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Due to its rotation, Earth traps a few equatorial ocean and atmospheric waves, including Kelvin, Yanai, Rossby,
and Poincaré modes. It has been recently demonstrated that the mathematical origin of equatorial waves is
intricately related to the nontrivial topology of hydrodynamic equations describing oceans or the atmosphere. In
the present work, we consider plasma oscillations supported by a two-dimensional electron gas confined at the
surface of a sphere or a cylinder. We argue that in the presence of a uniform magnetic field, these systems host
a set of equatorial magnetoplasma waves that are counterparts to the equatorial waves trapped by Earth. For a
spherical geometry, the equatorial modes are well developed only if their penetration length is smaller than the
radius of the sphere. For a cylindrical geometry, the spectrum of equatorial modes is weakly dependent on the
cylinder radius, and it overcomes finite-size effects. We argue that this exceptional robustness can be explained
by destructive interference effects. We discuss possible experimental setups, including grains and rods composed
of topological insulators (e.g., Bi2Se3) or metal-coated dielectrics (e.g., Au2S).
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I. INTRODUCTION

Over the past decade, topological states of matter (e.g.,
topological insulators, Weyl semimetals, and superconduc-
tors) have been a central topic in condensed-matter physics
[1–3]. The unconventional and topologically protected surface
states hosted by these materials have received much attention
because of their excellent prospects for energy-efficient elec-
tronics and spintronic devices. More recently, the concept of
topology has been fruitfully extended to other fields, including
photonics [4–6], electrical circuits [7,8], and non-Hermitian
systems [9–11].

As another prominent success, the application of topol-
ogy has enabled an explanation of the mathematical origin
of equatorial ocean and atmospheric waves trapped at the
Earth’s equator due its rotation [12,13]. It has been recently
revealed that not only does the presence of the Coriolis force
in the hydrodynamic equations open a gap in the spectrum
of ocean and atmospheric waves, but the latter can be clas-
sified as topologically nontrivial [14]. The directions of the
Coriolis force and therefore the topological number have op-
posite signs in the northern and southern hemispheres. This
change in direction across the equator guarantees the presence
of two chiral topologically protected trapped waves (Kelvin
and Yanai) coexisting with trivial trapped modes (Rossby and
Poincaré). As the mechanism for the formation of equatorial
waves is quite generic, a question naturally arises regarding
whether any equatorial waves can be engineered and probed
in condensed matter or cold atom setups.
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Hydrodynamic equations govern not only ocean and atmo-
spheric waves, but also plasma waves. The latter are supported
by an electron gas and represent coupled oscillations in the
electron density and electric field. Moreover, equations de-
scribing plasma waves in a two-dimensional (2D) electron gas
on the top of the extended gate (e.g., in field-effect transis-
tors) can be mapped [15,16] to shallow water hydrodynamics,
which are usually employed to describe equatorial waves
trapped by Earth [12,14]. The role of the Coriolis force is
played by the Lorentz force due to the external magnetic field.
The magnetic field opens a gap in the spectrum of magneto-
plasma (MP) waves [17], as shown in Fig. 1(a), which results
in a nontrivial topology [18].

FIG. 1. (a) Dispersion of MP waves in the absence (blue dashed)
or presence (solid red) of a magnetic field. In the latter case, the
spectrum is not only gapped at the Larmor frequency ω0, but is also
characterized by the topological Chern number Ch = ω0/|ω0|. (b) In
the presence of a uniform magnetic field, a 2D electron gas confined
at the surface of a sphere or a cylinder supports MP waves trapped
along the equator or at opposite facets.
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Motivated by these observations, we consider plasma oscil-
lations supported by a 2D electron gas confined at the surface
of a sphere or cylinder. We argue that in the presence of a uni-
form magnetic field, these systems host equatorial MP waves.
These waves are illustrated in Fig. 1(b) and are the counterpart
of ocean waves trapped by Earth. We investigate the depen-
dence of their spectrum on the sphere and cylinder radius. For
a spherical geometry, the spectrum of equatorial MP waves is
sensitive to finite-size effects and is well developed only if the
sphere radius exceeds the penetration length for the equatorial
MP waves. For a cylindrical geometry, the spectrum of equa-
torial modes is weakly dependent on the cylinder radius and
overcomes finite-size effects. We argue that the exceptional
robustness of this spectrum can be explained by the destruc-
tive interference between interfacet couplings across the top
and bottom hemicylinders. We discuss possible experimental
setups, including grains and rods composed of topological in-
sulators (e.g., Bi2Se3) or metal-coated dielectrics (e.g., Au2S).

The remainder of this paper is organized as follows. In
Sec. II, we discuss the primary equations describing MP
waves supported by a 2D electron gas in a magnetic field.
In Sec. III, we reconsider edge MP modes localized at the
domain wall, where the magnetic field switches its sign. Sec-
tion IV is devoted to equatorial MP modes in spherical and
cylindrical geometries. Section V presents discussions and
conclusions.

II. MAGNETOPLASMA WAVES

The long-wavelength behavior of MP waves supported by a
2D electron gas can be described with the help of classical hy-
drodynamic equations [19]. After linearization, equations for
electron density ρtr and electric current jtr can be presented
as

∂tρ(r, t ) + ∇ · j(r, t ) = 0, (1)

∂t j(r, t ) = ne2

m
E(r, t ) + e

mc
[j(r, t ) × B(r)]. (2)

Here, m is the cyclotron electron mass [20]. The electric field
E (r, t ) = −∇φ(r, t ) is not external, but is created by electron
density oscillations and is treated in a self-consistent manner.
The corresponding scalar potential φ(r, t ) is given by

φ(r, t ) =
∫

dr′V (r − r′)ρ(r′, t ), V (q) = 2π

qκ (q)
, (3)

where V (r − r′) represents interparticle interactions and V (q)
gives the corresponding Fourier transform. Here, κ (q) is the
dielectric function of the medium surrounding the 2D electron
gas. Its explicit wave-vector dependence for experimentally
relevant setups is specified below. The system of equations,
Eqs. (1)–(3), is valid for 2D electrons confined at the surface
of an arbitrary geometry. However, it is instructive to start with
a discussion of the spectrum and its topology for MP waves in
a planar geometry.

A key component to the topological classification of
MP waves is the transformation reported in Ref. [18],
which recasts the system of equations, Eqs. (1)–(3),
into a Hermitian-Schrödinger-like eigenvalue problem,
ωψ (q, ω) = Ĥ (q)ψ (q, ω). Here, we have performed

the Fourier transform and have introduced ψ (q, ω) =
{ j+(q, ω), j0(q, ω), j−(q, ω)} with j±(q, ω) = [ jx(q, ω) ±
i jy(q, ω)]/

√
2 and j0(q, ω) = ωp(q)ρ(q, ω)/q. The resulting

effective Hamiltonian H (q) for the MP problem is given by

Ĥ (q) =

⎛
⎜⎜⎜⎜⎝

ω0
ωp(q)eiφq√

2
0

ωp(q)e−iφq√
2

0 ωp(q)eiφq√
2

0 ωp(q)e−iφq√
2

−ω0

⎞
⎟⎟⎟⎟⎠. (4)

Here, φ�q is polar angle for the wave vector �q, ω0 = eB0/mc
is the Larmor frequency for electrons in a uniform magnetic
field B0, and ωp(q) =

√
2πne2q/mκ (q) is the dispersion for

plasma waves in the absence of a magnetic field. The classical
nature of the underlying problem manifests in the presence of
a particle-hole symmetry, CH (q)C−1 = −H (−q) [21]. The
states connected by the transformation C have opposite fre-
quencies and are not independent. In addition, the symmetry
guarantees that any observables [e.g., ρ(r, t ) or j(r, t )] are
real numbers. The eigenvalues of the Hamilton H (q) are given
by

	±(q) = ±	(q) and 	0(q) = 0. (5)

The positive-frequency branch 	(q) =
√

ω2
0 + ω2

p(q) governs

the dispersion relation for MP waves, as presented in Fig. 1(a).
In the presence of a magnetic field, the dispersion acquires
the gap given by the Larmor frequency ω0. The negative-
frequency branch is connected to the positive branch by the
particle-hole symmetry transformation and is not dynami-
cally independent. The interplay of the inversion [	0(−q) =
	0(q)] and particle-hole [	0(−q) = −	0(q)] symmetries
dictates that 	0(q) = 0, which causes the zero-energy branch
to be spurious.

By recasting the equations, Eqs. (1)–(3), as a Hermi-
tian eigenvalue problem, the topology of the MP spectrum
can be classified [18]. Because H (q) belongs to the D-
class [22], each branch can be characterized by the Chern
number as Ch± = sgn[ω0] with Ch0 = 0. The nontriv-
ial topology can be tracked by presenting the effective
Hamiltonian H (q) as H (q) = h(q) · σ, where σ is a spin-
1 generalization of the Pauli matrix set [23] and h(q) =
{ωp(q) cos φq,−ωp(q) sin φq, ω0}. The unit vector n(q) =
h(q)/h(q) follows the meronlike texture and spans half of
the Bloch sphere. In practice, the vector points up (ω0 > 0)
or down (ω0 < 0) at q → 0 and has a vortexlike in-plane
texture at q → ∞. The topology of the MP wave spectrum
is insensitive to the details of screening by external media
encoded in κ (q), but the latter shapes the dispersion of MP
waves.

For a 2D electron gas embedded in dielectric media (e.g.,
at the interface between air and an insulating substrate), the
dielectric function can be approximated as the wave-vector-
independent κ . The resulting dispersion of plasma waves in
the absence of an external magnetic field shows a square-root
dependence, ωp(q) ∝ √

q, which reflects the nonlocal nature
of long-range Coulomb interactions [24]. Once it is trans-
formed to real space, the square-root dispersion does not have
any local representation in terms of ∇r, which complicates
analytical treatments for MP edge states. For a 2D electron
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gas placed at a distance L from an extended gate, the charge
carriers in the gate actively participate in screening inter-
actions. The corresponding wave-vector dependence of the
dielectric constant can be approximated as κ (q) = κ/ tanh qL
[19]. The long-range nature of the interactions is lost, and
the plasma wave dispersion ωp(q) =

√
2πne2q th(qL)/mκ

becomes linear, ωp(q) ≈ uq, at long wavelengths, qL � 1.
Here, u =

√
2πne2L/mκ is the corresponding plasma wave

velocity. The effective Hamiltonian Hq is simplified as

Ĥ ′(q) =

⎛
⎜⎜⎝

ω0
u(qx+iqy )√

2
0

u(qx−iqy )√
2

0 u(qx+iqy )√
2

0 u(qx−iqy )√
2

−ω0

⎞
⎟⎟⎠ (6)

and it can be transformed in real space in a straightforward
manner. It should be mentioned that in this approximation,
there is a one-to-one mapping between plasma waves and sur-
face waves within the shallow-water hydrodynamics usually
used for describing equatorial ocean waves trapped by Earth
[14].

The nontrivial topology of the bulk MP wave spectrum
dictates the presence of edge MP modes localized at sample
boundaries or domain walls, where the magnetic field flips its
sign. Before addressing the equatorial MP waves in spherical
and cylindrical geometries, which are the focus of Sec. IV, we
reconsider the domain wall problem in planar geometry, and
we demonstrate that the spectrum of edge MP modes is more
complicated than was previously reported [18].

III. DOMAIN WALLS IN PLANAR GEOMETRY

According to the bulk-edge correspondence, the magnetic
field domain wall is expected to host a pair of chiral states
propagating in only one direction. The domain wall problem
has already been considered in Ref. [18], in which the plasma
wave spectrum is assumed to be linear (interactions are over-
screened), and a steplike ansatz b(x) = B0sgn[x] is employed
for the magnetic field profile. With these approximations, the
spectrum includes bulk bands given by Eq. (5) as edge MP
modes. The positive-frequency region of the spectrum for
edge MP waves is given by

	I(k) = −uk, 	II(k) = ω0 at k > 0. (7)

Here, k is the wave vector along the domain wall. The first
mode 	I(k) is chiral and connects the positive and zero-
frequency branches, but this is not the case for the second
mode 	II(k). This unusual behavior can be regularized by
introducing transverse viscosity into the hydrodynamic equa-
tions [25]. However, it has been further discovered that the
spectrum is sensitive to boundary conditions at the domain
wall and to the regularization scheme, which can be referred to
as an anomalous bulk- or interface-boundary correspondence
[25–30].

In the present paper, we reconsider the domain wall prob-
lem. We demonstrate that the edge MP wave spectrum admits
an analytical solution for the smooth ansatz B(x) = B0b(x)
with b(x) = tanh(x/d ). Here, d is the domain wall width. We
start with the exclusion of j0(r, t ) and incorporate transla-
tional symmetry along the domain wall. The latter allows us

to search for solutions in the following form:

jx (y)(r, t ) = Jx (y)(x)ei(ky−ωt ),
(8)

j0(r, t ) = J0(x)ei(ky−ωt ).

As a result, Jx (y) ≡ Jx (y)(x) satisfy the following set of equa-
tions: (

ω2 + u2∂2
x

)
Jx = −i(u2k∂x − ω0ωb(x))Jy,

(9)
(ω2 − u2k2)Jy = −i(u2k∂x + ω0ωb(x))Jx.

As clearly shown, these equations admit a pair of solutions:

Jx = 0, Jy ∼ exp

[
±ω0

u

∫ x

0
dx′b(x′)

]
(10)

with the dispersion 	±
K (k) = ±uk. For the considered ansatz

b(x) = tanh(x/d ), only mode 	−
K (k) = −uk can be properly

normalized and matches with 	I(k) given by Eq. (7). If
we follow the terminology for equatorial waves, the mode
	K(k) ≡ 	−

K (k) can be referred to as the Kelvin MP mode.
Importantly, its dispersion does not depend on the details
of the domain wall profile; rather, it is only required that
the latter has a kink [31]. As a longitudinal edge wave
(Jx = 0), the Kelvin mode is accompanied by density os-
cillations with the same profile J0 = −Jy as for Jy. For
the employed ansatz b(x), the profile is symmetric, Jy ∝
1/[cosh(x/d )]ω0d/v , across the domain wall.

If ω2 �= u2q2, the set of equations in Eq. (9) can be com-
bined in a single equation given by

−u2∂2
x Jx +

[
u2k2 + ω2

0b2(x) − ω2 − u2kω0

ω
∂xb(x)

]
Jx = 0.

If we incorporate the explicit expression for the domain wall
profile b(x) = tanh(x/d ) and rescale the coordinate x → x/d ,
this eigenvalue problem transforms into a one-dimensional
quantum-mechanical problem with the Pöschl-Teller (PT)
confining potential, which is given by

−∂2
x Jx − λ(λ + 1)

cosh2 x
Jx = εJx. (11)

The parameter λ and eigenenergy ε depend on both the wave
vector k and frequency ω and are given by

λ(λ + 1) = ω0

ωd

uk

ω
+ ω2

0

ω2
d

, ε = ω2 − u2k2 − ω2
0

ω2
d

. (12)

Here, ωd = u/d is the frequency scale determined by the
domain wall width. The PT potential belongs to the class of
supersymmetric potentials [32,33]. Its spectrum has been ex-
tensively studied and is known to admit an analytical solution.
The spectrum includes a continuum of extended states and a
set of discrete states given by

continuous: ε > 0, (13)

discrete: εn = −(λ − n)2, n � λ. (14)

The continuous region ε > 0 determines the continuum of
bulk MP states with frequencies ω2 = ω2

0 + v2k2 + εω2
d. The

discrete bound states of the PT problem are intricately related
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FIG. 2. Spectrum for edge MP waves trapped by magnetic field
domain walls with smooth [(a) α = 0.2] and sharp [(b) α = 5] pro-
files. The spectrum includes chiral and protected Kelvin (K) and
Yanai (Y) modes coexisting with topologically trivial Rossby (R) and
Poincaré (P) modes. The shaded area denotes the continuum of bulk
extended states.

to the MP edge modes trapped at the domain wall. The dis-
persion relation for edge MP waves satisfies the following
equation, which can be obtained if we combine Eqs. (12) and
(14):

ω2 − (uk)2 + ω0ωd

[
uk

ω
−

√
ω2

0 + u2k2 − ω2

ω0
(2n + 1) − ωd

ω0
n(n + 1)

]
= 0. (15)

Due to its nonlinear nature, the equation can have multiple
solutions for given n = 0, 1, . . . and k. In dimensionless units
ω/ω0 and k/k0 with k0 = ω0/u, the edge MP wave spectrum
depends only on the parameter α = ωd/ω0. The spectrum for
smooth (α = 0.2) and sharp (α = 5) domain wall profiles is
presented in Fig. 2. If we follow the terminology for equatorial
waves, the resulting MP edge modes can be labeled as Yanai,
Poincaré, and Rossby modes. It is instructive to briefly discuss
these modes separately.

Yanai mode. This mode is chiral and connects the bulk
state continuum with zero-frequency states. The stability of
the Yanai mode is intricately related to the fact that it origi-
nates from the ground bound state (n = 0) for the PT problem
[34]. Therefore, the profile of transverse current oscillations
within the Yanai mode is symmetric and is given by Jx ∝
1/[cosh(x/d )]λ. However, the profiles for the longitudinal
current and density oscillations are antisymmetric across the
domain wall, Jy, J0 ∝ b(x)Jx, which ensures that wave func-
tions for Kelvin and Yanai waves are orthogonal to each other.
Their cumbersome expressions are presented in Appendix A.

Poincaré modes. The Poincaré modes are trivial edge
modes propagating in both directions along the domain wall.

Poincaré modes originate from the excited bound states for
the PT problem and are therefore labeled by the discrete
index n = 1, 2, 3, . . . . These states appear only if the domain
wall is sufficiently smooth. Their number can be counted as

NP = (
√

1 + 4ω2
0/ω

2
d − 1)/2�, and the first Poincaré mode

splits from the bulk continuum at α = 1/
√

2 [35].
Rossby modes. These low-energy modes result from the

reshaping of zero-frequency bulk states [36]. The Rossby
modes also originate from the excited bound states for the
PT problem and are therefore labeled by the discrete index
n = 1, 2, 3, . . . , similar to the Poincaré modes. The dispersion
of the Rossby modes is well approximated by

	n
R(k) ≈ ukωd

u2k2 + ωd

√
ω2

0 + u2k2(2n + 1) + ω2
dn(n + 1)

and reaches a maximum at intermediate wave vectors for
which the group velocity ∂k	

n
R(k) flips its sign. For this

reason, these modes also propagate in both directions along
the domain wall. The slowly varying spatial profile of the
magnetic field is an important ingredient for the formation
of Rossby MP modes. To the best of our knowledge, these
modes have been previously overlooked in condensed-matter
setups. However, they have been well documented in stellar
magnetohydrodynamics as well as in ocean and atmosphere
hydrodynamics (see Ref. [37] and references therein for a
review).

The presence of chiral Kelvin and Yanai modes is in agree-
ment with the bulk-boundary correspondence, which dictates
the presence of two topologically protected modes. Our cal-
culations have clearly demonstrated that the unusual behavior
of the spectrum, Eq. (7), and the anomalous bulk-edge corre-
spondence are artifacts of the steplike ansatz for the magnetic
domain wall profile.

It is instructive to consider the limit toward the domain wall
with a steplike profile, d → 0 (or α → ∞). In this limit, there
are no Poincaré modes. The dispersion for the Kelvin mode
is α-independent, but the behavior of the Yanai and Rossby
modes is quite sensitive. For small wave vectors, k � α−1, the
dispersion curves become flattened, 	n

R(k) ≈ 0 and 	Y(k) ≈
ω0, mimicking the spectrum, Eq. (7), derived for the steplike
profile. However, for large wave vectors, k � α−1, both modes
become dispersive and deviate from Eq. (7). The lack of a
smooth transition in the limit d → 0 can be seen as another
signature of the anomalous bulk-boundary correspondence.

The derivation presented above for the spectrum of edge
MP modes assumes that that Coulomb interactions are over-
screened. However, the classification of edge modes is generic
and does not rely on the details of screening provided by ex-
ternal media. We will use this classification in the next section,
in which spherical and cylindrical geometries are considered.

IV. SPHERICAL AND CYLINDRICAL GEOMETRIES

The system of equations describing MP waves is valid
for a 2D electron gas confined at the surface of an arbitrary
geometry. Only the magnetic field component perpendicular
to the surface influences the dynamics of electrons via the
Lorentz force, which naturally becomes position-dependent
for a curved surface. For a sphere or cylinder penetrated by a
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uniform magnetic field B0, the radial component has a profile
of BR(r) = B0 cos(θ ), where θ is the corresponding polar
angle. The radial component BR(r) vanishes and changes sign
along the equator or at two facets, where the presence of
equatorial MP modes is anticipated.

This setup can be naturally realized in grains and rods
composed of a topological insulator (e.g., Bi2Se3) that exhibit
insulating bulk behavior [38] and have topologically protected
surface states. A fabrication of micron- and submicron-sized
grains and rods has already been reported [39–46]. The topo-
logical surface states are described by the relativistic-like
Dirac equation, and their dispersion is linear, εp = vp with
velocity v. The bulk MP waves in Bi2Se3 thin films have been
previously reported [47], and we use a corresponding set of
parameters. Here, we apply the Dirac velocity v = 0.67 ×
106 cm−2, electron density n ≈ 7 × 1012 cm−2, and magnetic
field B ≈ 2 T. The corresponding Fermi energy and Larmor
frequency are given by εF ≈ 0.4 eV and h̄ω0 ≈ 1.2 meV, re-
spectively. Due to the absence of an external gate-induced
extra screening, the effective dielectric constant κ = 35 for
a Bi2Se3-air interface can be approximated to be wave-vector-
independent. The screening impacts only the strength of the
Coulomb interactions, and their long-range nature is retained.

The classical description of MP waves ignores the discrete
nature of the Dirac electron spectrum due to the magnetic field
and finite-size effects. The classical approach is justified by
the hierarchies of energy scales, h̄ω0 � εF and h̄ωe

R � εF,
where ωe

R = v/R. These relations are well satisfied for the
considered range of magnetic fields and for the μm-sized
samples considered below. Another important lengthscale is
the penetration length l0 for edge MP waves. This scale can
be estimated as the inverse wave vector l0 = q−1 at which
ωP(q) = ω0. Here ωP(q) =

√
2πne2q /mκ is the dispersion

of plasma waves in the absence of a magnetic field and the
external screening. For the considered set of parameters, we
have l0 ≈ 5 μm. For grains and rods with radius R ∼ l0, the
finite-size effects become essential. It is instructive to discuss
the spherical and cylindrical geometries separately.

For a spherical geometry, the system of equations describ-
ing MP waves, Eqs. (1)–(3), can be solved via an expansion
over the vector spherical harmonics. These calculations are
presented in Appendix B. The spherical harmonics are la-
beled by the orbital discrete numbers l = 0, 1, 2, . . . and m =
−l, . . . , l . In the presence of a uniform magnetic field, the ax-
ial symmetry remains, indicating that m is still a good discrete
number. The evaluated spectrum is presented in Fig. 3, which
displays results for a sphere with radius 100 μm (a), 10 μm
(b), or 1 μm (c). For R � l0, the spectrum of Kelvin, Yanai,
and Rossby waves is well developed, resembling the spectrum
calculated for the planar geometry with overscreened interac-
tions in Sec. III. However, in this case, the topological Kelvin
MP wave exhibits square-root behavior instead of linear
behavior. The discrete nature of the spectrum can be attributed
to the formation of standing waves that restrict the wave vector
along the equator kφ as kφR = m. The Poincaré modes become
indistinguishable from the discrete modes originating from
the bulk continuum. When the radius becomes comparable to
the penetration length R � l0, the equatorial modes are pushed
outside the gap and are no longer well resolved.

FIG. 3. Spectrum of MP waves supported by a 2D electron gas
confined at the surface of a sphere with radius 100 μm (a), 10 μm
(b), or 1 μm (c). The equatorial modes are well developed only if the
sphere radius exceeds the penetration length l0 ≈ 5 μm.

For a cylindrical geometry, the system of equations de-
scribing MP waves, Eqs. (1)–(3), can be solved via a Fourier
transform and an expansion over the circular harmonics. Due
to the translational symmetry along the cylinder, the spectrum
can be labeled by the corresponding wave vector k, as pre-
sented in Fig. 4. We have used the same values for the cylinder
radius: 100 μm (a), 10 μm (b), and 1 μm (c). For R � l0,
the spectrum represents superimposed independent spectra for
two domain walls that are situated at the opposite facets of the
cylinder, as illustrated in Fig. 1(b). When the radius becomes
comparable to the penetration length R � l0, indistinguish-
able discrete bulk and Poincaré modes are pushed outside the
gap, while the Rossby modes are shifted toward larger wave
vectors. The Yanai modes from different facets experience
the hybridization that is the most prominent in the vicinity
of their avoided crossing at k = 0. However, this behavior
is not observed for the Kelvin and Yanai waves. At first
glance, their exceptional robustness and ability to overcome
finite-size effects are surprising. The dispersion curves for
the Kelvin and Yanai modes from opposite facets intersect.
As a result, any overlap between them is expected to induce
intermode hybridization and a gap between the hybrid modes.
We attribute their robustness to these destructive interference
effects. Because the Kelvin MP mode is longitudinal (Jx = 0),
its hybridization with the Yanai mode from the opposite facet
originates from the overlap between transverse current Jy and
electron density J0 components. As presented in Appendix A,
the profiles across the domain wall are symmetric for the
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FIG. 4. Spectrum of MP waves supported by a 2D electron gas
confined at the surface of a cylinder with radius 100 μm (a), 10 μm
(b), or 1 μm (c). The chiral Kelvin and Yanai modes demonstrate
exceptional robustness and are well developed even if the cylinder
radius is smaller than the penetration length l0 ≈ 5 μm. As we dis-
cuss in the main text, the robustness can be explained by destructive
interference between interfacet couplings across the top and bottom
hemicylinders.

Kelvin mode, but antisymmetric for the Yanai mode. As a
result, the overlapping regions in the top and bottom hemi-
cylinders have opposite signs but the same magnitude; thus,
their total contribution vanishes. In other words, the couplings
across the top and bottom hemicylinders interfere destruc-
tively, which forbids intermode hybridization and ensures
exceptional robustness of the equatorial MP mode spectrum in
the cylindrical geometry. We discuss the robustness of spectra
and destructive interference effects in detail in Appendix A.

V. DISCUSSION

In our description of MP waves, we have neglected retar-
dation effects for the electric field. These effects are of second
order for the factor ω0/kc. This factor is very small in the full
wave-vector range, except for vanishingly small momenta,
k � ω0/c [48]. We have also omitted the time-dependent
magnetic field created by density oscillations in electron gas,
which can also be treated in a self-consistent manner. This
magnetic field impacts only nonlinear dynamics of MP waves.
In addition, the transverse electric field generated by magnetic
field oscillations is also of second order for the small factor
ω0/kc and can be safely neglected.

The hydrodynamic description of magnetoplasma waves
neglects the effects of the spatial dispersion in the response

of the electron gas. These effects are of little importance in
a wide frequency range (including the range corresponding
to equatorial magnetoplasma waves), but they are essential
in the vicinity of overtones, nBω0 with integer nB, for the
cyclotron frequency. The effects of spatial dispersion al-
low the hybridization between cyclotron resonance overtones
and magnetoplasma waves that results in the formation of
Bernstein modes [49–52]. The latter have been observed in
conventional GaAs/AlGaAs heterostructures [53–56] and in
graphene [57].

Edge MP waves localized at sample edges (including edge
states in arrays of metallic disks or ribbons) have been exten-
sively studied in conventional GaAs/AlGaAs heterostructures
[58], graphene [59–61], and topological insulators [47]. In
contrast, magnetic field domain wall MP states have been
reported only very recently in a circular-shaped domain wall
imprinted in a GaAs/AlGaAs heterostructure [62]. These
states have been effectively probed via near-field radiation.
However, due to the narrow frequency resolution of cor-
responding waveguides, only Kelvin MP waves have been
reported. This approach, as well as other near-field radiation
approaches, can be employed to detect equatorial MP waves.

Due to the discrete nature of their spectrum, equatorial
MP waves in spherical geometry can also be optically probed
(far-field regime). In the dipole approximation, only modes
with m = ±1 are optically active, which can be seen as the
selection rules for MP waves. Symmetry analysis demon-
strates that the equatorial modes with higher m values can
be excited via optical vortex beams. It has already been
demonstrated that these beams can resonantly couple with
quadrupole and hexapole plasma modes in metallic nanostruc-
tures (e.g., disks) [63,64], and we anticipate that they can be
used to resonantly excite equatorial MP waves. Alternatively,
equatorial MP waves can be probed via scattering of light
by the grain. The corresponding theory of Mie scattering has
already been extended to grains and rods made of topolog-
ical insulators [63,65–67], but in the absence of an external
uniform magnetic field, which is an essential ingredient for
the formation of equatorial MPs. The magnetic field breaks
the spherical symmetry that is the cornerstone assumption of
the Mie theory, and its extension is beyond the scope of the
present work.

The employed classical description of MP waves is justi-
fied by the hierarchy of energy scales, h̄ωe

R � εF, which is
well satisfied for the μm-sized samples considered in this
work. It should be mentioned that nm-sized topological in-
sulator structures have previously attracted much attention
[68–72] because the curved nature of the grain or rod surface
results in the spin Berry phase for Dirac electrons. The latter
can be described by the effective vector potential associated
with a fictitious magnetic monopole induced at the center
of the grain [70–72] or a magnetic flux penetrating the rod
[68,69]. Via the Aharonov-Bohm effect, these systems exhibit
a shift in the single-particle spectrum for Dirac electrons.
These effects cannot be captured by the classical approach,
but are only important for nm-sized samples.

Grain and rods composed of a topological insulator (e.g.,
Bi2Se3 or Bi2Te3) represent a promising setup for experi-
mental observation of equatorial MP waves. However, the
unconventional physics of Dirac surface states, which are also
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manifested in plasmonics [73–78], are of little importance.
Another possible setup involves conventional metal-coated
dielectric particles (e.g., Au2S [79–81]). While spherical and
cylindrical geometries are convenient for theoretical analysis,
the topological nature of equatorial MP waves guarantees their
presence for any closed conducting surface penetrated by a
uniform magnetic field.

We have demonstrated that the domain wall, where the
magnetic field is smooth and switches its sign, hosts four
distinct MP waves, including Kelvin, Yanai, Rossby, and
Poincaré modes. It should be noted that MP edge modes of
a different physical origin can be hosted at domain walls
separating regions with different electron densities [82–84] or
the anomalous Hall conductivities [85,86], as well as at edges
of anisotropic two-dimensional materials [87].

To conclude, we have considered plasma oscillations sup-
ported by a 2D electron gas confined at the surface of a sphere
or cylinder. We argue that in the presence of a uniform mag-
netic field, these systems host a set of equatorial MP waves
that represent counterparts to the equatorial waves trapped by
Earth due to its rotation.

ACKNOWLEDGMENT

We acknowledge support from the Australian Research
Council Centre of Excellence in Future Low-Energy Electron-
ics Technologies.

APPENDIX A: ROBUSTNESS OF EQUATORIAL
MP MODES IN CYLINDRICAL GEOMETRY

1. Wave functions for Kelvin and Yanai modes

Wave functions for Kelvin and Yanai MP modes can be
directly calculated from the Hermitian eigenvalue problem
defined in Eq. (6). If we use the following ansatz:

jx(y)(r, t ) = Jx(y)(x)ei(ky−ωt ), j0(r, t ) = J0(x)ei(ky−ωt ),

the eigenvalue problem can be presented as

−iωJx = −u∂xJ0 + ω0b(x)Jy, (A1)

−iωJ0 = −u∂xJx − iukJy, (A2)

−iωJy = −iukJ0 − ω0b(x)Jx. (A3)

The Kelvin mode is longitudinal, Jx = 0, the transverse cur-
rent profile is given by Eq. (10), and the resulting density
oscillation profile is equal to J0 = −Jy. If we incorporate
the explicit expression for the domain wall profile b(x) =
tanh(x/d ), the wave function for the Kelvin mode (up to a
normalization factor) can be presented as

ψK ∝
⎛
⎝− i√

2
1
i√
2

⎞
⎠ 1[

cosh
(

x
d

)] 1
α

, (A4)

where α = ωd/ω0 is the only controlling parameter intro-
duced in the main text. Importantly, the profiles for its nonzero
components Jy and J0 are symmetric across the domain wall.

For the Yanai mode, the transverse current profile is given
by Jx ∝ 1/[cosh(x/d )]λ. Here, λ is wave-vector-dependent
and must be evaluated from Eq. (12). The longitudinal current
and density profiles can be calculated from Eqs. (A2) and
(A3), which results in

Jy = i(u2k∂x + ωω0b(x))Jx

u2k2 − ω2
= iω0(ω − ukλα)

u2k2 − ω2
b(x)Jx

J0 = i(ukω0b(x) + ωu∂x )Jx

u2k2 − ω2
= iω0(uk − ωλα)

u2k2 − ω2
b(x)Jx

They can also be written in a compact manner Jy = iAyb(x)Jx

and J0 = iA0b(x)Jx. The introduced factors Ay and A0 can be
interpreted as relative amplitudes for the Jy and J0 profiles
with respect to the Jx profile. Despite the presence of a sin-
gular denominator, the wave-vector dependence is smooth. In
terms of these amplitudes, the wave function for the Yanai MP
mode can be presented as

ψY ∝

⎛
⎜⎜⎝

1−Ayb(x)√
2

iA0b(x)
1+Ayb(x)√

2

⎞
⎟⎟⎠ 1[

cosh
(

x
d

)]λ
. (A5)

The transverse current profile Jx is symmetric across the
domain wall, but the Jy and J0 profiles have antisymmetric
shapes. This behavior ensures that Kelvin and Yanai modes
hosted by the domain wall are orthogonal to each other,
〈ψK|ψY〉 = 0. This behavior also plays an important role in
the hybridization between equatorial MP modes hosted by
opposite facets in the cylinder geometry.

2. Intermode hybridization and destructive interference effects

For the case of a uniform magnetic field, the component
that is perpendicular to the surface, BR

r = B0 cos(θ ), vanishes
at opposite facets of the cylinder. As a result, facets can be
seen as a pair of domain walls with opposite profiles [e.g.,
b(x) and b′(x) = −b(x)], and the finite-size effects manifest as
intermode hybridization. We address the hybridization effects
with the help of the analytical model for MP waves introduced
in Sec. III of the main paper.

This hybridization is especially important in the vicinity of
the intersection (ω′

K = ωY and ωK = ω′
Y) between dispersion

curves for modes hosted at different domain walls. The in-
tersection point can be found analytically, ω� = ω0

√
α/α + 2

and k� = ω�/u, and the corresponding wave functions for
Kelvin and Yanai modes are given by

ψ ′
K ∝

⎛
⎝− i√

2
−1

i√
2

⎞
⎠ 1[

cosh
(

x
d

)] 1
α

, ψY ∝

⎛
⎜⎝

1−Ay
�b(x)√
2

iA0b(x)
1+Ay

�b(x)√
2

⎞
⎟⎠ 1[

cosh
(

x
d

)] 1
α

.

Here Ay
� = −(α + 1)/

√
α(α + 2) and A0

� = 1/
√

α(α + 2).
The cylinder surface can be unfolded to a stripe with width

2πR. The problem needs to be supplemented by the periodic
boundary conditions, and there is a pair of domain walls per
period. As discussed below, the closed nature of the geometry
is essential. However, it is instructive to begin the analysis
with a pair of isolated domain walls.
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FIG. 5. (a) The sketch illustrates the absence of the intermode hybridization due to the destructive interference between couplings across
top and bottom hemicyliders. This behavior arises from the fact that the transverse current Jy and density J0 components are symmetric for the
Kelvin mode (green) and antisymmetric for the Yanai mode (yellow). (b) Spectrum for MP waves in the presence of a superimposed circularly
symmetric magnetic field BC = 0.4B0 with R = 10 μm. The exact cancellation of intermode hybridization due to destructive interference is
lost. As a result, Kelvin and Yanai modes from different facets hybridize, and the resulting gap between hybrid modes is most prominent in the
vicinity of the avoided crossings.

If we assume that the two domain walls are displaced by 2d0, the overlap between wave functions for the Kelvin and Yanai
modes is given by

〈ψ ′
K|ψY〉 = Is × Ir, Is = i(Ay

� + A0
� ) = −i

√
α

α + 2
, Ir = NKNY

∫ ∞

−∞
dx

1

cosh
1
α

( x−d0
d

) × tanh
( x+d0

d

)
cosh

1
α

( x+d0
d

) .

Here, NK and NY are normalization factors for the two modes,
and their cumbersome explicit expressions are of importance
here. The overlap between the Kelvin and Yanai modes is
finite. As a result, the hybridization between modes in a sys-
tem with two domain walls leads to a gap opening and an
intersection between dispersion curves.

Due to the closed nature of the cylindrical geometry, the
hybridization is mediated across the top and bottom hemi-
spheres. As a result, the overlap integral Ir must be modified
as Ir → I t

r + Ib
r , where I t

r and Ib
r are given by

I t
r = NKNY

∫ 0

−πR
dx

1

cosh
1
α

(
x+πR

d

) × tanh
(

x
d

)
cosh

1
α

(
x
d

) ,

(A6)

Ib
r = NKNY

∫ πR

0
dx

1

cosh
1
α

(
x−πR

d

) × tanh
(

x
d

)
cosh

1
α

(
x
d

) .

These terms have the same magnitudes but opposite signs,
causing the total coupling Ir to vanish. This behavior arises
from the fact that the transverse current Jy and density J0 com-
ponents are symmetric for the Kelvin mode and antisymmetric
for the Yanai mode. In other words, the couplings across
the top and bottom hemicylinders interfere destructively, thus
forbidding intermode hybridization. This lack of intermode

hybridization ensures the exceptional robustness of equatorial
MP modes and their ability to overcome finite-size effects.

3. Breaking the destructive interference via an additional
circularly symmetric magnetic field

The cancellation of intermode hybridization relies on the
symmetry between contributions across the top I t

r and bot-
tom Ib

r hemicylinders. If we superimpose uniform B0 and
circularly symmetric BC magnetic fields, the corresponding
radial component is given by BR

r = B0 cos(θ ) + BC, and the
symmetry between the hemicylinders is broken. The MP wave
spectrum evaluated for BC = 0.4B0 and R = 10 μm (all other
parameters are the same as in the main part of the paper) is
presented in Fig. 5(b). As anticipated, the Kelvin and Yanai
modes from different facets hybridize, and the resulting gap
between the hybrid modes is most prominent in the vicinity of
the avoided crossings.

APPENDIX B: MP WAVES IN SPHERICAL GEOMETRY

1. Spherical scalar and vector harmonics

For spherical geometry, the system of integrodifferential
equations describing MP waves, Eqs. (1)–(3), can be reduced
to algebraic equations via decomposition over the spherical
vector harmonics. The decomposition is applied as follows:

ρ(r, t ) =
∑

n

ρ(n, t )Yn(o), j(r, t ) =
∑

n

[ jY (n, t )Yn(o) + j� (n, t )�n(o) + j�(n, t )�n(o)],

φ(r, t ) =
∑

n

φ(n, t )Yn(o), E(r, t ) =
∑

n

[EY (n, t )Yn(o) + E� (n, t )�n(o) + E�(n, t )�n(o)]. (B1)
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Here, r = {R cos φ sin θ, R sin φ sin θ, R cos θ} is the radius vector constrained to the surface of a sphere with radius R. For the
sake of brevity, we have combined azimuthal θ and polar φ angles as o = {θ, φ}. The index n = {l, m} includes two angular
discrete numbers, l = 0, 1, 2, . . . and m = −l, . . . , l . The function Yn(o) is the (scalar) spherical harmonic, which defines the
vector spherical harmonics as follows:

Yn(o) = eR
r Yn(o), �n(o) = R∇Yn(o)√

l (l + 1)
, �n(o) = R

[
eR

r × ∇Yn(o)
]

√
l (l + 1)

.

Here, eR
r is the unit vector perpendicular to the surface of the

sphere. For each value of n, the vector harmonics are orthog-
onal in the typical three-dimensional manner. In addition, the
harmonics form a complete and orthonormal vector set, which
is properly normalized as∫

do Y∗
n(o)Yn′ (o) = δnn′ ,

∫
do Y∗

n(o)�n′ (o) = 0,∫
do Yn(o)∗�n′ (o) = 0,

∫
do �∗

n (o)Yn′ (o) = 0,∫
do �∗

n (o)�n′ (o) = δnn′ ,

∫
do �∗

n(o)�n′ (o) = δnn′ .

Before addressing the effect of a uniform magnetic field on the
MP wave spectrum, it is instructive to consider a spherically
symmetric magnetic field profile.

2. Spherically symmetric magnetic field

A spherically symmetric magnetic field profile BR(r) =
B0 is just a useful model because it requires a magnetic
monopole at the center of the sphere. Because the spher-
ical symmetry is maintained, all spherical harmonics are
decoupled as

∂tρ(r, t ) + ∇ · j(r, t ) = 0, −→ ∂tρ(n, t ) =
√

l (l + 1)J� (n, t )

R
, (B2)

∂τ j(r, t ) = ne2

m
E(r, t ) + eB0

mc
[j(r, t ) × eR(r)], −→ ∂t J

�(�)(n, t ) = ne2

m
E�(�)(n, t ) ± eB0

mc
J�(�)(n, t ), (B3)

E (r, t ) = −∇φ(r, t ), −→ E� (n, t ) = −
√

l (l + 1)φ(n, t )

R
, E�(n, t ) = 0, (B4)

φ(r, t ) =
∫

dr′V (r − r′)ρ(r′, t ) −→ φ(n, t ) = 4πRρ(n, t )

κ (2l + 1)
. (B5)

As for the case of planar geometry, this system of
equations can be presented as a Hermitian-Schrödinger-like
eigenvalue problem, ωψ (n, ω) = Ĥ (n)ψ (n, ω) with
ψ (n, ω) = { j+(n, ω), j0(n, ω), j−(n, ω)}. Here, we have
introduced j±(n, ω) = [ j� (n, ω) ± i j�(n, ω)]/

√
2 and

j0(n, ω) = ω(n)ρ(n, ω)/q(n) with

q(n) =
√

l (l + 1)

R
, ωp(n) =

√
4πne2l (l + 1)

κm(2l + 1)
. (B6)

The effective Hamiltonian H (n) and its spectrum are given by

Ĥ (n) =

⎛
⎜⎜⎝

ω0 − iωp(n)√
2

0
iωp(n)√

2
0 iωp(n)√

2

0 − iωp(n)√
2

−ω0

⎞
⎟⎟⎠,

width

	0(n) = 0, 	±(n) = ±
√

ω2
p(n) + ω2

0. (B7)

Here, ω0 = eB0/mc is the Larmor frequency, and the fre-
quency ωp(n) introduced in Eq. (B6) determines the frequency
of the plasma modes in the absence of a magnetic field.
The expression for the spectrum, Eq. (B7), resembles the
expression derived for the planar geometry, Eq. (5), but with a
discrete wave vector q → q(n). Due to the spherical symme-

try, the frequency does not depend on m, which results in the
degeneracy of MP modes with the factor 2l + 1.

3. Uniform magnetic field

For the case of a uniform magnetic field penetrating the
sphere, the radial component BR

r = B0 cos(θ ) shows a smooth
dependence on latitude and vanishes along the equator. Al-
though the spherical symmetry is broken, the axial symmetry
remains, and m is still a good discrete number. For a uniform
magnetic field, Eq. (B3) must be modified as follows:

∂t J
� (n, t ) = ne2

m
E� (n, t ) + eB0

mc

∑
n′

[
M��

nn′ J�(n′, t )

− M��
nn′ J� (n′, t )

]
, (B8)

∂t J
�(n, t ) = ne2

m
E�(n, t ) + eB0

mc

∑
n′

[
M��

nn′ J�(n′, t )

− M��
nn′ J� (n′, t )

]
. (B9)

The calculation of the corresponding matrix elements is cum-
bersome but straightforward and results in

M��
nn′ =

∫
do cos θ �∗

n · �n′ = δmm′
[
δl,l ′−1μ

S
n + δl,l ′+1μ

S
n′
]
,

M��
nn′ =

∫
do cos θ �∗

n · �n′ · = iδnn′μA
n ,
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M��
nn′ =

∫
do cos θ �∗

n · �n′ = δmm′
[
δl,l ′−1μ

S
n + δl,l ′+1μ

S
n′
]
,

M��
nn′ =

∫
do cos θ �∗

n · �n′ = −iδnn′μA
n .

As expected, harmonics with different m values are uncou-
pled. Here, we have introduced

μS
n =

√
(l + 1)2 − m2

l + 1

√
l (l + 2)

(2l + 1)(2l + 3)
,

μA
n = − m

l (l + 1)
.

After applying the transformations described in the previous
subsection, we obtain the following Hermitian-Schrödinger-
like eigenvalue problem for the MP wave spectrum:

ωψ (l, m, ω) =

⎛
⎜⎜⎝

μA
lm − iωp(l,m)√

2
0

iωp(l,m)√
2

0 iωp(l,m)√
2

0 − iωp(l,m)√
2

μA
lm

⎞
⎟⎟⎠ψ (l, m, ω)

+
⎛
⎝μS

lm 0 0
0 0 0
0 0 −μS

lm

⎞
⎠ψ (l + 1, m, ω)

+
⎛
⎝μS

l−1,m 0 0
0 0 0
0 0 −μS

l−1,m

⎞
⎠ψ (ω, l − 1, m).

The numerical solution of this eigenvalue problem is straight-
forward, and the corresponding results are presented in the
main part of this paper.

4. Rossby MP waves in the presence of a superimposed
spherically symmetric magnetic field

The mathematical origin of Kelvin and Yanai modes is
intricately related with the topology of the bulk MP waves

(a) (b)

(d)(c)

FIG. 6. Spectrum of MP waves supported by a 2D electron gas
confined at the surface of a sphere with radius 100 μm. The magnetic
field includes the superimposed spherically symmetric component
BC, which is equal to 0.4B0 (a), 0.8B0 (b), 1.2B0 (c), and 1.6B0 (d).
Here B0 is the magnitude of a uniform magnetic field. For BC > B0,
Kelvin and Yanai modes disappear as expected, but the Rossby
modes are still present.

spectrum. As a result, their presence requires a magnetic
field to switch its sign across the equator. However, this
is not the case for the Rossby waves. This can be demon-
strated if we superimpose spherically symmetric and uniform
magnetic fields. The corresponding radial component BR

r =
B0 cos(θ ) + BC is latitude-dependent, but it does not involve
the sign change if BC > B0. The spectrum of MP waves is
presented in Fig. 6 for sphere radius 100 μm (all other pa-
rameters are the same as in the main part of the paper) and a
superimposed magnetic field given by 0.4B0 (a), 0.8B0 (b),
1.2B0 (c), and 1.6B0 (d). As long as BC < B0, the Kelvin
and Yanai modes are clearly visible, and their spectrum is
weakly modified compared to BC = 0. For BC > B0, Kelvin
and Yanai modes disappear as expected, but the topologically
trivial Rossby modes are still present.
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