional points without ambiguity of
the reference energy.

Despite its usefulness, the discriminant indicator is intro-
duced only for systems with generalized inversion symme-
try [101]. For the systematic search for exceptional points, the
extension to other symmetries is crucial.

In this paper, we extend the indicator to systems with
generalized n-fold rotational (Cn) symmetry for n = 4, 6.
The indicators successfully capture the exceptional points in
two dimensions without ambiguity of the reference energy,
which is demonstrated by systematic analysis of toy mod-
els. We also introduce indicators which capture exceptional
loops in the three-dimensional BZ. In contrast to the case
with the generalized inversion symmetry [101], the indicator
with generalized n-fold rotational symmetry (n = 4, 6) can be
computed only from data at two of the four high-symmetry
points in the two-dimensional BZ. Such a difference is also
observed in three-dimensional systems. We also show that the
nontrivial value of the discriminant indicator with generalized
C4 symmetry in three dimensions predicts the merging of the
exceptional loops at the line specified by (kx, ky) = (0, 0) or
(π, π ). Moreover, we propose an experimental realization of
the topoelectrical system with generalized C4 symmetry.

The rest of this paper is organized as follows. In Sec. II,
we derive the indicators for systems with generalized Cn

symmetry (n = 4, 6). In Sec. III, we demonstrate that these in-
dicators capture exceptional points and loops by numerically
analyzing toy models with generalized Cn symmetry (n = 4,
6). In Sec. IV, we experimentally realize the topoelectrical
circuit with generalized C4 symmetry. In Sec. V, we present a
summary of this paper.

II. DISCRIMINANT INDICATOR WITH GENERALIZED
ROTATIONAL SYMMETRY

In this section, we derive indicators for systems with
generalized rotational symmetry. In Sec. II A, along with
a definition of generalized inversion symmetry, we provide
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FIG. 1. (a) and (b) Sketches of the BZ and the path of integrations in Eq. (10). (a) The BZ for systems with generalized C4 symmetry.
The high-symmetry points �, M, Y , and M ′ are denoted by blue dots. The paths �1, �2, �3, and �4 connect high-symmetry points. The path
�′

3 is the mapped path of �3 after applying the generalized C4 operator twice. (b) The BZ for systems with generalized C6 symmetry. The
high-symmetry points �, K , M, and K ′ are denoted by blue dots. The paths �1, �2, �3, and �4 connect high-symmetry points. The path �′

2 is
the mapped path of �2 after applying the generalized C6 operator three times. (c) and (d) Schematic figures of the three-dimensional BZs. Blue
planes denote the area for kz = 0 and π . (c) The BZ of the tetragonal lattice. The high-symmetry points, �, M, Z , and A are denoted by red
dots. (d) The BZ of the hexagonal lattice. The high-symmetry points, �, M, A, and L are denoted by red dots.

an overview of our main results. The detailed derivation is
provided in Secs. II B–II D. In Sec. II E, we also discuss indi-
cators for exceptional loops in three-dimensional systems.

A. Overview

Consider an N × N-Hamiltonian H (k) for two-
dimensional systems with generalized Cn symmetry under the
periodic boundary condition [51,61,70,72,97–101]. In this
case, the Hamiltonian satisfies

UCn H (k)U −1
Cn

= H†(Rnk), (1)

with

Rn =
(

cos 2π/n − sin 2π/n
sin 2π/n cos 2π/n

)
(2)

and a unitary operator UCn satisfying U n
Cn

= 1lN×N .

The above non-Hermitian Hamiltonian may host excep-
tional points which are characterized by the discriminant
number [59,60,78]

ν =
∮

dk
2π i

· ∇k ln �(k). (3)

The integral is taken along a closed path in the BZ. The
discriminant �(k) of the characteristic polynomial P(k, E ) =
det[H (k) − E1lN×N ] = ∑N

j=0 a jE j is defined as

�(k) :=
∏
n>n′

(εn − εn′ )2. (4)

Here, εn denote the eigenvalues of H (k). �(k) can be rewrit-
ten as

�(k) =det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 · · · aN 0 · · · 0
0 a0 a1 · · · aN−1 aN · · · 0
...

. . .
. . .

. . .
...

. . .
. . .

...

0 · · · a0 a1 a2 · · · aN−1 aN

b1 b2 b3 · · · bN 0 · · · 0
0 b1 b2 · · · bN−1 bN · · · 0
...

. . .
. . .

. . .
...

. . .
. . .

...

0 · · · 0 0 b1 b2 · · · bN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

with b j = ja j [102,103]. Clearly, �(k) is determined by the
coefficients of the characteristic polynomial. If ν takes a
nonzero value, �(k) vanishes at a point inside of the loop.
Such a point corresponds to an exceptional point because
Eq. (4) indicates the band touching on this point.

In the presence of the generalized Cn symmetry, the dis-
criminant �(k) satisfies

�(k) = �∗(Rnk), (6)

which is proven in Sec. II B.

By making use of Eq. (6), we obtain discriminant in-
dicators for two-dimensional systems with generalized Cn

symmetry (n = 4, 6),

(−1)νC4 := ξC4,2D = sgn�(�)sgn�(M ), (7a)

(−1)νC6 := ξC6,2D = sgn�(�)sgn�(M ). (7b)

Here, νC4 and νC6 denote the discriminant number computed
along the closed path illustrated in Fig. 1(a) [Fig. 1(b)]. Sym-
bols � and M denote the high-symmetry points in the BZ
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(see Fig. 1). Because of the constraint written in Eq. (6), the
discriminant becomes real at the � and M points.

We note that for n = 2, the problem is reduced to the case
for the generalized inversion symmetry, which is discussed in
Appendix A. For systems with generalized C3 symmetry, the
Hamiltonian becomes Hermitian [104]. In Secs. II C and II D,
we derive these indicators. These indicators can be computed
without the input of the reference energy and predict the
presence of exceptional points.

B. Constraints on the discriminant with generalized
rotational symmetry

For the systems with generalized Cn symmetry, the polyno-
mial P(k, E ) satisfies

P(k, E ) = det[U †
Cn

H†(Rnk)UCn − E1lN×N ]

= det U †
Cn

det[H†(Rnk) − E1lN×N ] det UCn

= det[H∗(Rnk) − E1lN×N ]. (8)

Here, we have used det AT = det A and det(AB) =
det A det B = det B det A. We note that the discriminant
can be computed only from coefficients of the polynomial.
It results in Eq. (6). It is straightforward to extend the
above arguments to three-dimensional cases. Specifically,
for three-dimensional systems with generalized Cn symmetry
about the z axis, the discriminant satisfies

�(k‖, kz ) = �∗(Rnk‖, kz ), (9)

with kT
‖ = (kx, ky).

C. Two-dimensional system with generalized fourfold
rotational symmetry

In order to derive Eq. (7a), let us consider the discriminant
number evaluated along the closed path illustrated in Fig. 1(a).
This integral can be decomposed into integrals along the path
�i (i = 1, . . . , 4),

pi =
∫

�i

dk
2π i

· ∇k ln �(k). (10)

Here, �i (i = 1, . . . , 4) are the paths between the high-
symmetry points [see Fig. 1(a)]. First, we note that p2 + p3

vanishes because applying the generalized C4 operator twice
maps the path �3 to the path �′

3, which is equivalent to the
path �2 [see Fig. 1(a)] due to the periodicity of the BZ.

Second, let us evaluate p1 + p4. The integration of �(k)
along the path �4 is mapped to that of �∗(k) along the op-
posite direction of �1 by the generalized C4 symmetry. As a
result, the integration p1 + p4 is simplified as

2π i(p1 + p4) =
∫

�1

dk · ∇k ln �(k)

+
∫

�4

dk · ∇k ln �∗(R−1
4 k

)

=
∫

�1

dk · ∇k ln �(k)−
∫

�1

dk · ∇k ln �∗(k)

= 2iIm
∫

�1

dk · ∇k ln �(k)

= 2i
∫

�1

dk · ∇k arg �(k)

= 2i[arg �(M ) − arg �(�) + 2πN0], (11)

with some integer N0. In going from the second to the third
line in Eq. (11), we have used Eq. (6). We note that this
discussion can be extended to the cases of generalized C6

symmetry.
From these results, we obtain the relation

(−1)νC4 = eiπ
∑4

i=1 pi

= ei[− arg �(�)+arg �(M )]

= sgn�(�)sgn�(M ). (12)

Here, we used the fact that �(k) is real at the � and M points
because of Eq. (6). Therefore, we obtain the discriminant indi-
cator with generalized C4 symmetry in Eq. (7a). We note that
even if the exceptional points exist on the red line in Fig. 1(a),
we can avoid them by the continuous deformation of the
integration path [24]. We also note that if � = 0, exceptional
points emerge at these points.

D. Two-dimensional system with generalized sixfold
rotational symmetry

In order to derive Eq. (7b), let us consider the discrimi-
nant number composed along the closed path illustrated in
Fig. 1(b). We decompose the path for the integral into four
paths pi (i = 1, . . . , 4) in a way similar to what we did in the
previous section [see Eq. (10)].

First, we discuss the integration of p2 + p3 in a way similar
to the previous case [see Eq. (11)]. In the presence of the
generalized C6 symmetry, the integration of �(k) along �2

is mapped to that of �∗(k) along �′
2. Additionally, from the

periodicity in the BZ, this integration is mapped to one along
the opposite direction of �3. Thus, in a way similar to the
previous case, p2 + p3 is simplified as

2π i(p2 + p3)

=
∫

�2

dk · ∇k ln �∗(R3
6k

) +
∫

�3

dk · ∇k ln �(k)

=
∫

�′
2

dk · ∇k ln �∗(k) +
∫

�3

dk · ∇k ln �(k)

= −
∫

�3

dk · ∇k ln �∗(k) +
∫

�3

dk · ∇k ln �(k)

= 2i[arg �(K ′) − arg �(M ) + 2πN0], (13)

with some integer N0.
Second, let us simplify p1 + p4. The integration of �(k)

along �1 is mapped to the integration of �∗(k) along the op-
posite direction of �4 by the generalized C6 operator. Hence,
the integration p1 + p4 is

2π i(p1 + p4) = 2i[arg �(�) − arg �(K ′) + 2πN ′
0], (14)

with some integer N ′
0.
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Putting Eqs. (13) and (14) together, we obtain Eq. (7b).
Here, we used the fact that �(k) is real at the � and M points
because of Eq. (6).

E. Three-dimensional system

Let us see the discriminant number in the three-
dimensional BZ and exceptional points from loops. In the
presence of generalized C4 symmetry about the z axis, the
following indicator captures the exceptional loops crossing
one of the planes at kz = 0 and π :

ξC4,3D = sgn[�(�)�(M )�(Z )�(A)]. (15)

Here, �, M, Z , and A denote high-symmetry points as shown
in Fig. 1(c). We note that �(�), �(M ), �(Z ), and �(A) are
real because of Eq. (9). All possible configurations of sgn�(k)
giving ξCn,3D = −1 are shown in Appendix B. The above
indicator is obtained by applying the argument in Sec. II C
to the two-dimensional subsystems at kz = 0 and π , where
generalized C4 symmetry is preserved. In a similar way, we
can introduce the indicator for systems with generalized C6

symmetry,

ξC6,3D = sgn[�(�)�(M )�(A)�(L)], (16)

where �, M, A, and L are high-symmetry points in Fig. 1(d).
We note that �(�), �(M ), �(A), and �(L) are real because
of Eq. (9).

III. APPLICATIONS TO TOY MODELS

In this section, we demonstrate that the discriminant indi-
cator with generalized Cn symmetry (n = 4, 6) predicts the
existence of the exceptional points and loops by numerically
analyzing the two- and three-dimensional toy models with
generalized Cn symmetry.

A. Two-dimensional toy model with generalized fourfold
rotational symmetry

Let us consider the two-dimensional toy model with gener-
alized C4 symmetry in Fig. 2(a), whose Hamiltonian is defined
in Appendix C. In Fig. 2(a), the red (blue) dots denote the
on-site potentials iδ (−iδ). The red (blue) lines denote the
hoppings 1 + δt (1 − δt).

The above model respects generalized C4 symmetry whose
rotation axis is illustrated by a cross in Fig. 2(a). The explicit
form of UC4 is written in Appendix C.

The numerical results for discriminant indicators are dis-
played in Fig. 2(b). The discriminant indicator takes values of
ξC4,2D = 1 and −1 in the yellow and blue regions, respectively.
We note that ξC4,2D vanishes for δt = 0 or δ = 0 since �(k)
vanishes at the high-symmetry point in the BZ. Additionally,
at the boundary of the phases, ξC4,2D vanishes for the same rea-
son. For ξC4,2D = −1, the exceptional points can be observed
by computing arg�(k)/π . As an example, we show the map
of arg�(k)/π in momentum space for (δ, δt ) = (0.1, 0.5)
[see Fig. 2(c)]. Green and black dots in Fig. 2(c) represent ex-
ceptional points characterized by ν = 1 and −1, respectively.
This result indicates that the discriminant number along the
path in Fig. 1(a) takes a value of −1.

FIG. 2. (a) Schematic figure of the toy model with generalized
C4 symmetry. The unit cell is enclosed by the black dashed box.
The cross denotes the center of the generalized fourfold rotation.
(b) Color plot of the map of the discriminant indicator ξC4,2D. In
the yellow regions (blue regions), the indicator takes a value of 1
(−1). (c) Color map of arg �(k)/π against kx and ky for (δ, δt ) =
(0.1, 0.5) [see the red dot in (b)]. Green and black dots represent
exceptional points with ν = 1 and −1, respectively. (d) Sketch of
the BZ. (e) and (f) The real and imaginary band structures for
(δt, δ) = (0.1, 0.5), respectively. We plot along the line kx = ky = k
in (d). Red dots denote exceptional points in the band structure.

Figures 2(e) and 2(f) display the band structure along the
line kx = ky = k illustrated in Fig. 2(d). In Figs. 2(e) and 2(f),
we can find exceptional points.

B. Two-dimensional toy model with generalized sixfold
rotational symmetry

We consider the two-dimensional toy model with gen-
eralized C6 symmetry in Fig. 3(a), whose Hamiltonian is
defined in Appendix C. In Fig. 3(a), the red (blue) dots
denote the on-site potentials iδ (−iδ). The red (blue) lines
denote the nonreciprocal hoppings. Specifically, the hopping
along the red (blue) arrows is 1 + γ1 (1 + γ2). The hopping
opposite the red (blue) arrows is 1 − γ1 (1 − γ2). For the blue
lines without arrows, the hopping is 1 for both directions.

The above model respects generalized C6 symmetry whose
rotation axis is illustrated by a cross in Fig. 3(a). The explicit
form of UC6 is written in Appendix C.

We show the numerical result for the discriminant indicator
ξC6,2D in Eq. (7b) for δ = 0.1 [see Fig. 3(b)]. In Fig. 3(b),
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FIG. 3. (a) Schematic figure of the toy model with generalized
C6 symmetry. The unit cell is enclosed by the black dashed hexagon.
The cross denotes the center of the generalized sixfold rotation.
(b) Color plot of the map of the discriminant indicator ξC6,2D for
δ = 0.1. In the yellow regions (blue regions), the indicator takes a
value of 1 (−1). (c) Color map of arg �(k)/π for (δ, γ1, γ2) =
(0.1, 0.3, 0.3) [see the red dot in (b)] in the BZ. (d) Magnified
version of (c) in the region enclosed by a green dashed triangle. (e)
and (f) The real and imaginary band structures for 0.6 � kx � 0.7
and 0.7 � ky � 0.8 [see the green box in (d)]. The red point in the
band structure represents an exceptional point.

there exist two phases where the discriminant indicator takes
values of ξC6,2D = 1 (yellow area) and −1 (blue area). We
note that ξC6,2D vanishes for γ1 = 0 and γ2 = 0 since �(k)
vanishes at the high-symmetry point in the BZ. Additionally,
at the boundary between phases, ξC6,2D vanishes for the same
reason. In the blue region, the indicator predicts the presence
of exceptional points. To be concrete, we compute arg�(k)/π
in momentum space for (δ, γ1, γ2) = (0.1, 0.3, 0.3) [see
Figs. 3(c) and 3(d)]. Green and black dots in Fig. 3(d) rep-
resent exceptional points characterized by ν = 1 and −1,
respectively. Figure 3(d) indicates that the discriminant num-
ber computed along the path in Fig. 1(b) takes a value of −1.

Figures 3(e) and 3(f) plot the band structure for
(δ, γ1, γ2) = (0.1, 0.3, 0.3), which indicates the emergence
of the exceptional point at the point denoted by the red dots in
Figs. 3(e) and 3(f).

C. Three-dimensional toy model with generalized fourfold
rotational symmetry

Consider the three-dimensional toy model with gen-
eralized fourfold rotational symmetry whose Hamiltonian

1

−1−1

−1 −1

1

11

1

1

argΔ(kx, ky, π)

argΔ(kx, ky, 0)

0

π

2π

0
π

2π 0
π

2π

kx

ky

kz

d1

d2

ξC4,3D

FIG. 4. (a) Color plot of the map of the discriminant indicator
ξC4,3D. In the yellow regions (blue regions), the indicator takes a value
of 1 (−1). (b) and (c) Color maps of arg�(k) for (d1, d2) = (1, 1) in
the BZ [see the red dot in (a)]. (b) and (c) are displayed at the plane
for kz = 0 and kz = π in the BZ, respectively. Green and black dots
represent the exceptional loops crossing the plane for fixed kz with
ν = 1 and ν = −1, respectively. (d) Momentum points k satisfying
abs�(k) < 0.05.

reads

H (k) =
3∑

i=1

Ri(k)σi, (17)

with

R1(k) = i cos kz, (18a)

R2(k) = (cos kx − cos ky) + i, (18b)

R3(k) = d1 cos kz + sin kz + d2(cos kx + cos ky) + 1. (18c)

Here, σi (i = 1, 2, 3) denote the Pauli matrices. The above
model respects generalized C4 symmetry about the z axis with
UC4 = σ3.

Figure 4(a) displays the numerical result for the discrim-
inant indicator ξC4,3D. In Fig. 4(a), there exist two phases
where the discriminant indicator takes values of ξC4,3D =
1 (yellow area) and ξC4,3D = −1 (blue area). For ξC4,3D =
−1, the exceptional loops crossing the plane for kz = 0 or
π can be obtained by computing the map of arg�(k)/π .
As an example, we show the maps of arg�(kx, ky, 0) and
arg�(kx, ky, π ) in momentum space for (d1, d2) = (1, 1) [see
Figs. 4(b) and 4(c)]. In Figs. 4(b) and 4(c), green and black
dots represent exceptional loops characterized by ν = 1 and
−1, respectively. By comparing these figures, we obtain
the emergence of the exceptional loops crossing the plane
for kz = π .

Figure 4(d) displays the momentum points k satisfying
abs�(k) < 0.05, indicating the emergence of exceptional
loops. We note that exceptional loops predicted by the non-
trivial value of ξC4,3D merge at the line specified by (kx, ky) =
(0, 0) or (π, π ), originating from the symmetry constraint on
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FIG. 5. (a) Color plot of the map of the discriminant indicator
ξC6,3D. In the yellow regions (blue regions), the indicator takes a value
of 1 (−1). (b) and (c) Color maps of arg�(k) for (d1, d2) = (1, 1)
[see the red dot in (a)] in the BZ. (b) and (c) are displayed at the plane
for kz = 0 and kz = π in the BZ, respectively. Green and black dots
represent the exceptional loops crossing the plane for fixed kz with
ν = 1 and ν = −1, respectively. (d) Momentum points k satisfying
abs�(k) < 0.05.

the exceptional points for fixed kz in three dimensions (for
more details see Appendix D).

D. Three-dimensional toy model with generalized sixfold
rotational symmetry

Consider the three-dimensional toy model with generalized
sixfold rotational symmetry whose Hamiltonian reads

H (k) =
3∑

i=1

Ri(k)σi, (19)

with

R1(k) = id1C(kx, ky) + i cos kz + i, (20a)

R2(k) = S(kx, ky) + i sin kz, (20b)

R3(k) = d2C(kx, ky) + 2iS(kx, ky )

+ 5 cos kz + sin kz + 1. (20c)

Here, C(kx, ky) and S(kx, ky) are defined as

C(kx, ky) = cos(−kx ) + cos(kx/2 +
√

3ky/2)

+ cos(kx/2 −
√

3ky/2), (21a)

S(kx, ky) = sin(−kx ) + sin(kx/2 +
√

3ky/2)

+ sin(kx/2 −
√

3ky/2). (21b)

The above model respects generalized C6 symmetry about the
z axis with UC6 = σ3.

Figure 5(a) displays the numerical result of the discrim-
inant ξC6,3D. In Fig. 5(a), there exist two phases where the
discriminant indicator takes values of ξC6,3D = 1 (yellow area)
and ξC6,3D = −1 (blue area). For ξC6,3D = −1, the exceptional

loops crossing the plane for kz = 0 or π can be obtained by
computing the map of arg�(k)/π . As an example, we show
the maps of arg�(kx, ky, 0) and arg�(kx, ky, π ) in momen-
tum space for (d1, d2) = (1, 1) [see Figs. 5(b) and 5(c)]. In
Fig. 5(c), green and black dots represent exceptional loops
characterized by ν = 1 and −1, respectively. By comparing
Fig. 5(b) with Fig. 5(c), we obtain the emergence of the
exceptional loops crossing the plane for kz = π .

Figure 5(d) displays the momentum points k satisfying
abs�(k) < 0.05, indicating the emergence of exceptional
loops. We note that, in contrast to the case of generalized
C4 symmetry in Sec. III C, generalized C6 symmetry does
not predict the merging of the exceptional loops since the
exceptional loops can cross the boundary of the BZ (for more
details see Appendix D).

IV. TOPOELECTRICAL SYSTEMS WITH GENERALIZED
FOURFOLD ROTATIONAL SYMMETRY

We have shown that our indicators capture the exceptional
points and loops in toy models. In this section, we discuss
the relevance of generalized C4 symmetry to the topoelectrical
circuits [87,105,106].

Consider the two-dimensional topoelectrical circuit with
generalized C4 symmetry in Fig. 6. To describe this system,
under the periodic boundary condition, we define the voltages
at each node as V (k, ω) and electric currents between the
node and the power source as I(k, ω). Here, ω denotes the
frequency of the currents from the power source into the node.
The admittance of the red (blue) resistors shown in Fig. 6 is
Rr (Rb), with Rr = 1 + δr and Rb = 1 − δr. The admittance
of red (blue) inductors is −iω−1L−1

r (−iω−1L−1
b ), with Lr =

(1 + δ)−1 and Lb = (1 − δ)−1. The relation between I(k, ω)
and V (k, ω) is

I(k, ω) = J (k, ω)V (k, ω). (22)

FIG. 6. Schematic figure of the topoelectrical system with gen-
eralized C4 symmetry. The unit cell is enclosed by the dashed black
box. We omit power sources connecting each nodes.
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Here, J (k, ω) denotes the admittance matrix,

J (k, ω)= 61l4×4 + (iω)−1diag
(
L−1

b , L−1
b , L−1

r , L−1
r

)

−

⎛
⎜⎝

0 Rr Rr Rr

Rr 0 Rr Rr

Rr Rr 0 Rr

Rr Rr Rr 0

⎞
⎟⎠

−

⎛
⎜⎜⎝

0 Rbeikx Rbeikx Rbeiky

Rbe−ikx 0 Rbe−iky Rbe−ikx

Rbe−ikx Rbeiky 0 Rbeiky

Rbe−iky Rbeikx Rbe−iky 0

⎞
⎟⎟⎠. (23)

We note that the constant diagonal terms just shift the band
structure and do not contribute to the emergence of ex-
ceptional points. Thus, we define J ′(k, ω) by removing the
constant diagonal terms of the admittance matrix,

J ′(k, ω) = J (k, ω) − [TrJ (k, ω)]1l4×4/4. (24)

Clearly, J ′(k, ω) corresponds to the Hamiltonian in Sec. III A.

V. SUMMARY

Extending the argument of the work in [101], we have
introduced the discriminant indicators for two- and three-
dimensional systems with generalized Cn symmetry (n = 4,
6). In two dimensions, the indicators can be computed from
the parity of the discriminant at the � and M points [see
Eqs. (7a) and (7b)], which is in contrast to the case of general-
ized inversion symmetry. These indicators, taking a nontrivial
value, predict the emergence of exceptional points and excep-
tional loops without the input of the reference energy. We have
numerically confirmed that these indicators capture the excep-
tional points and the loops for two- and three-dimensional toy
models.
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APPENDIX A: DISCRIMINANT INDICATOR
WITH GENERALIZED TWOFOLD ROTATIONAL

SYMMETRY

We briefly discuss the indicators for systems with general-
ized C2 symmetry, although the problem is reduced to the one
for generalized inversion symmetry.

With generalized C2 symmetry in two-dimensional sys-
tems, the discriminant number is simplified to the compu-
tation at the high-symmetry points in the BZ [101]. This
symmetry enables us to rewrite Eq. (3) as the discriminant
indicator,

(−1)νC2 := ξC2,2D = sgn[�(�)�(X )�(M )�(Y )], (A1)

where νC2 denotes the discriminant number defined along
the path in Fig. 7. Symbols �, X , M, and Y denote the
high-symmetry points (see Fig. 7). We note that �(�), �(X ),
�(M ), and �(Y ) are real because of Eq. (6).

kx

ky Γ1

Γ2

Γ3

Γ4

Γ6

Γ5

Γ

M

X

Y

FIG. 7. Sketch of the BZ with generalized C2 symmetry and
the path of integrations in Eq. (10). The high-symmetry points are
represented by blue dots. The path �i (i = 1, . . . , 6) connects the
high-symmetry points.

We see the derivation of Eq. (A1). Let us consider the
discriminant number [see Eq. (4)] composed along the closed
path illustrated in Fig. 7. In a way similar to what we did
in Sec. II C, we decompose the closed path into six parts.
The integral for the paths �i (i = 1, . . . , 6) is denoted by pi

(i = 1, . . . , 6) in Eq. (10).
We note that p1 = −p4 holds due to the periodicity of the

BZ. We also note that p2 + p3 is simplified as

2π i(p2 + p3) = 2i[arg�(�) − arg�(Y ) + 2πN0], (A2)

with some integer N0. This is because �3 is mapped to �2 by
applying the operator of generalized C2 symmetry. In a similar
way, we have

2π i(p5 + p6) = 2i[arg�(M ) − arg�(X ) + 2πN ′
0], (A3)

with some integer N ′
0.

Putting Eqs. (A2) and (A3) together, we obtain Eq. (A1).
Here, we have used the fact that �(k) is real at the �, X , M,
and Y points because of Eq. (6).

M (M)Γ (Γ)

Z (A) A (L)

kz = π

kz = π

kz = 0

kz = 0

FIG. 8. (a)–(h) Sketch of the configuration of the sign of the
discriminant giving ξCn,3D = −1. The squares whose vertices are
�, M, Z , and A (�, M, L, and A) denote the area in the BZ with
generalized C4 (C6) symmetry. The blue (red) dots are the sign of the
discriminant sgn�(k) = 1 (−1). Green lines represent the examples
of exceptional loops.
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APPENDIX B: SPECIFIC CONFIGURATION
WITH THE NONTRIVIAL VALUE OF THE

DISCRIMINANT INDICATOR

In this Appendix, we illustrate the specific configuration
yielding ξCn,3D = −1 (see Fig. 8). With this nontrivial value
of the indicators, the exceptional loops emerge, crossing one
of the planes for kz = 0 or π . For example, in Fig. 8(a), an
exceptional loop crossing the plane for kz = π and two loops
crossing both of the planes for kz = 0 and π exist. In this case,

at the plane for kz = 0 (π ), the indicator for two-dimensional
systems takes a trivial (nontrivial) value. This result indicates
that the discriminant indicator takes a value of −1.

APPENDIX C: DETAILS OF THE HAMILTONIAN
IN TOY MODELS

Here, we show the details of the Hamiltonian in Sec. III.
The bulk Hamiltonian describing the toy model in Fig. 2(a) is

HC4 (k) =

⎛
⎜⎜⎝

iδ −(1 + δt ) − (1 − δt )e−ikx −(1 + δt ) − (1 − δt )e−ikx −(1 + δt ) − (1 − δt )e−iky

−(1 + δt ) − (1 − δt )eikx iδ −(1 + δt ) − (1 − δt )eiky −(1 + δt ) − (1 − δt )eikx

−(1 + δt ) − (1 − δt )eikx −(1 + δt ) − (1 − δt )e−iky −iδ −(1 + δt ) − (1 − δt )e−iky

−(1 + δt ) − (1 − δt )eiky −(1 + δt ) − (1 − δt )e−ikx −(1 + δt ) − (1 − δt )eiky −iδ

⎞
⎟⎟⎠.

(C1)

This model preserves generalized C4 symmetry [see Eq. (1)], where UC4 is defined as

UC4 =

⎛
⎜⎝

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎞
⎟⎠. (C2)

Additionally, the bulk Hamiltonian describing the toy model in Fig. 3(a) is

HC6 (k)

=

⎛
⎜⎜⎜⎜⎜⎝

iδ −(1 − γ1) −(1 − γ2)eik·a2 −eik·a2 −(1 + γ2)eik·(−a1+a2 ) −(1 − γ1)
−(1 + γ1) −iδ −(1 + γ1) −(1 + γ2)eik·(−a1+a2 ) −eik·(−a1+a2 ) −(1 − γ2 )e−ik·a1

−(1 + γ2)e−ik·a2 −(1 − γ1) iδ −(1 − γ1) −(1 − γ2)e−ik·a1 −e−ik·a1

−e−ik·a2 −(1 − γ2)e−ik·(−a1+a2 ) −(1 + γ1) −iδ −(1 + γ1) −(1 + γ2)e−ik·a2

−(1 − γ2)e−ik·(−a1+a2 ) −e−ik·(−a1+a2 ) −(1 + γ2)eik·a1 −(1 − γ1) iδ −(1 − γ1)
−(1 + γ1) −(1 + γ2)eik·a1 −eik·a1 −(1 − γ2)eik·a2 −(1 + γ1) −iδ

⎞
⎟⎟⎟⎟⎟⎠

.

(C3)

Here, a1 = ( 1
2 ,

√
3

2 ) and a2 = (− 1
2 ,

√
3

2 ) are the unit vectors.
This model preserves generalized C6 symmetry [see

Eq. (1)], where UC6 is defined as

UC6 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

. (C4)

APPENDIX D: THE MERGING OF EXCEPTIONAL LOOPS

In this Appendix, we show the details of the merging of ex-
ceptional loops arising by generalized rotational symmetry in
three dimensions. Consider the case in which the discriminant
indicator ξCn,3D (n = 4, 6) takes the nontrivial value. In this
case, the exceptional loops emerge, meaning that the presence
of the exceptional point in a two-dimensional subspace is
specified by a given kz (see Fig. 9). We note that an odd num-
ber of exceptional points exist in the shaded area in the BZ
due to the nontrivial value of the two-dimensional indicator
for this subspace. We also note that applying the generalized
rotation, an exceptional point is mapped to another one with
the opposite sign of the velocity ν (see Fig. 9).

The merging of the exceptional loops observed in Fig. 4(d)
can be understood by shifting kz. Because of the indicator
taking a value of ξC4,3D = −1, the exceptional points observed
in Fig. 9(a) should annihilate each other. Such annihilation is

(b)(a)

kx

ky

kx

ky

(0, 0, kz)

(π, π, kz)

(0, 0, kz)
(4π/3, 0, kz)

FIG. 9. (a) and (b) Sketch of sections of the BZ at given kz

for systems with generalized C4 and C6 symmetry, respectively.
The square and the hexagon denote the section of the BZ. When
the indicator is nontrivial, exceptional loops emerge in the three-
dimensional BZ. Correspondingly, exceptional points emerge in the
two-dimensional subspace as denoted by green and blue dots. Here,
blue (green) dots represent the exceptional points with ν = 1 (−1).
In these panels, shaded areas are denoted by the region enclosed by
the integration path in Figs. 1(a) and 1(b).
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 10. The path of the exceptional points in the BZ after shift-
ing kz with generalized (a)–(d) C4 and (e)–(h) C6 symmetry. Blue
(green) dots represent the exceptional points with ν = 1 (−1). The
red arrows are the path of exceptional points after shifting kz.

allowed only at (kx, ky) = (0, 0) and (π, π ) in the presence of
generalized C4 symmetry. In the following, we see the details.

Consider a proper kz where the exceptional points emerge
[see Fig. 9(a)]. Shifting kz, we can see that these exceptional
points in the shaded area move to the boundaries, which is
categorized into four cases [see Figs. 10(a)–10(d)]. In the

case illustrated in Fig. 10(a), the exceptional point do not
meet another one, and thus, pair annihilation does not occur.
In the case illustrated in Fig. 10(b), the exceptional point
meets another one but with the same vorticity, and thus,
pair annihilation does not occur. In the case illustrated in
Figs. 10(c) and 10(d), the exceptional point meets another
one with opposite vorticities. The above argument elucidates
that two exceptional loops merge at the line specified by
(kx, ky) = (0, 0) and (π, π ).

In a similar way, let us consider the case of generalized
C6 symmetry. In this case, the indicator ξC6,3D = −1 does
not necessarily mean the merging of exceptional loops. Let
us illustrate the details. As is the case for the generalized C4

symmetry, the movement of the exceptional point for pair an-
nihilation is categorized into four cases in Figs. 10(e)–10(h).
In the case illustrated in Fig. 10(e), the exceptional point
does not meet another one, and thus, pair annihilation does
not occur. In the case illustrated in Figs. 10(f) and 10(g),
the exceptional point meets another one with the opposite
vorticity. Thus, pair annihilation occurs. In the case illustrated
in Fig. 10(h), the exceptional point meets another one with the
same vorticity, and thus, pair annihilation does not occur. The
above argument indicates that the indicator ξC6,3D = −1 does
not necessarily mean the merging of the exceptional points.
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Nature (London) 525, 354 (2015).

[53] T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
[54] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori,

Phys. Rev. Lett. 118, 040401 (2017).
[55] V. Kozii and L. Fu, arXiv:1708.05841.
[56] V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa

Torres, Phys. Rev. B 97, 121401(R) (2018).
[57] T. Yoshida, R. Peters, and N. Kawakami, Phys. Rev. B 98,

035141 (2018).
[58] K. Kawabata, T. Bessho, and M. Sato, Phys. Rev. Lett. 123,

066405 (2019).
[59] C. C. Wojcik, X.-Q. Sun, T. Bzdušek, and S. Fan, Phys. Rev.

B 101, 205417 (2020).
[60] Z. Yang, A. P. Schnyder, J. Hu, and C.-K. Chiu, Phys. Rev.

Lett. 126, 086401 (2021).
[61] W. B. Rui, Z. Zheng, C. Wang, and Z. D. Wang, Phys. Rev.

Lett. 128, 226401 (2022).
[62] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz,

Phys. Rev. Lett. 121, 026808 (2018).
[63] S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
[64] S. Yao, F. Song, and Z. Wang, Phys. Rev. Lett. 121, 136802

(2018).
[65] E. Edvardsson, F. K. Kunst, and E. J. Bergholtz, Phys. Rev. B

99, 081302(R) (2019).
[66] C. H. Lee and R. Thomale, Phys. Rev. B 99, 201103(R) (2019).
[67] D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Phys. Rev.

Lett. 124, 056802 (2020).
[68] K. Zhang, Z. Yang, and C. Fang, Phys. Rev. Lett. 125, 126402

(2020).
[69] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, Phys. Rev.

Lett. 124, 086801 (2020).
[70] R. Okugawa, R. Takahashi, and K. Yokomizo, Phys. Rev. B

102, 241202(R) (2020).
[71] N. Okuma and M. Sato, Phys. Rev. Lett. 126, 176601 (2021).
[72] X.-Q. Sun, P. Zhu, and T. L. Hughes, Phys. Rev. Lett. 127,

066401 (2021).
[73] J. C. Budich, J. Carlström, F. K. Kunst, and E. J. Bergholtz,

Phys. Rev. B 99, 041406(R) (2019).
[74] R. Okugawa and T. Yokoyama, Phys. Rev. B 99, 041202(R)

(2019).
[75] T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai,

Phys. Rev. B 99, 121101(R) (2019).

[76] H. Zhou, J. Y. Lee, S. Liu, and B. Zhen, Optica 6, 190 (2019).
[77] I. Mandal and E. J. Bergholtz, Phys. Rev. Lett. 127, 186601

(2021).
[78] P. Delplace, T. Yoshida, and Y. Hatsugai, Phys. Rev. Lett. 127,

186602 (2021).
[79] L. Jin and Z. Song, Phys. Rev. A 80, 052107 (2009).
[80] P. San-Jose, J. Cayao, E. Prada, and R. Aguado, Sci. Rep. 6,

21427 (2016).
[81] Y. Xu, S.-T. Wang, and L.-M. Duan, Phys. Rev. Lett. 118,

045701 (2017).
[82] T. Yoshida, K. Kudo, H. Katsura, and Y. Hatsugai, Phys. Rev.

Research 2, 033428 (2020).
[83] M. Ezawa, Phys. Rev. B 99, 201411(R) (2019).
[84] T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R. Thomale,

Phys. Rev. Lett. 122, 247702 (2019).
[85] M. Ezawa, Phys. Rev. B 100, 081401(R) (2019).
[86] T. Yoshida, T. Mizoguchi, and Y. Hatsugai, Phys. Rev.

Research 2, 022062(R) (2020).
[87] T. Hofmann, T. Helbig, F. Schindler, N. Salgo, M. Brzezińska,
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