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Generalized coupled dipole method for thermal far-field radiation
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We introduce a many-body theory for thermal far-field emission of dipolar dielectric and metallic nanoparticles
in the vicinity of a substrate within the framework of fluctuational electrodynamics. Our theoretical model
includes the possibility to define the temperatures of each nanoparticle, the substrate temperature, and the
temperature of the background thermal radiation, separately. To demonstrate the versatility of our method,
we apply it in an exemplary way by discussing the thermal radiation of four particle assemblies of SiC and
Ag nanoparticles above a planar SiC and Ag substrate. Furthermore, we use discrete dipole approximation to
determine the thermal emission of a spherical nanoparticle in free space and close to a substrate. Finally, the
calculation of the thermal far-field radiation of a sharp Si tip close to a SiC substrate using the discrete dipole
approximation including the near-field scattering by the tip as well as the thermal emission of the tip and the
contribution of the substrate which is partially blocked by the tip serves as another example.
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I. INTRODUCTION

The theory of near- and far-field thermal radiation in many-
body systems has greatly advanced in the last decade. This
development arose from the generalization of Draine’s work
on dipolar many-body interactions [1] by allowing for fluctu-
ational and induced dipolar moments [2]. With this approach
one could study thermally fluctuating fields generated by in-
teracting dipolar objects and, thus, describe near-field as well
as far-field thermal emission of an arbitrary number of dipolar
objects each thermalized at its own heat bath with given tem-
perature. Further works generalized this model, rendering it
possible to place dipolar objects in an environment at a given
temperature [3] and to include magnetic dipolar contributions
[4]. Therewith, thermal infrared radiation emitted by small
metallic objects can be described more accurately since they
are known to have a massive effective magnetic response due
to the induction of eddy currents [5–8]. It should be mentioned
that also more general models were introduced in order to pro-
vide a theoretical basis for many-body systems with objects of
arbitrary size and shape [9–12] as well as numerical methods
[13–15].

Here, we will focus on the dipole model only, which is
the theoretical workhorse of many recent works because of
its conceptional and numerical simplicity. For example, using
this model it could be shown that the heat transfer between
two dipolar objects can be enhanced by the presence of a sub-
strate or more general third objects supporting surface waves
like phonon polaritonic media [16–20], graphene [18], Moiré
bilayer graphene [21], or hyperbolic media [22,23]. For nonre-
ciprocal media even more interesting many-body effects were
demonstrated like persistent heat currents and fluxes [24–27],
giant magnetic resistances [28,29], Hall and anomalous Hall
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effect [30,31], circular polarized emission and thermal angu-
lar momentum and spin [25,32,33], as well as nonreciprocal
near-field diodes [34,35] or spin-related directional thermal
emission [36]. Of course, also radiative heat transfer between
different many-body systems has been studied theoretically
for anisotropic systems [37–41], fractal structures [40,41], and
lattices [42,43] as well as thermal transport in one-, two-,
and three-dimensional (1D, 2D, and 3D) nanoparticle systems
[44–47] including topological Su-Schriefer-Heeger structures
[48]. Predominately, such studies are of theoretical interest,
but they can also be relevant for radiative heat transport mea-
surements in particle glasses [49] and other systems. Reviews
of most of the advances in the last 10 years can be found in
Refs. [50–52].

In this work, we provide a generalized many-body theory
for the thermal far-field emission of N dipolar objects in a
given environment. Based on the coupled dipole method of
Ben-Abdallah et al. [2], first Edalatpour and Francoeur [53]
and then Ekeroth et al. [54] provided a model for near-field
heat exchange and, subsequently, also for thermal emission
in the context of discrete dipole approximation (DDA) of
a macroscopic object divided into many small subvolumes,
so called voxels, which act as fluctuating dipoles emitting
thermal radiation. Here, we want to extend that description
by including magnetic dipole moments to be able to describe
metallic nanoparticles. Furthermore, we include an environ-
ment consisting of thermal radiation at a given temperature in
which N dipolar objects and a material part at another tem-
perature, for instance a substrate, are embedded. Therefore,
our model can be regarded as an N-body extension of the
dipole model in Refs. [55–58]. Our model can be used to study
thermal emission of any N-body assembly close to a substrate,
for instance, but it can also be employed for a discrete dipole
approximation of a single or several macroscopic objects close
to a substrate or environment as depicted in Fig. 1. To demon-
strate the versatility of our model, we will study the thermal
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FIG. 1. Sketch of a DDA of a macroscopic object by N voxels
(a) and of two spherical nanoparticles differing in size and material
(b) each emitting heat radiation into the far field. The substrate,
the different nanoparticles, and the background radiation have, in
general, different temperatures. The radiation is gathered at the de-
tection plane lying parallel to the substrate. The assemblies are at
edge-to-edge-distance d to the substrate.

emission of different combinations of four nanoparticles close
to a planar substrate, the thermal emission of a macroscopic
spherical particle close to a substrate using DDA, and the
thermal emission and scattering of near-field thermal radiation
by a sharp tip, again, using DDA. This allows us also to check
the validity of our results against those of Refs. [4,54,59].
Finally, we will also discuss the impact of different choices
of the dressed polarizability to some extent.

Our paper is organized as follows: In Sec. II we intro-
duce the theoretical framework and derive the general N-body
expressions. This includes also the introduction of different
definitions of the dressed polarizability. In Sec. III we pro-
vide several numerical results including those for the thermal
emission of a single nanoparticle, of a combination of four
nanoparticles with different temperatures, a DDA calculation
for a spherical particle, and a DDA calculation for a sharp tip.
Finally, in Sec. IV we summarize our findings.

II. THEORETICAL FRAMEWORK

In this section we introduce the general theoretical expres-
sions for the emitted power of a heated system that consists
of N nanoparticles treated as pointlike dipoles in presence of
a substrate as sketched in Fig. 1. This results in two possible
applications to determine thermal emission. One is pursued by
approximating macroscopic objects by voxels like in Fig. 1(a).
In that case, we refer to this procedure as DDA. The other one
describes the thermal emission of several separated subwave-
length emitters as depicted in Fig. 1(b). Since this situation
is different from DDA, we will refer to it by using the term
coupled dipole method (CDM). In the CDM cases considered
in the following, these emitters will be spherical. In both
cases the same formalism applies which we develop in the
following. We start by determining the electric and magnetic
fields generated by these dipoles in terms of the dressed po-
larizability for which we also discuss the different choices
used in literature. Finally, we apply the fluctuation-dissipation

theorem (FDT) to derive an expression for the emitted power
of the N-body system through a “detection plane.”

A. Fluctuational fields

Let us start by considering a configuration of 1 � α � N
nanoparticles arbitrarily distributed in front of a substrate
occupying the half-space at z < 0. We ascribe different tem-
peratures Tα , Ts, and Tb to the nanoparticles, substrate, and
background, respectively. We assume that the nanoparticles
fulfill the dipole approximation. That means their radii Rα

obey 3Rα < dα � λth with particle-substrate distance dα and
thermal wavelength λth. Each nanoparticle and the substrate
possess nonmagnetic, homogeneous, and isotropic material
properties, therefore, we neglect their permeabilities but we
allow for eddy currents inside of the nanoparticles so that we
can treat metallic nanoparticles [4–8]. To include the effect
of self-interaction, we want to start by composing the equa-
tions for the fields in the nanoparticle α within the framework
of macroscopic electrodynamics. For these fields we make the
ansatz (k = E, H)

Fk,in(rα ) = Fk,env(rα ) + μ0ω
∑

l∈{E,H}

[
i
∫

Vα

d3r Gkl (rα, r)Jl (r)

+ ω
∑
β �=α

Gkl (rα, rβ )dβ

l

]
. (1)

Here FE = E is the electric field, FH = H the magnetic field,
dE = p the electric dipole moment, and dH = m the magnetic
dipole moment. JH describes the above-mentioned eddy cur-
rents. The index “env” indicates a background field consisting
of the radiation of the background and substrate, G(r, r′)
denotes the corresponding Green’s function, Vα the volume
of nanoparticle α, ω the angular frequency, i the imaginary
unit, and μ0 the vacuum’s permeability. Exploiting the long-
wavelength approximation (LWA) and, thus, assuming that the
current density is constant inside of the minuscule nanoparti-
cle volume, we extract the current density from the volume
integral so that we can interpret it as volume average of the
Green’s function. After replacing the current density by the
corresponding dipole moment, we obtain (k = E, H)

Fk,in(rα ) = Fk,env(rα ) + μ0ω
2

×
∑

l∈{E,H}

[
〈Gkl (rα )〉dα

l +
∑
β �=α

Gkl (rα, rβ )dβ

l

]

(2)

with the volume averages

〈G(r)〉 = 1

Vα

∫
Vα

d3r′G(r, r′). (3)

Note that this integral contains a singularity at r′ = r.
However, a rigorous treatment is provided by [60–62]. To
obtain a closed formula for the fields, we decompose the
dipole moments into a fluctuating part and an induced one,
so that

dα
k = dα

k,fl + ε0Vαχα
k Fk,in(rα ). (4)
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Here, ε0 denotes the vacuum’s permittivity and χE/H are the electric and magnetic susceptibilities which will be specified later.
Inserting Eq. (4) into (2), we find for the fields inside of nanoparticle α the closed expression

Fk,in(rα ) = Fk,env(rα ) +
∑

l∈{E,H}

[
μ0ω

2〈Gkl (rα )〉dα
l,fl + k2

0Vαχα
l 〈Gkl (rα )〉Fl,in(rα )

+
∑
β �=α

(
μ0ω

2Gkl (rα, rβ )dβ

l,fl + k2
0Vβχ

β

l Gkl (rα, rβ )Fl,in(rβ )
)]

(5)

with the vacuum wave number k0 = ω/c. This system of N
vector equations for 1 � α � N can be rewritten in a more
compact way by exploiting the block-matrix notation. There-
fore, let us introduce the block vectors

Fk = (Fk (r1), . . . , Fk (rN ))t , (6)

dk = (
d1

k, . . . , dN
k

)t
(7)

and the block matrices

Gαβ

kl
= δαβ〈Gkl (rβ )〉 + (1 − δαβ )Gkl (rα, rβ ), (8)

Xαβ

k
= δαβVβχ

β

k . (9)

With these definitions we can express the corresponding fields
by the two block-matrix equations (k = E, H)

Fk,in = Fk,env +
∑

l∈{E,H}

[
μ0ω

2G
kl

dl,fl + k2
0Gkl

X
l
Fl,in

]
. (10)

Eventually, one can interpret these two block-matrix equa-
tions as one new block-matrix equation introducing the block
vectors

→
F = (E, H)t , (11)

→
d = (p, m)t (12)

and the new block matrices

↔
G =

(
G

EE
G

EH
G

HE
G

EE

)
, (13)

↔
X =

(
X

E
0

0 X
H

)
. (14)

Inserting the latter into Eq. (10), we obtain

→
F in = [ ↔

1 −k2
0

↔
G

↔
X

]−1
(
→
Fenv +μ0ω

2
↔
G

→
d fl). (15)

This expression allows us now to derive the fields outside of
the nanoparticles. By inserting Eq. (15) into (4)

→
d = ( ↔

1 +k2
0

↔
α

↔
G

) →
d fl +ε0

↔
α

→
Fenv, (16)

we obtain the closed form of the dipole moments. Here, we
introduced the dressed polarizability

↔
α =

↔
X

[↔
1 −k2

0

↔
G

↔
X

]−1
. (17)

A general discussion of this dressed polarizability will follow
up in the next section. Here, we focus on the derivation of
the fields outside of the nanoparticles which are given by the

fields generated by the dipole moments and the environmental
fields so that we have

Fk,out(r) = Fk,env(r) + μ0ω
2

∑
l∈{E,H}

∑
α

Gkl (r, rα )dα
l . (18)

By inserting Eq. (16), we finally obtain the result for the fields
outside of the nanoparticles:

Fk,out(r) = Fk,env(r) +
∑

l,m∈{E,H}

∑
α,β

Gkl (r, rα )

× (
μ0ω

2A
αβ

lm dβ

m,fl + k2
0α

αβ

lm Fm,env(rβ )
)

(19)

with
↔
A =↔

1 +k2
0

↔
α

↔
G . (20)

Note that this expression is very general and describes the
fields generated by the fluctuational dipoles inside of the
nanoparticles and the field of the background and substrate
within near- and far-field regimes. We will use these gen-
eral expressions to compute the z component of the mean
Poynting vector integrated over a plane above the nanoparticle
assembly. This will give us the spectral power emitted by the
nanoparticles in vicinity of the substrate, taking into account
the different temperatures of the nanoparticles, substrate, and
background. Hence, this power determines the emitted heat
of the whole system which would also be measurable with a
detector.

B. Dressed polarizability

Actually, Eq. (17) contains four different dressed polariz-
abilities which are given by

α
kk

=X
k

[
1 − k2

0Gkk
X

k
− k4

0Gkk̄
X

k̄

× [
1 − k2

0Gk̄k̄
X

k̄

]−1
G

k̄k
X

k

]−1
, (21)

α
EH/HE

= F
E/H

α
HH/EE

= α
EE/HH

E
H/E

, (22)

with

F
E/H

= k2
0XE/H

[
1 − k2

0GEE/HH
X

E/H

]−1
G

EH/HE
, (23)

E
E/H

= k2
0GHE/EH

X
E/H

[
1 − k2

0GEE/HH
X

E/H

]−1
. (24)

Note that the bar notation indicates Ē = H and H̄ = E, respec-
tively. Additionally, the relations

α
EE/HH

= 1

k2
0

F
E/H

G−1
EH/HE

+ F
E/H

α
HH/EE

E
E/H

(25)
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hold. These relations are the general N-body formulas for the
dressed polarizabilities.

To show later that we can retrieve the known single-particle
expressions from the general ones, we restrict ourselves to
the electric polarizability by setting χH = 0. Then the above
expressions simplify to

αEE = αEE,⊥[ex ⊗ ex + ey ⊗ ey] + αEE,zez ⊗ ez, (26)

αEE,⊥/z = V χE

1 − k2
0V χE〈GEE,⊥/z〉 , (27)

whereas the other polarizabilities vanish. Here, the vol-
ume average of the components perpendicular and parallel
to the surface normal split up in the vacuum contribution
〈GEE,vac,⊥/z〉 and the contribution of the surface reflected fields
〈GEE,ref,⊥/z〉. To further evaluate this expression, we require
the volume averages of the Green’s functions. These aver-
ages depend on the shape of the nanoparticles. For pure
vacuum, i.e., without substrate, they are well known and long
established [60–62]. Nonetheless, throughout the literature
different forms are used which lead to different expressions
for the dressed polarizability [1,3,54,61,63–67], especially for
DDA. When considering spherical nanoparticles, for instance,
one finds the expressions [3,54,60,63,67]

〈GEE,vac,⊥/z〉D-CDM ≈ − 1

3V k2
0

+ ik0

6π
(28)

which includes the so-called “radiation correction” term and
is also called “Draine’s form” of coupled dipole moments (D-
CDM) [60]. On the other hand, the expression [60,61,64]

〈GEE,vac,⊥/z〉S-CDM =
(

2

3
[1 − ik0R]eik0R − 1

)
1

V k2
0

(29)

is used which is also called the “strong form” of coupled
dipole moments (S-CDM) [60]. Note that in the limit k0R � 1
one has

〈GEE,vac,⊥/z〉S-CDM ≈ −1/
(
3k2

0V
) = 〈GEE,vac,⊥/z〉W-CDM.

(30)
That means in the small sphere limit the strong form of cou-
pled dipole moments converges to the “weak form” of coupled
dipole moments (W-CDM) and the only difference between
the weak and strong forms and Draine’s form in that limit is
the radiation correction term ik0/6π which is typically small
in the limit. As a consequence, when using the susceptibility

χE = ε − 1 (31)

the polarizability for a nanoparticle in vacuum including the
radiation correction is [3,54,60,63,67]

αEE,⊥/zD-CDM = αW-CDM

1 − αW-CDM
ik3

0
6π

(32)

with the Clausius-Mosotti–type polarizability of a spherical
nanoparticle also obtained from the weak form of coupled
dipole moments

αW-CDM = 3V
ε − 1

ε + 2
. (33)

On the other hand, the strong form of coupled dipole moments
leads to the polarizability

αEE,⊥/zS-CDM = V χE

1 − χE
(

2
3 [1 − ik0R]eik0R − 1

) (34)

which coincides in the limit k0R � 1 with the weak form
αw−cdm like it is used in Ref. [64].

Note that these expressions are only valid without sub-
strate. With substrate also the average of the scattered part of
the Green’s function needs to be added. In that case we have
the three forms

αEE,⊥/zD-CDM = αW-CDM

1 − αW-CDM
ik3

0
6π

− k2
0αW-CDM〈GEE,ref,⊥/z〉

,

(35)

αEE,⊥/zS-CDM

= V χE

1 − χE
(

2
3 [1 − ik0R]eik0R − 1

) − k2
0V χE 〈GEE,ref,⊥/z〉

,

(36)

αEE,⊥/zW-CDM = αw−cdm

1 − k2
0αw−cdm〈GEE,ref,⊥/z〉 . (37)

The weak form is the one used in Ref. [55] together with
an approximated Mie expression for the dipolar polarizabil-
ities in place of αW-CDM. This combination of the weak form
together with Mie expressions is not unusual and has been
applied to spherical nanoparticles for the electric and mag-
netic parts [55] because it might also be applicable to spherical
particles of larger size as long as the dipole contributions are
dominant. It corresponds to setting 〈GEE,vac,⊥/z〉 = 0 and using

Vαχα
E = 9Vαi

2x3
α

a1, (38)

Vαχα
H = 9Vαi

2x3
α

μ0

ε0
b1, (39)

where [68]

a1 = εα j1(yα )[xα j1(xα )]′ − j1(xα )[yα j1(yα )]′

εα j1(yα )
[
xαh(1)

1 (xα )
]′ − h(1)

1 (xα )[yα j1(yα )]′
, (40)

b1 = j1(yα )[xα j1(xα )]′ − j1(xα )[yα j1(yα )]′

j1(yα )
[
xαh(1)

1 (xα )
]′ − h(1)

1 (xα )[yα j1(yα )]′
(41)

are the dipolar Mie coefficients with xα = k0Rα , yα = √
εαxα ,

and the spherical Bessel and Hankel functions of the first kind
[4]. The primes denote the derivatives with respect to the func-
tion’s argument. εα denotes the permittivity of nanoparticle α.
In the limit xα, yα � 1 the susceptibilities simplify to

Vαχα
E = 3Vα

εα − 1

εα + 2
, (42)

Vαχα
H = μ0

ε0

Vα

10
x2
α (εα − 1). (43)

Note that in this limit Vαχα
E equals αW-CDM so that the

electrical part retrieves the Clausius-Mosotti form of the po-
larizability. This mixed approach of the weak form with the
Mie coefficients is called the “weak Mie form” (W-Mie-
CDM) in the following.
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In the numerical evaluations of thermal radiation of one
or several nanoparticles within the CDM we will use the
expressions for spherical nanoparticles. On the other hand,
for DDA simulations we will use cubic volume elements of
a single unit size to replace the macroscopic object by a
assembly of voxels. More elaborated DDA simulations with
rectangular voxels or voxels of different sizes and shapes for
better approximation of the shape of the macroscopic object
can, of course, also be used [69,70]. An overview on the DDA
method in general can be found in Ref. [71], for instance. A
more detailed discussion on finite-size effects of some of the
considered polarizabilities which are important for large radii
can be found in Ref. [72].

C. Total emitted heat radiation

Now, we determine the total heat flux through a plane
parallel to the substrate’s surface above the nanoparticle as-
sembly. This heat flux is equivalent to the power emitted into
the far field. As mentioned before, we need the Poynting vec-
tor which is computed by means of the FDT [73]. To this end,
we assume that the background fields as well as the electric
and magnetic dipole moments are uncorrelated. We obtain

Pz = 2 Re
∫

d2r εi jz〈〈Eout(r) ⊗ H†
out(r)〉〉ωi j

= Ps + Pnp + Penv (44)

with the power solely emitted by the background fields

Ps = 2 Re
∫

d2r εi jz〈〈Eenv(r) ⊗ H†
env(r)〉〉ωi j, (45)

the power emanated from the nanoparticles

Pnp = 2μ2
0ω

4
∑

k,l∈{E,H}

∑
α,β,γ ,δ

Re
∫

d2r εi jz

× [
GEk (r, rα )Aαβ

kE

〈〈
pβ

fl ⊗ pδ
fl

〉〉ω
A

γ δ†
lE G†

Hl (r, rγ )

+ GEk (r, rα )Aαβ

kH

〈〈
mβ

fl ⊗ mδ
fl

〉〉ω
A

γ δ†
lH G†

Hl (r, rγ )
]

i j
,

(46)

and the power stemming from interactions between substrate
and nanoparticles

Penv = 2k2
0

∑
k,l∈{E,H}

∑
α,β

Re
∫

d2r εi jz

× [〈〈Eenv(r) ⊗ F†
l,env(rβ )〉〉ωα

αβ†
kl G†

Hk (r, rα )

+ GEk (r, rα )ααβ

kl 〈〈Fl,env(rβ ) ⊗ H†
env(r)〉〉ω

+ k2
0

∑
m,n∈{E,H}

∑
γ ,δ

GEk (r, rα )ααβ

kl

× 〈〈Fl,env(rβ ) ⊗ F†
n,env(rδ )〉〉ωαγ δ†

mn G†
Hm(r, rγ )

]
i j .

(47)

Additionally, εi jq denotes the Levi-Civita symbol, d2r the
infinitesimal surface element of the x-y plane. The 〈〈·〉〉 nota-
tion indicates an ensemble average over thermally fluctuating

currents and fields. For the first term Ps in Eq. (44) we obtain

Ps = Ah̄ω(ns − nb)
∫ k0

0

dk⊥
2π

k⊥(2 − |rE|2 − |rH|2). (48)

It conveys no additional information about the scattering pro-
cess but describes the power transferred between substrate and
background due to the different temperatures of the substrate
and background [74]. Here, A denotes an area in the x-y
plane, h̄ the reduced Planck constant, and rE,H are the Fresnel
amplitude reflection coefficients for parallel and perpendicu-
lar polarized light, respectively (see Appendix A). n j is the
Bose-Einstein occupation probability

n j = [
e

h̄ω
kBTj − 1

]−1
(49)

with the Boltzmann constant kB. The plane area A diverges
when considering the whole x-y plane, so that we will later
set A to be the geometrical cross section of the considered tip
or nanoparticle. However, in an experiment the choice of A
would correspond to the collection area of a detector. Nowa-
days, many experiments usually operate in tapping mode with
a lock-in technique [75–81], i.e., the distance between sub-
strate surface and nanoparticle assembly, e.g., the tip of an
atomic force or scanning tunneling microscope, oscillates dur-
ing measurements. Then, because Ps is constant with respect
to the distance between nanoparticles and substrate surface,
this quantity will average out and does not contribute to the
detected signal.

For the evaluation of Pnp we need two intermediate steps.
At first, we exploit Eqs. (22) and (25) to rewrite A

αβ

EH/HE in
terms of Aαβ

EE/HH by

A
αβ

EH/HE =
N∑

γ=1

F
αγ

E/HA
γ β

HH/EE. (50)

Besides, we have to evaluate the correlation function which is
done by using the FDT related to [58]

〈〈dk,fl ⊗ d†
k,fl〉〉ωαβ

= 2h̄

μ0ω2

(
nα + 1

2

)∑
γ ,δ

A
αγ−1
kk χk

γ δA
δβ−1†
kk δβα (51)

with the generalized susceptibilities

χk
αβ = k2

0

α
αβ

kk − α
βα†
kk

2i
− k4

0

∑
γ ,δ

α
αγ

kk

×
(
G

γ δ

kk − G
δγ †
kk

2i
+

∑
ε

E
γ ε

k̄
Gεδ

k̄k
− G

εγ †
k̄k

Eδε†
k̄

2i

)
α

βδ†
kk .

(52)

These general susceptibilities used in the FDT are known for
single arbitrary objects [9,82] and in particular for a single
dipolar object in a given environment as well as for many
of them [35,50,58,72,83] where the details of the derivation
for arbitrary objects can be found in [9,82] and for dipoles
in [72]. A more detailed justification for this evaluation will
follow at the end of this paragraph. With that we obtain
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for Pnp

Pnp = 4h̄μ0ω
2Re

∫
d2r εi jz

∑
α,β

∑
k∈{E,H}

(
GEk (r, rα )

{[(
n(Tα, ω) + 1

2

)
χk

αβ +
∑
γ ,δ

(
n(Tγ , ω) + 1

2

)
F

αγ

k χk̄
γ δF

βδ†
k

]
G†

Hk (r, rβ )

+
∑

γ

[(
n(Tγ , ω) + 1

2

)
F

αγ

k χk̄
γ β +

(
n(Tα, ω) + 1

2

)
χk

αγF
βγ †
k̄

]
G†

Hk̄
(r, rβ )

})
i j

. (53)

If the radiative heat sources in the substrate and background are uncorrelated, we can safely decompose the correlation
function concerning the fields of the whole environment containing substrate and background into separated correlation functions
dealing with either the substrate or the background. Then, we can follow the procedure outlined in Ref. [58] providing

〈〈Fk (rα ) ⊗ F†
l (rβ )〉〉ω = 〈〈Fk (rα ) ⊗ F†

l (rβ )〉〉ωeq + 〈〈Fk (rα ) ⊗ F†
l (rβ )〉〉ωleq (54)

for the correlation function of the whole environment with

〈〈Fk,env(rα ) ⊗ F†
l,env(rβ )〉〉ωeq = 2h̄μ0ω

2

(
nb + 1

2

)
G

αβ

kl − G
βα†
lk

2i
(55)

and

〈〈Fk,env(rα ) ⊗ F†
l,env(rβ )〉〉ωleq = 2h̄μ0ω

2k2
0 (ns − nb)Im(εs)

∫
Vs

d3r Gs
kE(rα, r)Gs†

lE(rβ, r). (56)

In the latter equation, Vs denotes the substrate’s volume, εs its permittivity, and Gs describes the Green’s function for sources
inside of the substrate. If one refers to spatial arguments which do not correspond to particle positions, the superscripts in the
Green’s function in Eq. (55) are replaced by the usual argument notation with coordinates of the observation point and the
source point. The first correlation function stems from forcing both fields to fulfill the global equilibrium correlation function
[84] when they are at the same temperature. The second one, however, results from evaluating the correlation functions in local
equilibrium for both fields separately. Using only the first correlation function in Eq. (55) and the relations between the dressed
polarizabilities (k = E, H)

αt
kk

= α
kk

, (57)

αt
EH

= −α
HE

, (58)

we obtain for the global equilibrium contribution of Penv = Penv,eq + Penv,leq

Penv,eq = −4h̄μ0ω
2

(
nb + 1

2

)
Re

∫
d2r εi jz

∑
α,β

∑
k∈{E,H}

(
GEk (r, rα )

[
χk

αβ +
∑
γ ,δ

F
αγ

k χk̄
γ δF

βδ†
k

]
G†

Hk (r, rβ )

+
∑

γ

GEk (r, rα )
[
F

αγ

k χk̄
γ β + χk

αγF
βγ †
k̄

]
G†

Hk̄
(r, rβ )

)
i j

. (59)

Comparing Pnp and Penv,eq, they only differ in sign and temperature. Therefore, we can merge them to one contribution to the
whole system describing the heat transfer between all nanoparticles and the background. This also describes detailed balance
between background and nanoparticles and also serves as justification for the evaluation of the dipole moment correlation
functions a posteriori because this part vanishes when Tp = Tb as it should be. Together with the matrix abbreviations

M
αβ

k := (nα − nb)χk
αβ +

∑
γ ,δ

(nγ − nb)Fαγ

k χk̄
γ δF

βδ†
k (60)

and

Nαβ
c :=

∑
γ

[
(nα − nb)χE

αγF
βγ †
H + (nγ − nb)Fαγ

E χH
γ β

]
(61)

we simplify the merging of Pnp and Penv,eq to

Pdir = Pnp + Penv,eq

= 4h̄μ0ω
2Re

∫
d2r εi jz

×
∑
α,β

( ∑
k∈{E,H}

GEk (r, rα )Mαβ

k G†
Hk (r, rβ ) + GEE(r, rα )Nαβ

c G†
HH(r, rβ ) + GEH(r, rα )Nβα†

c G†
HE(r, rβ )

)
i j

. (62)
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Analytically simplifying the integrals as far as possible, we end up with

Pdir = h̄ωk0ReTr

(
M

E
I

E
+ ε0

μ0
M

H
I

H
+ 2

√
ε0

μ0
N

c
I

c

)
. (63)

The components of the tensors I are integral expressions listed in Appendix B.
The remaining “local equilibrium contribution” (LEQC) consists of two parts

Penv,leq = Pabs + Pscat (64)

with

Pabs = 4k4
0 h̄μ0ω

2(ns − nb)
∑

k,l∈{E,H}

∑
α,β

Re
∫

d2r
∫

Vs

d3r′εi jzIm(εs)

× [
Gs

EE(r, r′)Gs†
lE(rβ, r′)ααβ†

kl G†
Hk (r, rα ) + GEk (r, rα )ααβ

kl G
s
lE(rβ, r′)Gs†

HE(r, r′)
]

i j (65)

and

Pscat = 4k6
0 h̄μ0ω

2(ns − nb)
∑

k,l,m,n∈{E,H}

∑
α,β,γ ,δ

Re
∫

d2r
∫

Vs

d3r′εi jzIm(εs)

× [
GEk (r, rα )ααβ

kl G
s
lE(rβ, r′)Gs†

nE(rδ, r′)αγ δ†
mn G†

Hm(r, rγ )
]

i j . (66)

Analytically simplifying the integrals as far as possible, we obtain

Pabs = (nb − ns)h̄ωk3
0ImTr

(
α

EE
R

E
+ ε0

μ0
α

HH
R

H
+ 2

√
ε0

μ0
α

HE
R

c

)
(67)

and

Pscat = 1

4
(ns − nb)h̄ωk6

0ReTr

×
([

α
EE

�
E
α†

EE
+ ε0

μ0
α

EH
�

H
α†

EH
+ 2

√
ε0

μ0
α

EE
�

c
α†

EH

]
I

E
+ ε0

μ0

[
α

HE
�

E
α†

HE
+ ε0

μ0
α

HH
�

H
α†

HH
+ 2

√
ε0

μ0
α

HE
�†

c
α†

HH

]
I

H

+ 2
√

ε0

μ0

[
α

EE

(
�

E
+ K

E

)
α†

HE
+ ε0

μ0
α

EH

(
�

H
+ K

H

)
α†

HH
+

√
ε0

μ0
α

EE

(
�

c
+ K

c

)
α†

HH
+

√
ε0

μ0
α

EH

(
�†

c
− K†

c

)
α†

HE

]
I

c

)
.

(68)

The integrals R and � are listed in Appendix B.
The total emitted spectral power is

Ptot = Pdir + Pabs + Ps + Pscat, (69)

where Pdir gives the direct thermal emission of the nanoparticles and Pabs describes heat flux between substrate and background
that is absorbed in the nanoparticles which is encoded by the imaginary part. This power can become negative due to the choice
of temperatures in the Bose-Einstein factors which is opposite to the one in Pscat. The latter describes the power transferred to the
background by being scattered at the nanoparticles. The diagonal entries of the � integrals indicating identical particle indices
coincide with the integrals used to describe the heat flux between a small sphere and a semi-infinite half-space without multiple
reflections [9,85]. Note that, in principle, Pabs and Ps need to be considered together because Pabs corresponds to the power which
is absorbed from Ps due to the presence of the nanoparticles when Ts > Tb. Hence, when choosing A equal to the cross section of
all nanoparticles the sum of Pabs and Ps would be positive even though Pabs itself would be negative if the dipole approximation
is fulfilled.

III. NUMERICAL RESULTS

A. A single nanoparticle

To check for plausibility, we want to retrieve the result in [58] for the single-nanoparticle case N = 1. Then, all 3N × 3N
block matrices reduce to ordinary 3 × 3 matrices corresponding to the 11-entry of the former block matrix. For example, now,
the Green’s functions are fully described by the volume averages. This yields the dressed polarizabilities (k = E, H)

αkk = Vpχk[ex ⊗ ex + ey ⊗ ey]

1 − k2
0Vpχk〈Gkk,⊥〉 + k4

0V 2
p χEχH〈GHE〉2

1−k2
0Vpχk̄〈Gk̄k,⊥〉

+ Vpχkez ⊗ ez

1 − k2
0Vpχk〈Gkk,z〉 , (70)
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αEH = αHE = k2
0V 2

p χEχH〈GHE〉[ex ⊗ ey − ey ⊗ ex](
1 − k2

0VpχE〈GEE,⊥〉)(1 − k2
0VpχH〈GHH,⊥〉) + k4

0V 2
p χEχH〈GHE〉2

(71)

which coincide with the dressed polarizabilities in [58]. The matrices F, E, and N follow the structure of Eq. (71), meaning that
the matrices only possess a xy and yx entry. The matrices χ and M, however, look like Eq. (70) having three entries with two
identical ones accounting for one direction parallel and two directions perpendicular to the substrate’s surface normal. Then, we
obtain the identical results as in Ref. [58] for the three contributions

Pdir = h̄ωk0Re

( ∑
j∈{⊥,z}

[
ME, j IE, j + ε0

μ0
MH, j IH, j

]
+ 2

√
ε0

μ0
NcIc

)
, (72)

Pabs = (nb − ns)h̄ωk3
0Im

( ∑
j∈{⊥,z}

[
αEE, jRE, j + ε0

μ0
αHH, jRH, j

]
+ 2

√
ε0

μ0
αHERc

)
, (73)

and

Pscat = 1

8
(ns − nb)h̄ωk6

0

{(
|αEE,⊥|2�E,⊥ + ε0

μ0
|αHE|2�H,⊥ + 2

√
ε0

μ0
Re(αEE,⊥α∗

HE�c)

)
IE,⊥ + 2|αEE,z|2�E,zIE,z

+ ε0

μ0

[(
|αHE|2�E,⊥ + ε0

μ0
|αHH,⊥|2�H,⊥ + 2

√
ε0

μ0
Re

(
αHEα∗

HH,⊥�∗
c

))
IH,⊥ + 2

ε0

μ0
|αHH,z|2�H,zIH,z

]

+ 2
√

ε0

μ0
Re

[(
− αEE,⊥α∗

HE�E,⊥ + ε0

μ0
αHEα∗

HH,⊥�H,⊥ +
√

ε0

μ0
αEE,⊥α∗

HH,⊥�c −
√

ε0

μ0
|αHE|2�∗

c

)
Ic

]}
. (74)

The expressions ME/H,⊥/‖ and Nc as well as the different integral terms � and I can be found in Appendix C. These three terms
describing the direct emission of the nanoparticle, the amount of thermal background radiation absorbed in the nanoparticle, and
the scattered contribution were already discussed in detail in Ref. [58]. Nonetheless, we want to compare them with other results
from literature.

For example, when considering only the electric dipole contribution in Pscat we find the expression

Pscat = 1
8 (ns − nb)h̄ωk6

0 (|αEE,⊥|2�E,⊥IE,⊥ + 2|αEE,z|2�E,zIE,z ) (75)

for the scattered power by an electric dipole. This expression does not fully coincide with the dipole expression given in Eq. (7)
in Ref. [64]. This deviation can be traced back to an error in the definition of the transverse magnetic (TM) mode part of the
Green’s function in Eq. (4) in Ref. [64]. To highlight the difference and consequences, we first explicitly write the expressions for
the I integrals and introduce the angle ϑ between the surface normal and the wave vector by k⊥ = k0 sin(ϑ ) and kz = k0 cos(ϑ ).
We then obtain

Pscat = 1

8
(ns − nb)h̄ωk6

0

∫ π/2

0
dϑ sin(ϑ )(|αEE,⊥|2�E,⊥[cos(ϑ )2|1 − rEe2ik0 cos(ϑ )d |2 + |1 + rHe2ik0 cos(ϑ )d |2]

+ 2|αEE,z|2�E,z sin(ϑ )2|1 + rEe2ik0 cos(ϑ )d |2) (76)

which is the same result as in Eq. (38) in Ref. [55]. Note that the transverse electric (TE) mode terms with rE have a different
sign. In Ref. [64] the TM mode contribution of the scattered part of the Green’s function contains the wrong combination of
polarization vectors. Using this definition one would obtain the same sign in front of the rE terms. Consequently, the scattered
intensity given in Eq. (7) in Ref. [64] is

〈|EFF|2〉 = k4
0

16π2r2

([|αEE,⊥|2 cos(ϑ )2〈E2
x

〉 + |αEE,z|2 sin(ϑ )2〈E2
z

〉]|1 + rEe2ik0 cos(ϑ )d |2 + |αEE,z|2
〈
E2

x

〉|1 + rHe2ik0 cos(ϑ )d |2), (77)

where the energy densities 〈E2
x 〉 and 〈E2

z 〉 of the substrate at the position of the dipole moment are connected to our � integrals
such that ε0〈E2

x 〉 = h̄ω(ns − nb)�E,⊥k2
0/c and ε0〈E2

z 〉 = 2h̄ω(ns − nb)�E,zk2
0/c where in Ref. [64] nb = 0. A correct use of the

the polarization vectors in the Green’s function would give

〈|EFF|2〉 = k4
0

16π2r2

(|αEE,⊥|2 cos(ϑ )2
〈
E2

x

〉|1 − rEe2ik0 cos(ϑ )d |2 + |αEE,z|2 sin(ϑ )2
〈
E2

z

〉|1 + rEe2ik0 cos(ϑ )d |2

+ |αEE,z|2
〈
E2

x

〉|1 + rHe2ik0 cos(ϑ )d |2). (78)

This expression coincides with the integrand of Pscat in Eq. (76).
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FIG. 2. Pdir normalized to the exact result PMie
dir in Ref. [86] for

a (a) SiC nanoparticle at the localized surface mode frequency ω =
1.787 × 1014 rad/s and (b) Ag nanoparticle at ω = 1.0 × 1014 rad/s.

In the even simpler case without substrate, we are left with
the expressions for the thermal emission of a nanoparticle at
temperature Tp in a vacuum filled with blackbody radiation at
temperature Tb = Ts. We obtain

Pdir = h̄ωk3
0Vp(np − nb)Im(χE)

π
∣∣1 − k2

0VpχE〈GEE,vac〉
∣∣2

+ ε0

μ0

h̄ωk3
0Vp(np − nb)Im(χH)

π
∣∣1 − k2

0VpχH〈GHH,vac〉
∣∣2 . (79)

We can compare Eq. (79) with the known Mie expressions
of the thermal radiation of a spherical particle derived by
Kattawar and Eisner [86]. Taking only the contributions of the
electric and magnetic dipolar terms in the limit k0R � 1 and
k0|ε|R � 1 the Mie theory yields [86]

PMie
dir = h̄ω(np − nb)12[Re(a1) − |a1|2 + Re(b1) − |b1|2

≈ 24k3
0R3h̄ω(np − nb)

Im(ε)

|ε + 2|2

+ 4

15
k5

0R5(np − nb)Im(ε). (80)

Hence, PMie
dir = 2Pdir when choosing

χE = ε − 1, (81)

χH = 1

10
k2

0R2(ε − 1)
μ0

ε0
(82)

together with the weak form of coupled dipole moments
〈GEE,vac〉 ≈ ε0/μ0〈GHH,vac〉 ≈ −1/(3k2

0V ) coinciding with S-
CDM for k0R � 1. Of course, since we consider only the
thermal radiation through a single plane “above” the nanopar-
ticle and neglect the contribution “below,” we have Pdir =
PMie

dir /2. We note that the electrical part of Pdir also coincides
with the corresponding result for the radiation of a small
sphere as derived in Refs. [9,57].

As discussed before, the same result can be obtained
when implementing the weak form by setting 〈GEE,vac〉 =
〈GHH,vac〉 = 0 and using the expressions for χE/H from

Eqs. (42) and (43). In the same manner but by using χE/H

from Eqs. (40) and (41) we obtain the weak Mie form. By
comparison with Eq. (80) it becomes clear that the weak Mie
form only covers the term Re(a1) + Re(b1) and therefore is
a linear approximation in the Mie coefficients [8]. Assuming
k0R � 1, D-CDM behaves alike. In Fig. 2 we show the result
of Pdir for the different forms of the dressed polarizability
including the weak Mie form normalized to the exact Mie
result PMie

dir in Ref. [86] for the dipolar contribution for a SiC
and an Ag nanoparticle. It can be seen that for SiC all different
forms are equally good for R < 100 nm which is smaller
than the skin depth ds = 1/2k0Im(

√
εSiC) ≈ 830 nm at the

resonance frequency ωSPhP of the localized surface modes
defined by Re[εSiC(ωSPhP)] = −1 and Im[εSiC(ωSPhP)] � 1,
i.e., by the poles of rE. For Ag the differences are much
larger. The D-CDM and W-CDM are mostly the same, and
they provide an equally good approximation for R < 10 nm
as the S-CDM. This could be expected because the skin depth
is this time ds ≈ 11 nm at the chosen frequency. Interestingly,
the W-Mie-CDM is very accurate even for radii over several
hundred nanometers in this case. Hence, in the numerical cal-
culations we can safely choose nanoparticle radii up to 100 nm
when using the W-Mie-CDM method, whereas for the other
methods we are restricted to Ag nanoparticles with R � 10 nm
but for SiC nanoparticles also radii up to 100 nm can be used.

B. Four nanoparticles

Inspired by the work of Dong et el. [4] we consider four
nanoparticles made of SiC or Ag in different material com-
binations above a SiC or Ag substrate. These nanoparticles
are positioned on the corners of a square which is parallel
to the substrate interface and has a side length of 4R. The
radius of the nanoparticles is chosen to be R = 10 nm so that
we can safely use the dipole model for the metal nanopar-
ticles using S-CDM. For convenience, we choose the same
temperature for the background and the substrate which are
Ts = Tb = 300 K so that we only need to consider Pdir as
we did for the single-particle case discussed in the previous
section. The two nanoparticles on the left side as depicted in
the insets of Figs. 3 and 4 have a temperature of 350 K and
the two on the right side have a temperature of 310 K. Note
that, due to the different temperatures of the nanoparticles and
the environment, the thermal emission does not correspond
to the absorption of the whole system so that this situation
cannot be treated by simply calculating the absorptivity of the
nanoparticles above the substrate. To display negative values
in those semilogarithmic plots, too, we adopt the method
outlined by Webber [87].

First of all, the numerical results in Figs. 3 and 4 show the
known result for heat transfer between nanoparticles, namely,
that the electric part of Pdir dominates the thermal emission
of the dielectric nanoparticles and the magnetic part of Pdir

prevails in the case of metallic nanoparticles. The mixed
terms, however, can be neglected in all cases. In general, we
observe a strong peak at the nanoparticles localized surface
phonon polariton resonance at ωLPhP = 1.78 × 1014 rad/s and
a secondary peak at the transversal optical phonon frequency
ωTO = 1.495 × 1014 rad/s for the SiC components. The latter
frequency is mostly important for the magnetic contributions.
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FIG. 3. Pdir and its compound for four nanoparticles made of SiC or Ag of radius R = 10 nm positioned at the corners of a square (as
depicted in the inset) which is in a plane parallel to a SiC substrate at the distance d = 52 nm (substrate, nanoparticle’s center). The temperature
of the two nanoparticles on the left is 350 K and those of the two particles on the right is 310 K, the background and substrate have the same
temperature Ts = Tb = 300 K.

For Ag nanoparticles above an Ag substrate no features are
expected since Ag resonates in the ultraviolet as can be seen
in Fig. 4(b) so that when involving Ag the features are due to
the SiC surface or the other SiC nanoparticles. In general, the
spectra resemble those of Dong et al. [4] for the heat transfer
between the two particles on the left and the ones on the right.
Without the substrate the resemblance would be even greater.

In the case of four Ag nanoparticles above a SiC substrate
we find in Fig. 3(b) reduction of thermal emission at the sur-
face phonon polariton frequency ωSPhP = 1.787 × 1014 rad/s
of the substrate. This shows the impact of the strong cou-
pling of the nanoparticles to the surface phonon polaritons of
the substrate which decrease the thermal emission in the far
field because the Ag nanoparticles emit their heat preferen-
tially into the SiC substrate at the surface mode resonance.
Our numerical results indicate that for smaller distances the
nanoparticles and the substrate Pdir can even become negative
for metallic nanoparticles above a SiC substrate at the surface

phonon polariton resonance. We checked that this happens for
all methods W-CDM, S-CDM, and D-CDM. Additionally, the
distance at which Pdir becomes negative depends on the lateral
distance between the nanoparticles. If they touch each other
(dl = 0) Pdir becomes negative at d = 43 nm. For dl = 4R
this distance grows up to d = 53 and, eventually, decreases
for larger lateral distances. Since Pdir should be positive for
all frequencies because Tp > Ts = Tb we are convinced that
this hints to the fact that the dipole model can be safely used
for center-center distance between particles and for center-to-
surface distance larger than approximately 5R, only.

C. Discrete dipole approximation: Spherical nanoparticle

Here, we want to apply our general theory to perform DDA
of a macroscopic object radiating heat into the far field. Within
this approximation method the macroscopic object is replaced
by a number of small polarizable subvolumes, so called

FIG. 4. Pdir like in Fig. 3 but for a silver substrate.
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voxels, which are treated with the formalism of the coupled
dipole method. The idea behind this approach is that, by
replacing any arbitrarily shaped macroscopic object by a suf-
ficiently great number of subvolumes or voxels (in the ideal
case an infinite number of infinitely small voxels), the elec-
trodynamical response of the macroscopic object is described
exactly. This allows for treating electrodynamic problems of,
in principle, arbitrarily shaped objects [71]. In the context
of fluctuational electrodynamics this DDA method has been
introduced to describe the thermal heat exchange between
two macroscopic objects [53] by applying the corresponding
CDM formalism first introduced in Ref. [2]. An extension
to treat also the heat transfer between anisotropic and non-
reciprocal objects can be found in Ref. [54]. Furthermore, in
Ref. [59] the DDA method for treating radiative heat exchange
between an arbitrarily shaped object and a planar sample was
introduced and, finally, in Ref. [64] the same group used the
DDA method to determine the near field of a planar sample
scattered into the far field by an arbitrarily shaped object.
Thermal emission of an arbitrarily shaped object into free
space, i.e., without a sample, was introduced in Ref. [54].
When using DDA, typically all voxels of a single object
are considered to have a single temperature Tp. However, in
principle also temperature profiles and multiple objects can
be modeled.

Our here introduced method is a generalization of the two
latter methods in Refs. [54,64]. In Ref. [64], the intensity of
the scattered near field by a single object treated within DDA
is considered, only. Therefore, since no other temperatures
but the temperature of the substrate Ts > 0 K are involved in
that approach the results correspond to our expression Pscat

for the scattered power assuming that Tb = Tp = 0 K. But, of
course, even for this choice of temperature the substrate itself
will directly emit heat which will be partially absorbed by
the scatterer which is described by the terms Ps and Pabs in
our theory. On the other hand, the approach in Ref. [54] only
considers thermal emission of a single object with temperature
Tp into vacuum with temperature Tb. By replacing the vacuum
Green’s function in the expressions in Ref. [54] by that of
a planar sample, as done in Ref. [35], and integrating the
mean Poynting vector over the corresponding detection plane,
this method would give Pdir for the case that Ts = Tb. In our
approach, we do not only have access to Pdir for different tem-
peratures of the substrate and the background, but also to all
other heat flux contributions which shows that our approach
generalizes those previous works.

We find that our DDA formalism works for materials where
the electrical part dominates, only. That means that it cannot
be applied to macroscopic metallic objects where the absorp-
tion or thermal emission is dominated by the contribution of
eddy currents. Note that this does not mean that DDA is not
able to describe, for example, metals in the optical regime. In
that case, the response would, again, be dominated by the elec-
trical fields. Mathematically, we find that the lack of resonance
of the effective magnetic polarizability in the infrared regime
leads to a negligible coupling between the voxels for the
magnetic dipolar moments. Therefore, the overall response of
the object, being replaced by a huge number of voxels, is the
sum of the response of the individual voxels and it cannot be
used to describe the response of the macroscopic object. That

FIG. 5. Sketch of the sphere used in our calculations approxi-
mated by 2533 voxels. We scale side length L in such a way that our
fixed number of voxels fits the radius of the sphere.

means that the contribution of eddy currents to the thermal
emission of macroscopic objects cannot be treated within a
DDA approximation using magnetic dipole moments. We will
substantiate this claim at the end of this section. Hence, we use
in the following only the electrical part of our theory to carry
out the DDA calculations. As a first illustration we consider
the thermal emission of a single spherical particle within the
DDA as shown in Fig. 5 in a vacuum environment and close
to a substrate.

We have already discussed in Sec. III A that the dipole
model provides reliable results for any choice of dressed po-
larizability for particle radii smaller than the skin depth of the
material. Here, we will use S-CDM as in the DDA calculations
in Ref. [64] because we want to discuss specific results form
that work in the next section. In Fig. 6(a) we show the results
of PE,dir for spherical SiO2 nanoparticles of different radii
using the DDA with N = 2553 voxels compared with the full
Mie results of Katawar and Eisner [86]. It can be seen that the

FIG. 6. PE,dir for a SiO2 sphere at Tp = 700 K in a vacuum back-
ground with Tb = 300 K for S-CDM. (a) Depicts the SiO2 spectrum
for different radii using a DDA model for the sphere with N = 2553
voxels (solid lines) and the full Mie result (open symbols). (b) DDA
spectra when adding a SiC substrate at Ts = 300 K for different
distances d between substrate and sphere (solid lines) compared to
the single-particle solution (open symbols; dashed lines in the inset).
The inset magnifies the spectra within the reststrahlen band of SiC.
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DDA results are in good agreement with the exact results as
long as the radius is small enough: in our case R � 1 μm. This
was also found in Ref. [54] using D-CDM. By using more
voxels, also the results for larger spherical particles can be
improved [70] but the main features of the spectrum are well
captured for all radii even with our relatively small number
of voxels. On the other hand, it is interesting that even for
small particles with only 30-nm radius DDA shows a rela-
tive deviation of about 26% at the surface phonon polariton
resonance frequencies of SiO2 which is due to the “slow”
convergence of DDA [70], which means one can only increase
the accuracy by using more and more voxels which results in
longer computation times to obtain a certain accuracy level.

Since our model also includes the possibility to study the
impact of a substrate to the thermal emission, we show in
Fig. 6(b) our numerical results for a SiO2 nanoparticle with
radius R = 30 nm above a SiC substrate. For the nanoparticle
we choose the DDA as before for a single SiO2 particle with
N = 2553 voxels and compare it to the single-dipole result
from Sec. III A. This allows us to check the validity of the
dipole approximation when the distance d is smaller than 4R.
Furthermore, we choose Tp = 700 K and Ts = Tb = 300 K.
We observe a slight decline in PE,dir for increasing distances
outside of the reststrahlen band of SiC. However, the DDA
approximation is still in good agreement with the single-
nanoparticle result (open symbols). Note that d describes
the distance between substrate and sphere surface so that
zp = d + R holds. In the inset we can see large deviations
between DDA and single-dipole model for distances d � 20
nm between substrate and sphere surface due to the SPhP
mode of SiC at 1.787 × 1014 rad/s. If we assume that DDA
is giving the correct result, then this means that the deviation
stems from the shortcomings of the dipole model and that
higher multipole orders become important at such distances
as it is expected. On the other hand, because of the “slow”
convergence of the DDA method further detailed studies on
the convergence of the DDA method are required but they are
out of the scope of this work.

As a side note, we considered SiC for the sphere’s material
as well. In that case we obtained poor agreement between
DDA and single-particle model for frequencies below 1.8 ×
1014 rad/s. Because both results coincide for frequencies
above that frequency, we trace this deviation back to large val-
ues of the complex permittivity of SiC which is in agreement
with fact that the complex refractive index has significant
impact on the accuracy of DDA results as shown in Ref. [70].

We mentioned before that DDA does not work for the mag-
netic contribution. In Fig. 7 we compare the purely magnetic
contributions of the directly emitted power of a SiO2 sphere
approximated by 653 spherical nanoparticles (solid blue line,
inset) for the same parameters like in Fig. 6 with the exact Mie
result in Ref. [86] (solid red line) and the single-dipole model
in Eq. (72) (open red symbols) at constant radius R = 30 nm.
Here, we chose spherical particles to perform DDA for a better
visualization of the following point which is highlighted by
the open blue symbols: As mentioned before, the magnetic
contribution of our DDA calculations only provides the sum of
the directly emitted power of each nanoparticle approximating
the desired object. In this DDA example, 13 nanoparticles
fit into the whole sphere diameter. Therefore, the radius of

FIG. 7. PH,dir for a SiO2 sphere for identical parameters like in
Fig. 6 with radius R = 30 nm. The exact Mie result (solid red line) is
compared with the single dipole result (open red symbols), the DDA
result for 653 spherical nanoparticles (solid blue line), and the exact
Mie result multiplied by 653/135 (open blue symbols). Inset: Sketch
of the sphere used for the DDA.

each nanoparticle is 1
13 of the radius of the whole sphere.

Because the particle volume only appears in the magnetic
polarizability [e.g. Eq. (43)] which is proportional to R5, the
sum of the directly emitted power of all nanoparticles is by
factor of 653/135 different from the exact result. This also
means that the magnetic contribution in DDA calculations
would decrease for an increasing number of nanoparticles
which, obviously, leads to nonphysical results. That is also
the reason why the single-dipole model coincides with the
exact result because, then, the number of particles and the
radii are identical. Therefore, since the magnetic contribution
dominates the thermally emitted heat radiation for metallic
nanoparticles, the DDA method is not applicable to metals in
the infrared.

D. Discrete dipole approximation: Sharp tip

Finally, we want to discuss the results obtained by Edalat-
pour et al. in Ref. [64]. In that work, the scattering of near-field
thermal radiation of a sharp Si tip in 10 nm distance of a SiC
substrate has been compared to the results for the scattering
in the dipole model considering a dipole which has the same
size as the tip. Clearly, in this scenario the dipole model is
used in a regime where it should not by applicable, but Babuty
et al. in Ref. [55] used exactly this approach to model the
measured spectrum of a tip-based near-field scattering micro-
scope. Comparing the DDA result for a sharp tip with the
dipole model Edalatpour et al. found in Ref. [64] that DDA
predicts resonances at 944 and 980 cm−1, whereas the dipole
model predicts a resonance at 929 cm−1.

The goal of this section is to revisit this result. To this end,
we model a sharp Si tip as depicted in Fig. 8 using approx-
imately the same size and shape as for probe B in Ref. [55].
We further use the same temperatures Tp = Tb = 0 K and Ts =
573 K as indicated in Ref. [64], but it should be kept in mind
that in this reference only the scattered intensity of the sub-
strate’s thermal near field is calculated so that strictly speaking
Ts = 573 K is the only temperature which can be modified
in that approach. By setting Tp = Tb = 0 K the authors can
argue to neglect thermal emission of the tip itself which is not
treated in that work. But even when these temperatures are
chosen we have still thermal emission of the SiC substrate
manifesting in Ps together with shielding of that emission
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FIG. 8. Sketch of the sharp tip used in our calculation. The fore-
most part of length 126.35 nm is approximated by 3904 voxels with
side length 3.61 nm and the remaining part of length 2485.4 nm by
1484 voxels of side length 57.8 nm.

taken into account by Pabs. To calculate Ps, we use the cross
section of the largest part of the tip at its backside for area A.
The distance between substrate and foremost part of the tip is
only 10 nm. We compare the DDA results as in Ref. [64] with
those for a single dipole whose radius corresponds to the size
of the foremost part (R = 63.2 nm) and with one that has the
size of the whole tip (R = 1.306 μm) using A = πR2 in those
cases. Since they considered an emission angle of ϑ = π/4 in
Ref. [64], we slightly adapt our theory by again introducing
k⊥ = k0 sin(ϑ ) and kz = k0 cos(ϑ ) and substituting∫ k0

0

dk⊥
2π

k⊥ f (k⊥) =
∫ π/2

0

dϑ

2π
cos(ϑ ) sin(ϑ )k2

0 f [k0 sin(ϑ )]

(83)

in all I and R integrals as well as in the one used for Ps.
Here, f denotes the corresponding integrand and ϑ is the
emission angle between wave vector k and surface normal.

Now, we just pick the integrand value for ϑ = π/4 instead of
integrating over all emission angles.

In Figs. 9(a) and 9(b) we show the results for PE,abs + Ps

and the full emitted power PE. It can be seen that for the large
sphere within the dipole model these quantities can be nega-
tive. We are aware that this result, in general, seems to violate
basic thermodynamics. Therefore, let us emphasize once more
that this result does not impair the robustness of our model but
is caused by the arbitrarily chosen plane A contributing to Ps.
We could easily choose another value for A to obtain purely
positive results. This negative value in the emitted power can
be interpreted such that the spherical dipolar object in the near
field of the substrate absorbs more heat from the substrate than
predicted by the geometry of its cross section A = πR2. This
might not be astonishing but we want to emphasize that the
dipole model is here used in a regime where R � d so that the
dipole approximation itself is strictly speaking not applicable
and higher dipole moments need to be included. It can also
be noted that the spectra for PE,abs + Ps and the full emitted
power PE for the small dipolar sphere resemble those of the
DDA tip in Figs. 9(a) and 9(b).

However, here, we are more interested in the scattering
spectra. For the scattering spectra of the DDA tip and those
of the two dipoles, at first, it can be observed that the spectra
of the tip and the large sphere are quite similar in Fig. 9(c).
The radiation scattered by the tip and by the small sphere pos-
sesses a resonance at ω = 1.778 × 1014 rad/s (ν = 945 cm−1)
corresponding to the redshifted surface mode resonance of
the SiC substrate at ωSPhP = 1.787 × 1014 rad/s as discussed
in Ref. [64] which was found there to be at ν = 944 cm−1.
On the other hand, the radiation scattered by the tip and by
the large sphere share a peak at ω = 1.846 × 1014 rad/s (ν =
980 cm−1). There is also a small feature in the scattering spec-
trum of the small sphere at this frequency. At ω = 1.75 × 1014

rad/s (ν = 929 cm−1) we find no peak in Fig. 9(c). There is,
however, a broad peak at ω ≈ 1.756 × 1014 rad/s for radiation
scattered at the large sphere. To compare our results with the
ones in Ref. [64] we highlighted the there mentioned wave
numbers in Fig. 9(c). From our results we conclude that a
large sphere is capable of approximating the scattering signal
of the tip because the shapes of the two spectra resemble
each other after exceeding their minimum value. Note that
the first peak of the large sphere scattering spectrum is at

FIG. 9. PE,abs + Ps (a), PE (b), and PE,scat (c) for a Si tip, small sphere with R = 63.2 nm, and large sphere with R = 1.306 μm at Tp = 0 K
in a vacuum background with Tb = 0 K close to a SiC substrate with a gap distance of 10 nm with Ts = 573 K using a DDA model (S-CDM)
with N = 2553 voxels. Additionally, in (c) we highlighted the three frequencies corresponding to the wave numbers ν mentioned in Ref. [64].
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932 cm−1 rather than 929 cm−1 as in Fig. 3(b) in Ref. [64].
Interestingly, the first peak of the tip scattering spectrum is
very well captured by the small dipole representing the fore-
most part of the tip. Hence, the scattering spectrum of the tip
can be understood as being a mixture of the scattering of its
foremost part (represented by the small sphere contributing
the first peak) and its bulk part (represented by the large sphere
contributing the second peak) regarding the peak positions.
This is a reasonable result which has not been pointed out in
Ref. [64].

Therefore, we find that the large sphere approximation
within the dipole model already gives a quite reasonable result
even though the position of the first peak seems to be related
to the scattering of the foremost part of the tip captured by the
small sphere scattering spectrum. In Ref. [64] the difference
between the shapes of the spectra of the tip and the large
sphere is much larger than in ours. It is not easy to find the
source of this discrepancy to Ref. [64], but we are convinced
that the aforementioned error in the dipole model used in
Eq. (7) of Ref. [64] which is due to the wrong choice of
the polarization vectors for the TM-mode part in Eq. (4) in
Ref. [64] is a key element. Therefore, we tried to retrieve the
result in Fig. 3(b) in Ref. [64]. To do so, we also have to
use the quasistatic limit to express the dressed polarizability
[compare with Eq. (8) in in Ref. [64]]. This limit is only
applicable in the near field assuming that the information
carried by the heat transfer is transferred instantaneously, e.g.,
c → ∞ or k0 → 0. Then, it is possible to provide an analytical
result for 〈GEE,ref,⊥/z〉 in the definition of the polarizabilities
because the reflection coefficients inside the integral become
independent of the wave vector:

〈GEE,ref,γ 〉 ≈ 1

16Cγ πk2
0 (d + R)3

εs − 1

εs + 1
(84)

with Cγ = 2 for γ =⊥ and Cγ = 1 for γ = z. For a distance
d + R of several microns as chosen in Ref. [64], however, this
approximation is not valid anymore because one leaves the
quasistatic regime. Using the above quasistatic approximation
for such distances means that the term 〈GEE,ref,γ 〉 becomes, at
a distance d + R of several microns, so small that it can be
neglected and, therefore, the corresponding polarizability is
effectively the expression without the surface term as given
in Eq. (36). To see that this inconsistency together with the
sign error leading to Eq. (77) has a measurable consequence,
we provide a numerical example for a configuration used in
Ref. [64] with distance d = 10 nm between substrate and
nanoparticle’s surface, radius R = 3.12 μm, Tp = Tb = 0 K,
and Ts = 573 K. In Fig. 10 we compare the spectra according
to the wrong expression (77) of Ref. [64] and the correct one
according to Eq. (76) normalized to the maximal value of the
graph corresponding to Eq. (77) of Ref. [64]. Here, we used
the angle ϑ = 45◦. Note that the solid line coincides with
the corresponding graph in Fig. 3(b) of Ref. [64]. The peak
mentioned in the Ref. [64] at ν = 929 cm−1 can be found
here. Using the correct sign but the inconsistent quasistatic
approximation for 〈GEE,ref,γ 〉 this peak would shift to ν =
927 cm−1. In the corrected graph, however, the peak is located
at ν = 936 cm−1; two additional peaks appear at ν = 953 and
974 cm−1. These three values are very close to the peaks at

FIG. 10. Comparing scattered power according to expressions
from Eq. (77) of Ref. [64] (solid line) and to Eq. (76) (dashed line)
for distance d = 10 nm between substrate and nanoparticle’s surface,
radius R = 3.12 μm, Tp = Tb = 0 K, Ts = 573 K, and ϑ = 45◦. Both
graphs are normalized to the maximum value of the solid line.

ν = 944 and 980 cm−1 observed in the DDA spectrum of the
field scattered by the tip in Fig. 2(b) in Ref. [64].

As a conclusion, our DDA-modeled tip reproduces the
key results of the DDA simulations in Ref. [64]. In contrast
to Ref. [64] we conclude that the dipole model as used in
Ref. [55] to describe the spectra is not as bad as the results
of Ref. [64] suggest because there seems to be an error in
their dipole model result. Furthermore, we also find that the
position of the redshifted SPhP resonance is well described
be the results of a small spherical scatterer. It seems that the
main features are captured by a mixture of the scattering of the
foremost part and the bulk part of the tip which can each be
described by dipole mode. Of course, in the end, the spectra
depend on the choice of the tip shape and size as brought
forward in Ref. [64]. Finally, we want to emphasize that our
model is more versatile than the pure scattering calculations in
Ref. [64] because it also includes the direct thermal emission
of the tip as well as the substrate’s contribution and the part
blocked by the tip. Actually, this last part can be relatively
large as already pointed out by Komiyama [76,88] and also
found in our numerical calculations so that it is important to
minimize this contribution in measurements.

IV. CONCLUSION

In conclusion, we have derived the expressions for the
emitted power of N nanoparticles above a substrate where
each particle temperature as well as the temperatures of the
substrate and background radiation can be set, separately. Our
expressions contain the direct power emitted by the nanoparti-
cles, the power emitted by the substrate, the substrate emission
which is absorbed by the nanoparticles, and the power due
to the near-field scattering. Our model generalizes previous
models and is, therefore, very versatile. It can be used to
study the thermal emission of dielectric and metallic particle
assemblies close to a substrate within CDM and to model
thermal emission of a single or several macroscopic objects
in the vicinity of a substrate within DDA. To illustrate this
versatility we discussed the thermal emission of a four-particle
configuration close to a dielectric and metallic substrate, the
thermal emission of a sphere close to a substrate using DDA,
and the thermal emission of a sharp tip as used in scattering
type near-field thermal profiles, again, within DDA in the
case of dielectric nanoparticles. We found that the dipole
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approximation can only be safely used for metallic nanopar-
ticles close to polar substrates if the distance of the particle
centers to the surface is larger than five times the particle
radius. Furthermore, our study of the sharp tip showed that, in
contrast to previously obtained results [64], the dipole model
as used in Ref. [79] can give qualitatively correct spectra of
a sharp scattering tip even though a DDA model for the tip
shape is definitely preferable to a simple dipole. We point
out that the tip spectrum seems to be a mixture of the scat-
tering of its foremost part which can be modeled by a small
spherical scatterer and its bulk part which can be modeled by
a large spherical scatterer. Our results indicate that the mag-
netic dipole contribution can be used in CDM simulations but
not DDA simulations. We are convinced that our generalized

model will be very useful in further more detailed studies
of thermal emission of many-particle systems including sub-
strates and the modeling of scattering-type experiments as in
Refs. [75–81].
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APPENDIX A: GREEN’S FUNCTIONS

All Green’s functions can be decomposed into a vacuum part and a contribution due to reflections at the substrate’s surface.
The vacuum part of the electric Green’s function for different observation and source point is well known:

GEE,vac(r, r′) = eik0R

4π |r − r′|
[

k2
0 |r − r′|2 + ik0|r − r′| − 1

k2
0 |r − r′|2 1 − k2

0 |r − r′|2 + 3ik0|r − r′| − 3

k2
0 |r − r′|2

(r − r′) ⊗ (r − r′)
|r − r′|2

]
. (A1)

All the others can be computed by exploiting relations between the Green’s functions, so that we get

GHE,vac,i j (r, r′) = i
√

ε0

μ0

eik0|r−r′ |

4π |r − r′|
ik0|r − r′| − 1

k0|r − r′| εi jk
rk − r′

k

|r − r′| , (A2)

GEH,vac,i j (r, r′) = −GHE,vac,i j (r, r′), (A3)

GHH,vac(r, r′) = ε0

μ0
GEE,vac(r, r′). (A4)

The volume averages of the vacuum contributions were calculated by Fikioris [61], meaning

〈GEE,vac(r)〉 = 〈GEE,vac〉1, (A5)

〈GEE,vac〉 = 1

k2
0V

[
2

3
(1 − ik0R)eik0R − 1

]
(A6)

with radius R and volume V of a spherical nanoparticle. It is easy to show that

〈GHH,vac(r)〉 = ε0

μ0
〈GEE,vac(r)〉, (A7)

〈GHE,vac(r)〉 = 〈GEH,vac(r)〉 = 0 (A8)

holds.
The contributions due to reflections at the substrate’s surface are

GEE,ref(k⊥, z, z′) = ieikz (z+z′ )

2kz
(rHa⊥(k0) ⊗ a⊥(k0) + rEa+

‖ (k0) ⊗ a−
‖ (k0)), (A9)

GHH,ref(k⊥, z, z′) = ε0

μ0

ieikz (z+z′ )

2kz
(rEa⊥(k0) ⊗ a⊥(k0) + rHa+

‖ (k0) ⊗ a−
‖ (k0)), (A10)

GHE,ref(k⊥, z, z′) =
√

ε0

μ0

ieikz (z+z′ )

2kz
(rEa⊥(k0) ⊗ a−

‖ (k0) − rHa+
‖ (k0) ⊗ a⊥(k0)), (A11)

GEH,ref(k⊥, z, z′) =
√

ε0

μ0

ieikz (z+z′ )

2kz
(rEa+

‖ (k0) ⊗ a⊥(k0) − rHa⊥(k0) ⊗ a−
‖ (k0)) (A12)

with

Gref(r, r′) =
∫

d2k⊥
(2π )2

eik⊥·(x−x′ )Gref(k⊥, z, z′). (A13)
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Here, we introduced the polarization unit vectors

a⊥(km) = 1

k⊥
(ky,−kx, 0)T , (A14)

a±
‖ (km) = 1

k⊥km
(∓kxkz,∓kykz, k2

⊥)T , (A15)

k⊥ = (kx, ky, kz )T (A16)

and wave vector k⊥ = (kx, ky, 0)T as well as x = (x, y, 0)T , kz =
√

k2
m − k2

⊥, and km = √
εmk0. Additionally, we use the Fresnel

amplitude reflection coefficients

rH = kz − ks,z

kz + ks,z
, (A17)

rE = εskz − ks,z

εskz + ks,z
(A18)

with km,z =
√

k2
m − k2

⊥ . Since there is no singularity when r approaches r′, we can safely approximate the volume average by
the integrand multiplied by the volume:

〈Gkk,ref(r)〉 = 〈Gkk,ref,⊥〉[ex ⊗ ex + ey ⊗ ey] + 〈Gkk,ref,z〉ez ⊗ ez, (A19)

〈GHE/EH,ref(r)〉 = 〈GHE/EH,ref〉[ex ⊗ ey − ey ⊗ ex] (A20)

with

〈GEE,ref,⊥〉 = i
∫ ∞

0

dk⊥
8π

k⊥
kz

e2ikzz

(
rH − rE

k2
z

k2
0

)
, (A21)

〈GEE,ref,z〉 = i
∫ ∞

0

dk⊥
4π

k3
⊥

kzk2
0

e2ikzzrE, (A22)

〈GHH,ref,⊥〉 = i
ε0

μ0

∫ ∞

0

dk⊥
8π

k⊥
kz

e2ikzz

(
rE − rH

k2
z

k2
0

)
, (A23)

〈GHH,ref,z〉 = i
ε0

μ0

∫ ∞

0

dk⊥
4π

k3
⊥

kzk2
0

e2ikzzrH, (A24)

〈GHE/EH,ref〉 = −i
√

ε0

μ0

∫ ∞

0

dk⊥
8π

k⊥
k0

e2ikzz(rH − rE). (A25)

For the LEQC we have to use different Green’s functions resulting from the transmission of radiation through the substrate’s
surface. We employed

Gs
EE(k⊥, z, z′) = iei(kzz−ks,zz′ )

2ks,z
(tHa⊥(k0) ⊗ a⊥(ks) + tEa+

‖ (k0) ⊗ a+
‖ (ks)), (A26)

Gs
HE(k⊥, z, z′) =

√
ε0

μ0

iei(kzz−ks,zz′ )

2ks,z
(tEa⊥(k0) ⊗ a+

‖ (ks) − tHa+
‖ (k0) ⊗ a⊥(ks)) (A27)

with the Fresnel amplitude transmission coefficients

tH = 2ks,z

kz + ks,z
, (A28)

tE = ks

k0

2ks,z

εskz + ks,z
. (A29)

APPENDIX B: LIST OF EXPRESSIONS USED FOR THE POWER CONTRIBUTIONS

For the heat transfer between all nanoparticles and background we defined the following integrals:

I
αβ

k =
∫ k0

0

dk⊥
2π

k⊥
kzk0

{[
J1(ξ )

ξ
Iαβ+
k̄,1

+ k2
z

k2
0

(
J0(ξ ) − J1(ξ )

ξ

)
Iαβ−
k,1

]
ex ⊗ ex

+
[(

J0(ξ ) − J1(ξ )

ξ

)
Iαβ+
k̄,1

+ k2
z

k2
0

J1(ξ )

ξ
Iαβ−
k,1

]
ey ⊗ ey + k2

⊥
k2

0

J0(ξ )Iαβ+
k,1 ez ⊗ ez

}
(B1)
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and

Iαβ
c =

∫ k0

0

dk⊥
2π

k⊥
k2

0

{[
J1(ξ )

ξ
Iαβ+
H,2 +

(
J0(ξ ) − J1(ξ )

ξ

)
Iαβ−
E,2

]
ey ⊗ ex

−
[(

J0(ξ ) − J1(ξ )

ξ

)
Iαβ+
H,2 + J1(ξ )

ξ
Iαβ−
E,2

]
ex ⊗ ey + i

k⊥
kz

J1(ξ )
(
Iαβ+
E,1 ey ⊗ ez − Iαβ+

H,1 ez ⊗ ey
)}

. (B2)

J0,1(ξ ) denotes the cylindrical Bessel function of the zeroth and first kind, respectively. Additionally, we employed the
abbreviations

Iαβ±
k,1 = eikz (zα−zβ ) ± 2 Re

(
rkeikz (zα+zβ )

) + |rk|2e−ikz (zα−zβ ), (B3)

Iαβ±
k,2 = eikz (zα−zβ ) ± 2i Im

(
rkeikz (zα+zβ )

) − |rk|2e−ikz (zα−zβ ), (B4)

ξ = k⊥
√

(xα − xβ )2 + (yα − yβ )2. (B5)

In the heat transfer between substrate and background we defined the integrals

R
αβ

k =
∫ k0

0

dk⊥
2π

k⊥
kzk0

{[
J1(ξ )

ξ
Rαβ+

k̄,1
+ k2

z

k2
0

(
J0(ξ ) − J1(ξ )

ξ

)
Rαβ−

k,1

]
ex ⊗ ex +

[(
J0(ξ ) − J1(ξ )

ξ

)
Rαβ+

k̄,1
+ k2

z

k2
0

J1(ξ )

ξ
Rαβ−

k,1

]
ey ⊗ ey

+ k2
⊥

k2
0

J0
(
ξβ
α

)
Rαβ+

k,1 ez ⊗ ez + i
k⊥kz

k2
0

J1(ξ )
(
Rαβ−

k,1 ez ⊗ ex + Rαβ+
k,1 ex ⊗ ez

)}
(B6)

and

Rαβ
c =

∫ k0

0

dk⊥
2π

k⊥
k2

0

{[(
J0(ξ ) − J1(ξ )

ξ

)
Rβα+

H,2 + J1(ξ )

ξ
Rβα−

E,2

]
ey ⊗ ex −

[
J1(ξ )

ξ
Rβα+

H,2 +
(

J0(ξ ) − J1(ξ )

ξ

)
Rβα−

E,2

]
ex ⊗ ey

− k⊥
2kz

J1
(
ξβ
α

)([
Rβα+

H,2 + Rβα−
H,2

]
ey ⊗ ez − [

Rβα+
E,2 + Rβα−

E,2

]
ez ⊗ ey

)}
(B7)

for Pabs where we used the abbreviations

Rαβ±
k,1 = (1 − |rk|2)(1 ± rkeikz (zα+zβ ) ), (B8)

Rαβ±
k,2 = (1 − |rk|2)[i sin(kz[zα − zβ]) ± rkeikz (zα+zβ )] (B9)

and four additional integrals for Pscat, namely,

�
αβ

k =
∫ k0

0

dk⊥
2π

k⊥
kzk0

{[
J1(ξ )

ξ
ν

αβ

k̄,1
+ k2

z

k2
0

(
J0(ξ ) − J1(ξ )

ξ

)
ν

αβ

k,1

]
ex ⊗ ex

+
[(

J0(ξ ) − J1(ξ )

ξ

)
ν

αβ

k̄,1
+ k2

z

k2
0

J1(ξ )

ξ
ν

αβ

k,1

]
ey ⊗ ey + k2

⊥
k2

0

J0(ξ )ναβ

k,1ez ⊗ ez

}

+
∫ ∞

k0

dk⊥
2π

k⊥
|kz|k0

{[
J1(ξ )

ξ
ν

αβ

k̄,2
+ k2

z

k2
0

(
J0(ξ ) − J1(ξ )

ξ

)
ν

αβ

k,2

]
ex ⊗ ex

+
[(

J0(ξ ) − J1(ξ )

ξ

)
ν

αβ

k̄,2
+ k2

z

k2
0

J1(ξ )

ξ
ν

αβ

k,2

]
ey ⊗ ey + k2

⊥
k2

0

J0(ξ )ναβ

k,2ez ⊗ ez

}
(B10)

and

�αβ
c =

∫ k0

0

dk⊥
2π

k⊥
k2

0

{[
J1(ξ )

ξ
ν

αβ

H,1 +
(

J0(ξ ) − J1(ξ )

ξ

)
ν

αβ

E,1

]
ex ⊗ ey −

[(
J0(ξ ) − J1(ξ )

ξ

)
ν

αβ

H,1 + J1(ξ )

ξ
ν

αβ

E,1

]
ey ⊗ ex

}

− i
∫ ∞

k0

dk⊥
2π

k⊥
k2

0

{[
J1(ξ )

ξ
ν

αβ

H,2 −
(

J0(ξ ) − J1(ξ )

ξ

)
ν

αβ

E,2

]
ex ⊗ ey −

[(
J0(ξ ) − J1(ξ )

ξ

)
ν

αβ

H,2 − J1(ξ )

ξ
ν

αβ

E,2

]
ey ⊗ ex

}
(B11)

as well as

K
αβ

k = i
∫ k0

0

dk⊥
2π

k2
⊥

k3
0

J1(ξ )ναβ

k,1[ex ⊗ ez + ez ⊗ ex] −
∫ ∞

k0

dk⊥
2π

k2
⊥

k3
0

J1(ξ )ναβ

k,2[ex ⊗ ez − ez ⊗ ex] (B12)
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and

Kαβ
c = −i

∫ k0

0

dk⊥
2π

k2
⊥

kzk2
0

J1(ξ )
(
ν

αβ

H,1ey ⊗ ez − ν
αβ

E,1ez ⊗ ey
) − i

∫ ∞

k0

dk⊥
2π

k2
⊥

|kz|k2
0

J1(ξ )
(
ν

αβ

H,2ey ⊗ ez − ν
αβ

E,2ez ⊗ ey
)

(B13)

together with the abbreviations

ν
αβ

k,1 = (1 − |rk|2)eikz (zα−zβ ), (B14)

ν
αβ

k,2 = 2 Im(rk )e−|kz |(zα+zβ ). (B15)

APPENDIX C: ABBREVIATIONS FOR SINGLE-NANOPARTICLE CASE

For the single-nanoparticle case, we introduced the matrix entries

Mk,⊥ = (np − nb)
k2

0VpIm(χk ) + k6
0V 3

p Im(χk̄ )|χk |2|GHE|2
|1−k2

0Vpχk̄〈Gk̄k̄,⊥〉|2∣∣1 − k2
0Vpχk〈Gkk,⊥〉 + k4

0V 2
p χEχH〈GHE〉2

1−k2
0Vpχk̄〈Gk̄k̄,⊥〉

∣∣2
, (C1)

Mk,z = (np − nb)
k2

0VpIm(χk )∣∣1 − k2
0Vpχk〈Gkk,z〉

∣∣2 , (C2)

Nc = k4
0V 2

p (np − nb)Im(χH)χEGHE(1 − k2
0Vpχ

∗
E〈GEE,⊥〉∗)∣∣(1 − k2

0VpχE〈GEE,⊥〉)(1 − k2
0VpχH〈GHH,⊥〉) + k4

0V 2
p χEχH〈GHE〉2

∣∣2

− k4
0V 2

p (np − nb)Im(χE)χ∗
HG

∗
HE(1 − k2

0VpχH〈GHH,⊥〉)∣∣(1 − k2
0VpχE〈GEE,⊥〉)(1 − k2

0VpχH〈GHH,⊥〉) + k4
0V 2

p χEχH〈GHE〉2
∣∣2 . (C3)

The asterisk denotes the complex conjugate. We also define the integrals

Ik,⊥ =
∫ k0

0

dk⊥
2π

k⊥
kzk0

(
|1 + rk̄e2ikzzp |2 + k2

z

k2
0

|1 − rke2ikzzp |2
)

, (C4)

Ik,z =
∫ k0

0

dk⊥
2π

k3
⊥

kzk3
0

|1 + rke2ikzzp |2, (C5)

Ic =
∫ k0

0

dk⊥
2π

k⊥
k2

0

{
2 + 2i Im

[
(rH − rE)e2ikzzp

] − |rH|2 − |rE|2} (C6)

for the heat radiation transferred between nanoparticle and background. We also defined the integrals

Rk,⊥ =
∫ k0

0

dk⊥
2π

k⊥
kzk0

(
(1 − |rk̄|2)

(
1 + rk̄e2ikzzp

) + k2
z

k2
0

(1 − |rk|2)
(
1 − rke2ikzzp

))
, (C7)

Rk,z =
∫ k0

0

dk⊥
2π

k3
⊥

kzk3
0

(1 − |rk|2)
(
1 + rke2ikzzp

)
, (C8)

Rc =
∫ k0

0

dk⊥
2π

k⊥
k2

0

e2ikzzp
[
(1 − |rH|2)rH − (1 − |rE|2)rE

]
(C9)

for the radiation absorbed in the nanoparticle and the integrals

�k,⊥ =
∫ k0

0

dk⊥
2π

k⊥
kzk0

(
(1 − |rk̄|2) + k2

z

k2
0

(1 − |rk|2)

)
+ 2

∫ ∞

k0

dk⊥
2π

k⊥
|kz|k0

e−2|kz |zpIm

(
rk̄ + |kz|2

k2
0

rk

)
, (C10)

�k,z =
∫ k0

0

dk⊥
2π

k3
⊥

kzk3
0

(1 − |rk|2) + 2
∫ ∞

k0

dk⊥
2π

k3
⊥

|kz|k3
0

e−2|kz |zpIm(rk ), (C11)

�c =
∫ k0

0

dk⊥
2π

k⊥
k2

0

(2 − |rH|2 − |rE|2) − 2i
∫ ∞

k0

dk⊥
2π

k⊥
k2

0

e−2|kz |zpIm(rH − rE) (C12)

for the radiation scattered by the nanoparticle.
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