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Layered opposite Rashba spin-orbit coupling in bilayer graphene: Loss of spin chirality, symmetry
breaking, and topological transition

Xuechao Zhai *

Department of Applied Physics and MIIT Key Laboratory of Semiconductor Microstructures and Quantum Sensing, Nanjing University of
Science and Technology, Nanjing 210094, China

(Received 18 January 2022; revised 13 May 2022; accepted 16 May 2022; published 25 May 2022)

Inversion symmetry in bilayer graphene allows for layered opposite Rashba spin-orbit coupling (LO-RSOC)—
the situation when the RSOC has the same magnitude but the opposite sign in two coupled spatially separated
layers. We show that the LO-RSOC results in the loss of spin chirality in the momentum space, in contrast to the
common uniform RSOC. This chirality loss makes it difficult to experimentally establish whether the LO-RSOC
(on the scale of 10 meV) exists, because the band structure is insensitive to it. To solve this problem, we propose
to identify the LO-RSOC either by gating to break the inversion symmetry or by magnetic field to break the
time-reversal symmetry. Remarkably, we observe the transition between trivial and nontrivial band topology as
the system deviates from the LO Rashba state. Ab initio calculations suggest that bilayer graphene encapsulated
by two monolayers of Au is a candidate to be a LO Rashba system.
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I. INTRODUCTION

Monolayer graphene (MLG) has negligible spin-orbit
couplings (SOCs), on the order of 10 μeV [1,2], in the unper-
turbed state due to its high symmetries, typically inversion (I)
symmetry, time-reversal (T ) symmetry, and z ↔ −z (out of
plane) mirror symmetry. Inducing SOC by symmetry breaking
opens a distinctive route to explore the application of MLG
in spintronics [3–5]. As one of the most common SOCs,
the Rashba SOC (RSOC) [3] with the strength of more than
1 meV is relatively easily achieved in MLG by adatoms [6]
or building heterointerfaces, typically MLG-Au [7,8], due to
z ↔ −z mirror symmetry breaking. Interestingly, the RSOC
in MLG induces an in-plane spin chirality manifest in spin-
momentum locking and vortexlike spin polarization on the
Fermi loop near each Dirac point [9].

Bernal-stacked bilayer graphene (BLG) [Fig. 1(a)] consists
of two MLG sheets, which are shifted by one bond length
between each other and are weakly coupled by van der Waals
(vdW) interaction [10]. Similarly to the MLG case, the SOCs
in the natural-state BLG with I symmetry [see the black point
for I center in Fig. 1(a)] and T symmetry are negligible
[10,11]. Usually in theoretical model studies [11–14], the
RSOC in BLG is taken to be identical in sign or uniform
for both layers, and in this situation it supports the in-plane
spin chirality in the momentum space [15]. In principle, this
situation can be created, for example, by applying a vertical
electric field, but this is highly inefficient because the esti-
mated strength is only about 5 μeV for a field of 1 V nm−1

[4]. To date, the single-interface Rashba effect has been ver-
ified in BLG by putting it in proximity with transition-metal
dichalcogenides [16,17], whereas the double-interface Rashba
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effect from both the top and bottom sides of BLG [18] is still
not well understood and has been rarely explored.

Here we demonstrate that I symmetry in BLG allows for
the situation when two layers have opposite RSOC—layered
opposite (LO) RSOC. This results in the loss of spin chiral-
ity in the momentum space, in contrast to uniform RSOC.
A crucial problem which follows is that, without symmetry
breaking, it is hard to judge whether the LO-RSOC (on the
order of 10 meV [6,7]) exists or not since the band structure
is insensitive to LO-RSOC. Here, we argue that the identifica-
tion of LO-RSOC based on band structure becomes possible if
there is at least one breaking for I symmetry andT symmetry.
Remarkably, we demonstrate that there is a transition between
trivial and nontrivial band topology, evidenced by the Berry’s
phase or the Chern number, when the system deviates from
the LO-RSOC state. We further use ab initio calculations to
show that BLG encapsulated by two monolayers of Au is a
LO-RSOC system, for which the potential gradient along the
z axis to induce the LO-RSOC has opposite signs at the two
opposite layers. The appearance of LO-RSOC here reveals a
fundamental interaction phenomenon arising from symmetry.
In contrast to the opening of the band gap directly by LO
Ising SOC [18] or by layered antiferromagnetism [19] in
doubly proximtized BLG systems, the influence of LO-RSOC
on electronic properties is highly hidden without symmetry
breaking. Our results demonstrate the nontrivial effect of sym-
metry on spin properties and band topology.

Notably, the LO-RSOC discussed in BLG here provides
a graphene-based version of Rashba bilayers, which have
recently been widely explored in nongraphene systems, such
as topological effects in quantum-tunneling-coupled Rashba
bilayer heterostructures [20–22], hidden spin textures in Cu-
based superconductors with two CuO layers [23,24], or in
covalently coupled crystalline compounds [25,26], and chi-
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rality inversion on two opposite surfaces of 3D topological
insulators [27,28]. Compared with other Rashba bilayers,
the vdW-coupled BLG combines many advantages of ultra-
thin materials, including simple structure, easy fabrication
[29], electrically controllable high mobility and band gap
[10], and, most strikingly, being easy to assemble into a
heterostructure [16–18], making BLG especially attractive to
experimentalists. Combining these factors with the possibility
of miniaturization, BLG-based heterosystems are promising
for exploration of spin-orbit physics and spintronics applica-
tions [5,18]. In contrast to the existing Rashba bilayers for
which the band splitting is very sensitive to even weak pertur-
bations induced by field-induced symmetry breaking [20–28],
the splitting for the Rashba BLG here is weakly sensitive
to electrically or magnetically induced symmetry breaking
that works within higher-order perturbations [Eq. (12)]. As
BLG derives from the LO-RSOC state, the uniquely sharp
topological transitions happen [see Eqs. (13) and (14)]. These
characteristics can be attributed to the specific vdW layered
structure of BLG.

Our paper is organized as follows. In Sec. II, we introduce
the system Hamiltonian. In Sec. III, we show the phenomenon
and origin of chiral loss. In Sec. IV, we demonstrate the field-
induced symmetry breaking. In Sec. V, we show the results of
topological transition. Finally, we present the conclusions.

II. SYSTEM HAMILTONIAN

According to Refs. [6–8,10,30], an empirical lattice Hamil-
tonian for Rashba BLG is constructed as follows:

H = − t
∑

〈i, j〉‖α
c†

iαc jα − γ
∑

〈i, j〉⊥α

c†
iαc jα

+ iλ

3

∑
〈i, j〉‖αβ

χic
†
iα (s × d̂ i j )

z
αβc jβ

+ U
∑

iα

μic
†
iαciα + M

∑
iα

c†
iαszciα, (1)

where c†
iα creates an electron with spin polarization α at site

i, 〈i, j〉 runs over all the nearest-neighbor hopping sites, and
the subscript ‖ (⊥) means in-plane (out-of-plane), χi = 1 (ν)
is valid when site i is on the bottom (top) layer, μi = +1 (−1)
holds if site i locates on the bottom (top) layer, s is the spin
Pauli operator, and d̂ i j is the unit vector pointing from site i to
site j. There are five terms in total in Hamiltonian (1), and the
parameters t , γ , λ, U , and M indicate the energy strength. The
first and second terms represent the intralayer and interlayer
nearest-neighboring hoppings, respectively. The third term
denotes the Rashba SOC, which is not intrinsic in BLG but is
inducible by interface engineering [3] or adatoms [6] (|ν| �= 1
essentially arises from I symmetry breaking in structure). The
ratio of the Rashba coefficients of the top layer to the bottom
layer is ν : 1, and hence ν can reflect the interlayer Rashba
polarization, for which ν = −1 , (+1) corresponds to the case
of LO (uniform) RSOC. The fourth and fifth terms denote
the other symmetry-breaking effects from gating (2U is the
vertical bias) that breaks I symmetry and magnetic field (M
is the Zeeman-splitting strength) that breaks T symmetry.

FIG. 1. (a) Bernal-stacked BLG. A1(2) and B1(2) denote two sub-
lattices in carbon layer 1(2), and the black point marks an I center.
(b) Brillouin zone. �, M, K , and K ′ are four high-symmetry points.
(c) Sketch of loss of spin chirality induced by LO-RSOC (ν = −1).
The Rashba-induced opposite spin chiralities in energy bands of
two monolayers cancel out each other after vdW coupling. Blue
arrows on each Fermi loop indicate the spin orientation. (d)–(f) Band
structures for the (d) LO-RSOC case (ν = −1), (e) no-Rashba case,
and (f) uniform-RSOC case (ν = 1). The inset in (f) plots the spin
chirality on the Fermi loops at the dotted line.

By performing the Fourier transformation [10,30], a gen-
eralized eight-band Hamiltonian in the momentum space for
Rashba BLG is derived as

H (p) = υIτ (σx px + ξσy py)Is + γ

2
(τxσx − τyσy)Is

+ λ

2
τz,ν (σxsy − ξσysx ) + UτzIσ Is + MIτ Iσ sz, (2)

which takes ψ = {ψA1↑, ψA1↓, ψB1↑, ψB1↓, ψA2↑, ψA2↓, ψB2↑,

ψB2↓} as the atomic basis set. Here, p = (px, py) is used to
denote the momentum by taking K (K ′) as coordinate ori-
gin. The Pauli matrices s = (sx, sy, sz ), σ = (σx, σy, σz ), and
τ = (τx, τy, τz ) are used to describe the spin, intralayer sub-
lattice pseudospin, and layer pseudospin degrees of freedom
for electrons in BLG [10–15]. The index ξ = +1 (−1) marks
valley K (K ′) in Fig. 1(b), and Is, Iσ , and Iτ are used to label
the identity matrix in the s, σ, and τ spaces, respectively. Note
that the five terms in Hamiltonian (2) correspond to those
in Hamiltonian (1) in order. Specifically, the first term Hυ

in Hamiltonian (2) indicates the massless Dirac term, where
υ = √

3at/2h̄ (a = 2.46 Å is the lattice constant) is the Fermi
velocity in MLG. In the third term, the ν-dependent matrix in
the τ space reads

τz,ν ≡
[

1 0
0 ν

]
, ν ∈ [−1, 1], (3)

which depicts the possible Rashba difference between two
MLG sheets. Note that |ν| > 1 is not considered here because
no more physics happens.

Below, the lattice Hamiltonian (1) is used for accurate
band calculations. Unless otherwise noted (e.g., Fig. 2), the
typical strength parameters t = 2.689 eV, γ = 0.364 eV, and
λ = 16.2 meV (fit parameters extracted from Fig. 5) are used.
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FIG. 2. (a) Band structures for λ increasing from 0 to 324 meV
through 16.2, 81, and 162 meV. (b) Band structures for ν changing
from −1 to 1 through −0.5, 0, 0.5. We set U = M = 0 in both (a) and
(b), and in this case, two degenerate valleys are associated with each
other by T symmetry.

Without doubt, the main Rashba physics we are concerned
with does not change with the perturbation of parameters.

III. PHENOMENON AND ORIGIN OF CHIRAL LOSS

We consider the simplest case, U = M = 0, in Hamil-
tonian (2). For MLG, the lowest-energy two subbands
are derived as ε(p) = ±[(λ2 + 4ε2)1/2 − λ]/2 with ε =
υ|p|. The average spin is derived as 〈s〉 = 2 sgn(λ)ε(λ2 +
4ε2)−1/2(êp × ẑ) with êp = p/|p|, and ẑ is the unit vector
of the z axis. Hence, the low-energy electrons possess spin
chirality, as shown in Fig. 1(c), where opposite RSOC induces
opposite spin chirality in opposite layers. As two monolayers
gradually approach from an uncoupled state to a vdW-coupled
BLG state, there exist two Rashba-coupling modes in terms of
spin chirality: isochiral coupling (ν = 1) and opposite-chiral
coupling [ν = −1; see Fig. 1(c)].

We are mainly concerned with the physical effects induced
by the sign change of the interlayer Rashba polarization pa-
rameter ν. We summarize the case of uniform RSOC (ν = 1)
as follows. The lowest-energy four subbands are expressed
as [15] εαβ (p) = αυ|p|[(λ2 + ε2)1/2 − βλ]/2 with α, β =
±1. The average spin is solved as 〈s〉 = β sgn(λ)ε(λ2 +
ε2)−1/2(êp × ẑ), where the orientation of spin chirality de-
pends on the sign of the index β. For the case of LO-RSOC
(ν = −1), we surprisingly find that the eight-band Hamilto-
nian (2) always has the following four eigenvalues:

εν=−1
0 = ±1

2

(
� ±

√
4υ2 p2 + �2

)
, (4)

where � = (4λ2 + γ 2)1/2 holds. Consequently, no spin split-
ting occurs, and spin chirality disappears (〈s〉 = 0).

We deeply argue the striking phenomenon of chiral loss
induced by LO-RSOC in Fig. 1(c). As is understood, it is the
interlayer vdW coupling that mixes opposite spin chiralities
on opposite layers and enables the chiral loss in total. This
raises a problem that it is hard to distinguish the band dif-
ference between the ν = −1 case and the no-Rashba case,
as shown in Figs. 1(d) and 1(e), or rather, it is difficult to
judge whether the LO-RSOC is present. Note that λ here is on
the order of 10 meV, which is readily available in experiment
[3–7]. For a giant λ comparable to γ (more than 0.1 eV), the
band slope gets visibly lower, as shown in Fig. 2(a). Moreover,
we plot the band structures for ν changing from −1 to 1
through −0.5, 0, 0.5 in Fig. 2(b). As is seen, the band spin
degeneracy is opened as long as ν �= −1.

IV. FIELD-INDUCED SYMMETRY BREAKING

We naturally ask, “Is field-induced symmetry breaking
helpful to identify the presence of LO-RSOC?” In terms of
actual experimental realizability, HU in Hamiltonian (2) is
feasible in a dual-gated device, while Hλ and HM are simulta-
neously inducible by contacting graphene with, for example,
Cr2Ge2Te6 under pressure [31] or magnetic layers of Co (Ni)
[32].

Under the low-energy approximation (ε < γ ), the eight-
band model Hamiltonian (2) can be further reduced to the
four-band form [see Eq. (10)] that captures the lowest-energy
four bands closest to the Fermi energy, by employing van
Vleck’s perturbation theory [33]. The processing method is
as follows.

Taking ψ = {ψA2↑, ψA2↓, ψB1↑, ψB1↓, ψA1↑, ψA1↓, ψB2↑,

ψB2↓} as the atomic basis set, the low-energy effective
Hamiltonian (2) in the main text is rewritten as

H = H0 + W, H0 =
[

H+ 0
0 H−

]
, W =

[
0 Hs

H†
s 0

]
, (5)

where the diagonal matrices H± read

H± =

⎡
⎢⎣

∓U + M 0, 0, 0
0, ∓U − M, 0, 0
0, 0, ±U + M, 0
0, 0, 0, ±U − M

⎤
⎥⎦,

and the valley-dependent matrix Hs is described by

Hs =

⎡
⎢⎢⎢⎢⎣

0 0, γ π,
ξ−1

2 iνλ

0, 0,
ξ+1

2 iνλ, γ π

γπ†, − ξ+1
2 iλ, 0, 0

1−ξ

2 iλ, γπ†, 0, 0

⎤
⎥⎥⎥⎥⎦,

where π = υ(px − iξ py) is defined.
By using matrix diagonalization, the eigenvalues of H0 are

solved as

ε0
1,2 = ∓ M −

√
γ 2 + U 2,

ε0
3,4 = − U ∓ M,

ε0
5,6 =U ± M, (6)

ε0
7,8 = ∓ M +

√
γ 2 + U 2,
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corresponding to the eigenvector |�0〉 =
(|ψ0

1 〉, |ψ0
2 〉, . . . , |ψ0

8 〉) written as

|�0〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 −ζ 0 0 0 0 0 ϑ

−ζ 0 0 0 0 0 ϑ 0
0 ϑ 0 0 0 0 0 ζ

ϑ 0 0 0 0 0 ζ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where ϑ = cos(ϕ/2), ζ = sin(ϕ/2), and tan ϕ = γ /U . We
divide the eight eigenvalues into two groups in terms of en-
ergy, ε0

ia ∈ {ε0
1, ε

0
2, ε

0
7, ε

0
8} and ε0

jb ∈ {ε0
2, ε

0
3, ε

0
4, ε

0
5}, satisfying

|ε0
ia − ε0

ja| ∼ |ε0
ib − ε0

jb| � |ε0
ia − ε0

jb| ∼ γ . The low-energy
Hamiltonian for BLG is thus achievable through the unitary
transformation H̃ = eiSHe−iS , where the S matrix elements
are given by

Sml = iWml

ε0
l − ε0

m

+ i
∑

m′

Wmm′Wm′l(
ε0

l − ε0
m

)(
ε0

l − ε′0
m

)

+ i
∑

l ′

Wml ′Wl ′l(
ε0

l − ε0
m

)(
ε0

l − ε0
l ′
) . (8)

Herein, S = S†, Wml = 〈ψ0
m|W |ψ0

l 〉, m, m′ ∈ {3, 4, 5, 6}, and
l, l ′ ∈ {1, 2, 7, 8} hold. The low-energy matrix elements of
the effective Hamiltonian (up to second order in 1/γ ) are
determined by

Hmm′ =ε0
mδmm′ + Wmm′

+ 1

2

∑
l

WmlWlm′

(
1

ε0
m − ε0

l

+ 1

ε0
m′ − ε0

l

)
+ O(2),

(9)

with Hmm′ = (Hm′m)†. By using Eq. (9), we derive the effective
Hamiltonian (4) in the main text.

According to Eq. (9), under {ε, M,U } < γ and
{λ2/γ 2, λM/γ 2, λU/γ 2} → 0, we obtain the lowest-energy
four-band Hamiltonian as

Heff =H (0) + H (1) + H (2) + O(1/γ 3),

H (0) = − σz(U Is + ξMsz ),

H (1) = − 1

γ

(
0 (π†)2

π2 0

)
sx + �

i(1 + ν)λ

γ
sπσ+,

H (2) =2U

γ 2

(
π†π 0

0 −π†π

)
Is, (10)

in the atomic basis set ψ = {ψA2↓, ψA2↑, ψB1↑, ψB1↓} for val-
ley K and ψ = {ψA2↑, ψA2↓, ψB1↓, ψB1↑} for valley K ′. Here,
we define s± = (s0 ± sz )/2, σ± = (σ0 ± σz )/2,

sπ =
(

0 π†

−π 0

)
, � = 1

2

(
1 + γ 2

γ 2 + �

)
(11)

to shorten notation, with � = 4M(U − M ). Note that sπ is in
the s space, � is the dimensionless factor renormalized by U
and M (� = 1 for U = M = 0), and the σ space here refers to
the A2 and B1 sublattices [different from that in Hamiltonian
(2)]. Judging from Hamiltonian (10), the LO-RSOC leads to

FIG. 3. Band structures modulated by (a) gating U = 5.4 meV
and (b) magnetic field M = 2.7 meV on the basis of Figs. 1(b)– 1(d).
The insets enlarge the dotted-box regions. (c) and (d) Dependence
of band-gap difference between the no-Rashba case and the ν = −1
case on U , for (c) M = 0 and (d) M �= 0 [10 meV (solid line) and
40 meV (dashed line)]. The insets show the band details.

the factor 1 + ν = 0, which is responsible for the chiral loss in
Eq. (4), reflecting no spin polarization due to the cancellation
of both layers.

In Figs. 3(a) and 3(b), we illustrate the influence of U =
5.4 meV and M = 2.7 meV, respectively, on the conduction
bands in Figs. 1(d)–1(f). Our results indicate that it is still hard
to observe the band difference between the no-Rashba case
and the ν = −1 case, because the spin splitting induced by
U (M) at K is only about 37 μeV (19 μeV), which is indeed
negligible as expected from Hamiltonian (10).

For larger values of U or M, we need to add the other
perturbation contributions δH (2) to H (2) as follows:

δH (2) = λ2

γ 2

(
ν2J 0

0 −2U

)
s+ + iλ

γ 2
(νJσ+s∗

π + 2Uσ−sπ ),

(12)

where J = U + (2� − 1)(U − M ) holds. In Figs. 3(c) and
3(d), we further plot the band-gap difference �εg (between
the no-Rashba case and the ν = −1 case) modulated by U for
M = 0 and M �= 0, respectively. It is shown that the nonzero
band gap increases as U increases [εg = 0 is always valid
for �εg = 0 in Fig. 3(d)]. Taking U = 120 meV for exam-
ple, �εg is about 6, 1.2, and 0.45 meV for M = 0, 10 meV,
and 40 meV, respectively. Therefore, increasing U is helpful
to identify the LO-RSOC by enhancing spin splitting. By
contrast, increasing M lowers the splitting. The second-order
perturbation effect reflected by Eq. (12) in the BLG-based
LO Rashba system reveals the weak sensitivity of Rashba
splitting on the electrically or magnetically induced symmetry
breaking, in contrast to the strong sensitivity of that in other
known Rashba bilayers to even weak symmetry-breaking per-
turbations [20–28]. This weak sensitivity should be attributed
to the specific vdW-coupled structure of BLG, and supports
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BLG to hold extremely stable band topology in a relatively
complex double-interface problem [18].

V. TOPOLOGICAL TRANSITION

Now, it is necessary to clarify what happens when the
amplitude homogeneity of RSOC between two monolayers
is broken, corresponding to |ν| �= 1 in Hamiltonian (2). In
practice, adjusting the concentration of adatoms [6] from
one side (top or bottom) of BLG or fabricating asymmetric
vertical heterostructures is feasible to induce the interlayer
Rashba inhomogeneity. The existing theoretical data [34] also
suggests that twisting the angle between graphene and its
proximity material may alter the value of ν by breaking the
heterostructure symmetry.

In the absence of HU and HM , the RSOC itself in
Hamiltonian (2) does not open a band gap (independent
of ν), determined by Eq. (4). The system is not a topological
insulator but a semimetal. Nevertheless, the Rashba system
exhibits the intriguing Fermi-loop topology, characterized
by the Berry’s phase or geometric phase [35], defined by
γn = ∮

C d p ·An(p), where An(p) = 〈ψn(p)|i∇p|ψn(p)〉 is
the Berry connection for the wave function ψn(p) in the nth
subband. The wave function of Hamiltonian (10) is solved as
ψT

n⊇{α,β} = (−αζ−βe−iξφ,−iαβζβe−2iξφ, iβζ−β, ζβeiξφ )/
√

2,
corresponding to the dispersion εαβ (p) = αυ|p|[2(λ2 +
ε2)1/2 − β(1 + ν)λ]/4. Here we have α, β = ±1,
tan φ = py/px, ζβ = δβ,1 cos(θ/2) + δβ,−1 sin(θ/2), and
tan θ = 2υ|p|/[(1 + ν)λ], with δi j denoting the Kronecker
delta function. Strikingly, γn is derived as

γn = 2π (ν = −1), π (ν �= −1). (13)

Note that we ignore the sign of γn, for which ±2π (±π ) are
equivalent because the phase period is 2π . As a result, a sharp
transition of the Berry’s phase appears when ν deviates from
−1. This transition is suggested to be detected by the contrast-
ing conductance through an np junction based on the fact that
γn = π supports Klein tunneling but γn = 2π does not [30].
In experiment, it requires the adequate low-temperature con-
dition to avoid the interband scattering and ensure the ballistic
transport. Notably, the local gauge-invariant quantity defined
as [36] �n(p) = ∇p ×An(p) (Berry curvature) is always zero
for the gapless and T -symmetry case here.

When HU or HM is present, the Rashba system is usually
gapped [12–14]. We show the band gap as a function of ν in
Figs. 4(a) and 4(b), where M = 10 meV and U = 10 meV are
fixed, respectively. The results indicate that, only for M > U ,
ν changes the band gap. As ν gets closer to 1 [see Fig. 4(a)],
the band gap becomes larger. For the gapped system, γn is
a variable that depends on momentum and thus no longer
provides a good topology description. The invariant to charac-
terize the band topology here is the Chern number determined
by C = ∑

n∈VB

∫
BZ �n(p)d2 p/(2π )2, where VB (BZ) denotes

the valence bands (Brillouin zone). For U 2 < M2, combined
with the condition {M2, λ2} � γ 2 readily achievable in exper-
iment [3–7,37], it satisfies

C = 0 (ν = −1), −2 sgn(M ) (ν �= −1). (14)

FIG. 4. (a) and (b) Band gap versus polarization parameter ν by
fixing M = 10 meV and varying U in (a) and by fixing U = 10 meV
and varying M in (b). (c) Band structure and Berry curvature (�)
near two valleys for (ν, M,U ) = (−0.1, 10 meV, 1 meV). In the unit
notation for �, a = 2.46 Å is the lattice constant of BLG.

For U 2 > M2, we always have C = 0, but the system is a
quantum valley Hall insulator [14], independent of ν, because
ν does not alter the band gap, as shown in Fig. 4(b).

We plot the band structure and Berry curvature for a topo-
logical insulating state with a set of parameters (ν, M,U ) =
(−0.1, 10 meV, 1 meV). It is seen that valley degeneracy is
broken, reflected by the differences of band structure and
Berry curvature near two valleys. Nevertheless, the Chern
number C = −2 is contributed equally by two valleys.

Moreover, it should be noted that Eqs. (13) and (14),
which reveal the ν-related sharp topological transitions, are
our significant results for the BLG-based LO-RSOC system.
No evidence of these sharp topological transitions has been
found in other nongraphene Rashba bilayers [20–28].

VI. LO-RSOC CONFIRMED BY ab initio CALCULATIONS

Beyond the phenomenological Hamiltonian (2), we further
show a concrete LO-RSOC system that is BLG encapsulated
by two monolayers of Au, as shown in the left panel of
Fig. 4(a), where the optimized stable structure is I symme-
try. We employ the standard ab initio calculations that are
performed in the MLG-Au interface [37], where the Rashba
strength λ depends strongly on the graphene-Au distance
dG-Au and is negligible for dG-Au > 4.2 Å. We obtain the opti-
mized interlayer distance dG-Au = 3.21 Å.

The calculated band structure in the right panel of Fig. 5(a)
shows that no spin splitting happens, as expected from our
prediction of the LO-RSOC in Hamiltonian (2). It is shown
that BLG becomes electron doping (chemical potential μ =
−0.329 eV) due to the π -d orbital hybridization between
graphene and Au. This means the direction of charge trans-
fer at each heterointerface is from Au to graphene. Because
the top Au-graphene interface and the bottom graphene-Au
interface are I symmetry, the interfacial potential gradient
along the z axis to induce the LO-RSOC [38] is opposite in
sign on opposite layers of BLG. The hyperfine band structure
near K (see the inset) reveals that the trigonal warping effect
(|ε − μ| < 1 meV) does not open the spin degeneracy.
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FIG. 5. Real-space lattice structure (left) and band structure
(right) for (a) BLG encapsulated by two single layers of Au and
(b) BLG in proximity with a single layer of Au (for comparison).
The optimized layer distances in (a) are marked. To obtain the value
of λ in (a), two layer distances in (b) are artificially set to be the same
as (a). The band structures are obtained by ab initio calculations and
fitted by the model. The inset in (a) enlarges the region of trigonal
warping.

Now, how to determine the value of λ in Fig. 5(a) is still
a question, because the band structure can be well fitted by
the established model (t = 2.689 eV and γ = 0.386 eV) even
without λ, whereas λ is not negligible in each monolayer
graphene. More strictly, there still needs to be additional in-
terlayer hopping parameters to achieve a better fit, including
the nearest-neighbor hopping energy γ ′ = 0.296 eV between
sublattices B1 and A2, and the nearest-neighbor hopping en-
ergy γ ′′ = 0.0382 eV between sublattices A1 (B1) and A2

(B2). To obtain a relatively accurate value of λ, we further

perform the ab initio calculations for the BLG by proximity
with monolayer Au in Fig. 5(b), where two layer distances are
manually set to be the same with Fig. 5(a). It is shown than a
gap is opened, and spin splitting appears. The parameters λ =
16.2 meV, ν = 0, and U = 0.086 eV in model (2) are suitable
to fit the band data in Fig. 5(b). By comparing Figs. 5(a) and
5(b), we conclude that λ = 16.2 meV and ν = −1 in Fig. 5(a)
hold.

Undoubtedly, the spatial distribution and concentration of
Au atoms or the additional use of magnetic Ni substrate have
an obvious influence on the change of structural symmetry and
band structure [7,37]. The Au layer in Fig. 4(a) only provides
a simple example and is actually optional to induce the Rashba
effect. Essentially, our model Hamiltonian (2) captures the
main Rashba physics of all the possible doubly proximitized
BLG systems by adjusting ν, U , and M, and sometimes, by
adding other necessary interactions such as staggered sublat-
tice potential, Ising or Kane-Mele SOCs [6,16–19,39].

VII. CONCLUSIONS

We have revealed that the I symmetry in BLG allows
the presence of LO-RSOC, which results in the loss of spin
chirality in the momentum space and is identifiable by I or T
symmetry breaking through inducing spin splitting or driving
the transition of band topology. These nontrivial results are
fundamental to understanding the Rashba physics in all the
possible two-dimensional (2D) layered structures which are
doubly proximitized from both the top and bottom sides, and
pave the way to developing 2D spintronics by fully activating
the dimension of layer besides spin.
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