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Microscopic theory of photon-induced energy, momentum, and angular momentum
transport in the nonequilibrium regime
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We set up a general microscopic theory for the transfer of energy, momentum, and angular momentum
mediated by photons. Using the nonequilibrium Green’s function method, we propose a unified Meir-Wingreen
formalism for the energy emitted, force experienced, and torque experienced by the objects due to the fluctuating
electromagnetic field. Our theory does not require the local thermal equilibrium that is the central assumption of
the conventional theory of fluctuational electrodynamics (FE). The obtained formulas are valid for arbitrary
objects as well as the environment without the requirement of reciprocity. To show the capability of our
microscopic theory, we apply the general formulas to transport problems of graphene edges in both equilibrium
and nonequilibrium situations. We show the local equilibrium energy radiation of graphene obeys the well-known
T 4 law with a converged theoretical emissivity of 2.058%. In the ballistic nonequilibrium situation driven by
chemical potential biases, we observe nonzero results for force and torque from the graphene edges, which go
beyond the predictive ability of the FE theory. Our method is general and efficient for large systems, which paves
the way for studying more complex transport phenomena in the nonequilibrium regime.
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I. INTRODUCTION

Due to fluctuations of the electromagnetic field around
bodies, photons transfer energy, momentum, and angular mo-
mentum from one object to another or to the environment,
which gives rise to abundant physical phenomena such as
radiative heat transfer [1,2], the Casimir force [3–5], and the
associated torque [6]. The transport problems of these con-
served quantities have attracted tremendous interest for their
myriad applications in advanced technologies. For example,
the heat transfer in the near field can significantly exceed the
blackbody limit, which plays an important role in develop-
ing alternative techniques such as thermal management [7],
energy conversion [8], data storage [9], etc. Photon-carrying
momentum generates force in both equilibrium and nonequi-
librium situations. With certain geometries, the Casimir force
arises, and novel phenomena such as levitation and the self-
propelling state can be achieved [10,11]. Angular momentum
radiation plays a central role in quantum nanophotonics and
topological electrodynamics [12,13]. Recent studies demon-
strated a separation of orbital angular momentum and spin
angular momentum [14,15], which have been intensively ap-
plied to information and image processing [16–19].

Conventional theories for these transport phenomena are
based on the fluctuational electrodynamics (FE) of Ry-
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tov [20,21] which combines Maxwell’s equations with the
local fluctuation-dissipation theorem (FDT) [22]. However,
there are several situations in which the FE theory might fail.
First, FE is a macroscopic theory with, usually, a phenomeno-
logical treatment of materials by a frequency-dependent local
dielectric function. This is not sufficient at the subnanome-
ter scale, for which detailed atomistic modeling of material
properties is needed, especially for inhomogeneous materials
or near edges [23–25]. Second, applying the FDT requires a
local thermal equilibrium for each object that is questionable
in real experiments. Effort has been devoted to extending
both the FDT and FE to nonequilibrium systems of multiple
objects by combining the scattering theory with the conven-
tional FE [23]. However, the described system is still under
a nonequilibrium stationary state in which each object has a
distinct, but still definite, temperature. Furthermore, existing
theoretical works focus on only one or two of these phenom-
ena with the usual requirement of reciprocity [26–31]. To the
best of our knowledge, a general unified microscopic theory
for all three photon-induced transport phenomena, especially
in the nonequilibrium regime, is still lacking.

In this paper, using the nonequilibrium Green’s function
(NEGF) method, we propose a general microscopic formal-
ism for the photon-induced transfer of energy, momentum,
and angular momentum in a unified fashion. We show that
combined with the self-energy of the objects, the physical
observables of three conserved quantities can be obtained
from the corresponding quantum-mechanical operators acting
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on the photon Green’s function of the electromagnetic field.
The obtained Meir-Wingreen-type formulas [32,33] are valid
for both objects and the environment without assumptions of
local thermal equilibrium and reciprocity. In this regard, our
theory allows for studying a different class of nonequilibrium
transport phenomena beyond the applicability limit of existing
FE approaches. In other words, the developed NEGF formal-
ism in this paper can study transport problems for objects
without a definite temperature, e.g., a ballistic nonequilibrium
situation with driven currents.

To demonstrate the power of our microscopic theory,
we study the edge effects of the transport phenomena of
graphene nanoribbons in both equilibrium and nonrecipro-
cal nonequilibrium situations. In particular, we calculate the
energy emitted, force experienced, and torque experienced
by graphene edges with possible electron transitions due to
chemical potential biases. In thermal equilibrium, we show
the edge effects of graphene have an approximate length
scale of t/kBT , where t is the hopping parameter and kBT
is the thermal energy at the temperature T . For the bulk
two-dimensional system, the heat emission of graphene obeys
the T 4 law with a converged emissivity of 2.058%, which
is in good agreement with the value implied by the Dirac
model [34]. Moreover, we demonstrate nonzero momentum
and angular momentum radiations in a ballistic nonequilib-
rium situation which cannot be treated by the conventional
FE. The discovered nonvanishing force and torque at the edge
are unique from nonequilibrium steady states.

II. THEORY

To tackle the fluctuating electromagnetic field around bod-
ies, we explore the NEGF method [35–37] as our basic tool.
The fundamental quantity of interest is the photon Green’s
function defined by the vector potential Aμ as

Dμν (r, τ ; r′, τ ′) = 1

ih̄
〈Tτ Aμ(r, τ )Aν (r′, τ ′)〉. (1)

Here τ and τ ′ are Keldysh contour times, r and r′ are the
positions, Tτ is the contour-order operator, and μ and ν take
x, y, and z directions. The average 〈· · · 〉 shown in Eq. (1)
is a nonequilibrium average by a certain unknown density
matrix whose effect can be reflected by the properties of the
baths. From the contour Green’s function, we can determine
the lesser (<), greater (>), retarded (r), and advanced (a)
Green’s functions in the usual way as defined in Appendix A.
For convenience, we adopt the φ = 0 gauge [38] with elec-
tric field strength E = −∂A/∂t and magnetic induction by
B = ∇ × A. A perturbation theory with the −j · A interac-
tion, where j is the electric current density, leads to a Dyson
equation D = v + v�D, where v−1 = ε0(ω2 − c2∇ × ∇ × ·)
is a differential operator acting on D in the frequency domain,
c is the speed of light, and the self-energy � is the lowest-
order current-current correlation function in the random phase
approximation.

Now, we consider N physical objects with arbitrary geom-
etry in vacuum. The environment is represented by a sphere of
“bath at infinity” with radius R → ∞, as depicted in Fig. 1(a).
The major physical observables of energy, momentum, and
angular momentum transport are the heat emitted, radiation

FIG. 1. (a) Schematic setup of N objects in vacuum with ar-
bitrary geometry and the environment served as bath at infinity.
(b) Graphene nanoribbon with zigzag edges. The x direction is peri-
odic, and unit cells are represented by dashed lines with index l . Each
site along the y direction is labeled by index m with two sublattice
sites, A and B.

resultant force, and torque applied to each of the N objects,
respectively. We calculate these observables by surface inte-
gration of the corresponding fluxes with an outward norm.
Using the divergence theorem, the surface integrals can be
transformed into volume integrals over the object. Then, we
have the net energy emission Iα , the total force experienced
Fα , and the total torque experienced Nα for object α:

⎛
⎝ Iα

Fα

Nα

⎞
⎠ =

∮
�

⎛
⎝ S

T
r × T

⎞
⎠ · d� =

∫
V

⎛
⎝−E · j

f
r × f

⎞
⎠dV, (2)

where d� is the surface element with an outward norm,
dV is the volume element, S = (E × B)/μ0 is the Poynt-
ing vector, T = ε0EE + 1

μ0
BB − uU is the Maxwell stress

tensor with u = 1
2 (ε0E2 + B2/μ0), U is the identity, and

f = ρE + j × B is the Lorentz force density. Since charge
and current densities are related by the continuity equa-
tion ∂ρ/∂t = −∇ · j, at steady state, we can perform inte-
gration by parts in time as well as in space [namely, 〈aḃ〉 =
−〈ȧb〉, ∫

dVa ∂μb = − ∫
dV (∂μa) b], transforming the force

density as f = ∑
ν jν∇Aν .

In performing the quantum-mechanical steady-state av-
erage, we use a symmetric order of the operators, 〈AB +
BA〉/2 = ih̄

∫ ∞
0

dω
2π

GK
AB(ω), where the Keldysh Green’s func-

tion is GK = G< + G>, with G<
AB(t − t ′) = 〈B(t ′)A(t )〉/(ih̄)

and G>
AB(t − t ′) = 〈A(t )B(t ′)〉/(ih̄). To conveniently manipu-

late the expression, we introduce an intermediate quantity

Fμν (r, τ ; r′, τ ′) = 1

ih̄
〈Tτ Aμ(r, τ ) jν (r′, τ ′)〉. (3)

Then, the current density j connects back to the vector field
A by evoking the linear response, j = −�αA on the contour.
Since the 〈AA〉 correlation gives the Green’s function D, after
applying the Langreth rule [39] to D�α defined on the con-
tour, we can express the three observables in terms of F by
taking time or spatial derivatives, for which more details can
be found in Appendix B.

205421-2



MICROSCOPIC THEORY OF PHOTON-INDUCED ENERGY, … PHYSICAL REVIEW B 105, 205421 (2022)

Finally, we obtain our central results, which are the follow-
ing Meir-Wingreen-type formulas for Iα , Fα , and Nα:⎛

⎝ Iα
Fα

Nα

⎞
⎠ =

∫ ∞

0

dω

2π
ReTr

⎡
⎣

⎛
⎝−h̄ω

p̂
L̂

⎞
⎠(

Dr�K
α + DK�a

α

)⎤⎦. (4)

In the above, h̄ω is obtained from the energy operator ih̄∂/∂t
acting on the Fourier transform of D; p̂ = −ih̄∇ is the mo-
mentum operator acting on the first spatial argument of D.
L̂ = r × p̂ + Ŝ is the angular momentum operator with the
spin operator Sμ

νγ = (−ih̄)εμνγ acting on the directional index
space of D. εμνγ is the Levi-Civita symbol. The trace is over
the space r as a volume integral and summation over the index
μ. Re stands for the real part. The lesser (greater) Green’s
function is related to the retarded and advanced ones with the
Keldysh equation D<(>) = Dr�<(>)Da, where �<(>) is the
total self-energy summed over α, i.e., �<(>) = ∑

α �<(>)
α . In

a tight-binding model, if we use an electron system with the
electron-photon coupling matrix Mlμ

jk for the unit cell l , with
j and k being electron sites, the self-energy from each object,
serving also as bath for photons, is given by

�lμ,l ′ν
α (τ, τ ′) = −ih̄ Tre[MlμG(τ, τ ′)Ml ′νG(τ ′, τ )], (5)

where G is the electron Green’s function of object α and
the trace is over the electron sites. We note that the re-
tarded self-energy is related to the dielectric function by �r =
−ε0ω

2(ε − 1), which in turn can be related to the electric
conductivity of materials [40].

Another advancement of the Meir-Wingreen formulas (4)
is that they also work for the environment (α = ∞) where
the trace operation is interpreted as an integration over the
sphere and the sum over the direction index. The self-energy
for the bath at infinity can be worked out by conservation laws
of the three kinds of transport quantities for α = 1, 2, . . . , N
and ∞ as a whole. This requirement demands �r

∞ = −v−1.
Alternatively, a dust model integrating over the space |r| > R
can be built by considering a one-dimensional chain model
with a finite central region and considering the effect of non-
reflecting boundary conditions [41]. Finally, one matches the
surface integral results of the Poynting vector and Maxwell
stress tensor. They all lead to the expression

�r
∞ = −iε0c ω(U − R̂R̂), (6)

where the retarded self-energy is expressed in dyadic notation
and R̂ = R/R is the unit vector pointing from the coordinate
origin to a point on the sphere.

From the above discussion, it appears that we have two
self-energy expressions for the bath at infinity. One is −v−1,
and the other is given by Eq. (6). The former is a differential
operator which must act on D in order to see its effect, and the
latter is defined on the sphere |r| = R, which is friendlier for
actual computation. Here we demonstrate their consistency
with a dust model. We assume for |r| � R that the solution
for the retarded Green’s function is the free one,

Dr
0 = − ei ω

c R

4πε0c2R

[
(U − R̂R̂)

+
(

− 1

i ω
c R

+ 1

(i ω
c R)2

)
(U − 3R̂R̂)

]
. (7)

A “dust” model is obtained by the replacement ω → ω + iη
in the above solution to describe the damping for |r| > R. In
evaluating the transport quantities, we need to evaluate the
trace of the form Tr Ô[Dr�<Da�a

∞], in which Ô is the extra
operator acting on Dr , and the trace involving the bath at infin-
ity is the volume integral of all space outside the sphere. Then
we can perform a solid-angle integration and

∫ ∞
R dr r2 · · · .

Since when η = 0, v−1Dr = 0, the effect of the dust is

v−1Dr = ε0[ω2 − (ω + iη)2]Dr ≈ ε0(−2iηω)Dr . (8)

The advanced Green’s function Da is obtained by taking the
Hermitian conjugate of Dr . At an asymptotically large dis-
tance, we can ignore the second high-order term in 1/R, and
it is sufficient to keep the first term. Then the decay factor is
DrDa ∝ e−2ηr/c. After integrating r from R to infinity, we find
a finite result when η → 0+,

Tr Ô[Dr�<Da�a
∞] ≈

∫
d�R2Ô[Dr�<Da(iε0cω)]. (9)

In the process, the operator Ô should not mess up the argu-
ment. Both Dr and Da have a transverse projector U − R̂R̂,
so we also attach this projector to the numerical factor iε0cω.
This gives the surface sphere version of the self-energy for the
bath at infinity in Eq. (6), which is local in the solid angle.

As a check of the correctness of the self-energy, we con-
sider a system that consists solely of the bath at infinity
and no objects at all. We then evaluate the energy density
u = 1

2 (ε0E2 + 1
μ0

B2) at the origin due to the bath at infinity
with temperature T . The thermal average can be expressed in
terms of the Green’s function as

〈u〉 =
∫ ∞

0

dω

2π
ih̄Trμ

[
ε0ω

2D< − 1

μ0
∇r×D<×∇r′

]
, (10)

where the trace is in the direction index, the first gradient
operator is over the first argument, and the second one is over
the second argument. After taking the derivatives, the Green’s
function is evaluated at r = r′ = 0. By applying the Keldysh
equation, D< = Dr�<

∞Da, and the fluctuation-dissipation the-
orem, �<

∞ = N (ω)(�r
∞ − �a

∞), we can perform the trace at
the sphere while expressing Dr

0 to the leading order in 1/R.
Then we obtain

〈u〉 =
∫ ∞

0
dω

ω2

π2c3
h̄ω N (ω), (11)

which is the correct expression for the blackbody radiation.
Interestingly, an explicit calculation from Eq. (4) shows that,
for the far-field angular momentum emission, exactly half is
from the orbital contribution r × p, and the other half is from
the spin part, in which the final expression agrees with the
surface integral result [42].

III. EXAMPLE OF A GRAPHENE NANORIBBON

Now, we apply the general theory to the system of a
graphene nanoribbon, as shown in Fig. 1(b). In particular,
we study the nonequilibrium edge effects in a nonreciprocal
ballistic transport situation in which the conventional FE
theory fails. For the convenience of saving computational
cost, we perform the following approximations for a
concrete calculation. First, we make a multipole expansion,

205421-3



ZHANG, ZHU, ZHANG, AND WANG PHYSICAL REVIEW B 105, 205421 (2022)

Dr (R, r) = Dr (R, 0) + r · ∂Dr (R, r′)/∂r′|r′=0 + · · · , and
keep the dominant lowest nonvanishing order (note that
the monopole term for force is identically zero). Second,
the graphene ribbon is lattice periodic in the x direction,
so the self-energy can be calculated in the eigenmode
representation, which is more efficient than that of frequency
integration [42]. After performing the integration of the solid
angle and frequency as shown in Appendix C, we obtain the
formula of emitted energy as

I = 4α

3h̄c2

∑
μ,nn′

(εn − εn′ )2�(εn − εn′ )|〈n|V μ|n′〉|2 fn(1 − fn′ ),

(12)
where α ≈ 1/137 is the fine-structure constant and εn is
the energy of state n with the Fermi distribution function
fn = 1/(eβL(R) (εn−μL(R) ) + 1), where βL(R) = 1/kBTL(R) and
μL(R) is the chemical potential applied to the left (right) lead.
Taking the left or right chemical potential in the Fermi func-
tion is determined by the sign of the group velocity, which is
calculated by 〈n|V x|n〉 [43], where V μ is the component of the
velocity matrix in the μ direction (see details in Appendix D).
This treatment realizes a nonequilibrium situation in a bal-
listic system. �(x) is the step function, which is 1 for x > 0
and 0 otherwise. Not surprisingly, this formula agrees with
results obtained from Fermi’s golden rule and the Boltzmann
transport theory [44]. Similarly, we can derive the formula for
torque as

Nz = 4α

3c2

∑
nn′

(εn − εn′ )�(εn − εn′ )Im{ fn(1 − fn′ )

× [〈n|V x|n′〉〈n′|V y|n〉 − 〈n|V y|n′〉〈n′|V x|n〉]}, (13)

which is also consistent with the real-space formula reported
in Ref. [42].

The situation for force is a bit more complex in that a
concrete formula has not yet been given. Here we introduce
the notation eU μ

γ ≡ ∑
l Mlμrl

γ . The superscript index is asso-
ciated with Mμl or the velocity component, and the subscript
index is associated with the direction of coordinate rγ . With
some derivations for which the details can be found in Ap-
pendix C, we obtain the force formula

Fμ = 4α

30h̄2c4

∑
nn′

(εn − εn′ )3�(εn − εn′ ) fn(1 − fn′ )

× Tr

[
4

∑
ν

(
ρnU

ν
μρn′V ν − ρnV

νρn′U ν
μ

)
−

∑
ν

(
ρnU

μ
ν ρn′V ν − ρnV

μρn′U ν
ν

)

−
∑

ν

(
ρnU

ν
ν ρn′V μ − ρnV

νρn′U μ
ν

)]
, (14)

where ρn = |n〉〈n| is the density matrix of state n.
Now, we first study the edge effects of the energy emission

of graphene nanoribbons in thermal equilibrium. We show in
Fig. 2(a) the thermal radiations from graphene nanoribbons
with stripe width M = 700. As shown, the emission pow-
ers from both zigzag and armchair ribbons converge at high
temperatures with the T 4 law of gray bodies. The difference

FIG. 2. (a) Temperature dependence of radiation power from
zigzag and armchair graphene nanoribbons. Inset: the calculated
emissivity as a function of the inverse of the ribbon width at the
temperature of 300 K. (b) Photon-induced power emitted, torque
experienced, and force experienced by graphene nanoribbons as
functions of the left lead chemical potential with 401 k points at a
temperature of 300 K. The right lead chemical potential is fixed at
μR = −0.84t .

between the zigzag and armchair ribbons at low temperature
is because the former is metallic while the latter has a very
small band gap. With the increase in temperature, thermal
excitation gradually overcomes the small energy gap, and their
difference vanishes. On the other hand, as the edge and bulk
contribute differently to the energy emission, we see devia-
tions of the T 4 law for both ribbons at low temperature due to
the finite stripe used. This is further supported by the fact that,
for t = 2.8 eV, the width M = 700 is not much larger thane
t/kBT ≈ 100 at room temperature. In the inset in Fig. 2(a),
we check the convergence of the edge effects of the zigzag and
armchair ribbons. We find the emissivities of both zigzag and
armchair ribbons have an inverse linear relation to the width.
For infinitely large width (i.e., 1/M → 0), the emissivity con-
verges to 2.058%, matching almost exactly the emissivity of
2.056% obtained analytically from integration over the whole
frequency range of light using the Dirac model [34]. This
value is independent of temperature and also agrees with the
experimental reports [45] that the thermodynamic emissivity
of graphene is smaller than the 2.3% optical emissivity ob-
tained from a circle average of the visible light radiation [46].

According to the FE theory, torque and force are zero for
isolated bulk materials due to the reciprocity of the Hamilto-
nian [47]. Thus, we further study the transport phenomena of
the graphene edge under a ballistic nonequilibrium situation
which the FE theory cannot handle. We show in Fig. 2(b)
the calculated power emitted, torque experienced, and force
experienced by graphene nanoribbons under different chemi-
cal potential biases. Specifically, the chemical potential biases
are applied in the x direction, and we compute the torque
in the z direction and force in the x direction as all other
directions generate null results. As shown, power, torque, and
force are significantly changed with μL altered from 0 to
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FIG. 3. Intensity of (a) power, (b) torque, and (c) force for zigzag graphene nanoribbon edges with different chemical potentials for the left
and right leads. (d)–(f) The same quantities as in (a)–(c), respectively, but for armchair graphene nanoribbon edges.

t , while all remain unchanged for μL outside of this range.
This is attributed to the concentration of the density of states
in this energy window. Interestingly, the energy emission in-
creases significantly with the increase of μL from 0 to t , but
the torque and force have more complex features. At certain
ranges, the torque and force decrease with increasing μL due
to the cancellation of momentum and angular momentum
radiation from transitions between the energy state 0 → t
and 0 → −t .

The effect of the chemical potential can be seen more
clearly in the density plot. In Fig. 3, we show power, torque,
and force density of both zigzag and armchair graphene rib-
bons with chemical potentials μL and μR. Generally, equal
chemical potentials in the left μL and right μR lead do not
generate torque or force. As shown in Figs. 3(a) and 3(d),
the energy radiations from zigzag and armchair ribbons are
almost identical. However, the force and torque show very
different patterns for zigzag and armchair edges. In Figs. 3(b)
and 3(e), stripe patterns can be observed in the diagonal
corner. These stripes represent large angular momentum radi-
ation under different chemical potential biases, corresponding
to emission due to electronic transitions between the Van
Hove singularities at ±t and zero-energy edge states. The
forces shown in Figs. 3(c) and 3(f) have similar features but
more complicated patterns. This character is ascribed to the
existence of zero-energy edge states of a zigzag graphene
ribbon, while for an armchair ribbon, resonant transitions
occur between the Van Hove singularities. Thus, the nonva-
nishing torques and forces emerging at nonequilibrium are

edge effects in which different results for zigzag and armchair
ribbons are shown.

IV. CONCLUSION

In summary, we have proposed a general theory for trans-
port problems of conserved quantities mediated by photons.
Using the NEGF method, we derived unified Meir-Wingreen-
type formulas for the energy emitted, force experienced, and
torque experienced of objects (or environment) due to the
fluctuating electromagnetic field. The theory is valid in both
equilibrium and nonequilibrium regimes without the require-
ment of local thermal equilibrium and reciprocity of materials.
We apply the general theory to the near-edge transport prob-
lem of graphene nanoribbons. In thermal equilibrium, the
energy emission of graphene follows the T 4 law with an
emissivity of 2.058% for both infinitely wide zigzag and arm-
chair ribbons. Then, we set up a nonequilibrium state in the
ballistic regime by putting different chemical potentials based
on group velocity in the x direction. Our results show that
nonzero momentum and angular momentum radiation can be
generated from the edge in such nonequilibrium situations.
There are prominent changes in all three conserved quantities
in the bias window 0 < μL < t , which goes beyond the pre-
dictability of the conventional FE theory. Regardless of the
theoretical complexity, the proposed Meir-Wingreen formulas
are general and can be applied to multiple objects to study
more complex phenomena such as nonequilibrium Casimir
effects in future work.
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APPENDIX A: GREEN’S FUNCTIONS

It is simpler to use a compact notation so that the Green’s
function defined by Eq. (1) in the main text is a matrix indexed
by the space location r and index μ, denoted D(τ, τ ′). The
contour time is the pair τ = (t, σ ) of real time and the branch
index. Due to the + (forward) and − (backward) branches
the contour Green’s function gives four Green’s functions
in real time: D++ = Dt is time ordered, D−− = Dt̄ is an-
titime ordered, D+− = D< is lesser, and D−+ = D> is greater.
The four are not linearly independent and are constrained by
Dt + Dt̄ = D> + D< = DK . The retarded Green’s function
is Dr = Dt − D< = �(D> − D<), and the advanced Green’s
function is Da = D< − Dt̄ = −(1 − �)(D> − D<), such that
D> − D< = Dr − Da. Let 1 ≡ (r, μ, t ) and 2 ≡ (r′, ν, t ′);
we have the symmetry in the time domain as D>(1, 2) =
D<(2, 1) and Dr (1, 2) = Da(2, 1). The Fourier transform into
frequency is defined by

D(ω) =
∫ +∞

−∞
dt D(t − t ′)eiω(t−t ′ ). (A1)

In the frequency domain, we have the Hermitian conjugate
[Dr (ω)]† = Da(ω), [D<(ω)]† = −D<(ω). These general re-
lations are also shared by the self-energy � since � is
essentially the current-current Green’s function. We define
reciprocal as being �T = �, where the transpose is in the
combined (r, μ) space.

The contour-ordered Dyson equation, D = v + v�D, im-
plies the Keldysh equation, D< = Dr�<Da, which is valid
in general. In global thermal equilibrium, we also have
the fluctuation-dissipation theorem, D< = N (ω)(Dr − Da),
where N (ω) = 1/(eβ h̄ω − 1) is the Bose function. Consis-
tency between the two equations and with the retarded Dyson
equation when the self-energies are additive among the N + 1
objects requires the self-energy for the bath at infinity to be
�r

∞ = −(vr )−1 (actually, the argument determines only the
difference �r − �a). This is because the Keldysh equation,
defined in a compact domain (central region), together with
the fluctuation-dissipation relation, implies

(Da)−1 − (Dr )−1 =
N+1∑
α=1

(
�r

α − �a
α

)
, (A2)

where we denote the “object at infinity” as N + 1, while the
Dyson equation is

(Dr )−1 = (vr )−1 −
N∑

α=1

�r
α. (A3)

The retarded Dyson equation should be viewed as a differ-
ential equation defined in the whole space, and the bath at
infinity is only a no-scattering boundary condition at infinity;
thus, there is no explicit bath self-energy in the Dyson equa-
tion. Taking the Hermitian conjugate, subtracting the retarded
version, and making a comparison, we find �r

∞ − �a
∞ =

(va)−1 − (vr )−1. We can fix it as an equality, �r
∞ = −(vr )−1,

by conservation laws.

APPENDIX B: DERIVATION OF THE MEIR-WINGREEN
FORMULAS

We could follow the steps of Krüger et al. [10],
using j = −v−1A to map back to the field A. Here we use the
method outlined in the main text. The advantage of this route
is that it is easy to separate out the total contribution from a
focused object α. Using our definition of the Green’s function
F = 〈A jα〉/(ih̄) and the expressions for the Joule heating,
force, and torque formulas, we obtain

Iα =
∫ ∞

0

dω

2π
h̄ω Tr[F K (ω)], (B1)

Fα =
∫ ∞

0

dω

2π
ih̄ Tr[∇rF K (ω)], (B2)

Nα =
∫ ∞

0

dω

2π
Tr[ih̄ r × ∇rF K (ω) − ŜF K (ω)]. (B3)

Here the differentiation with respect to time is −iω in the
frequency domain, and the differential in space is associated
with A, which is the first argument of F (r, r′). The trace
means integration over the whole volume and sum over the di-
rection index. Ŝ is the spin-1 operator, as explained in the main
text. This extra spin term is caused by − ∫

dV r × ∂ν ( jνA) =∫
dV j × A, which is a total divergence for force but not

for torque.
The next step is to evaluate the Green’s function F . One can

use the Feynman diagrammatic method, but here we use a fast
argument. The local response of the current due to total field
is given by j = −�αA, where both the current and field are
interpreted as quantum operators, while the contour-ordered
Green’s function � is just a number. The multiplication is
a convolution in r, τ , and matrix multiplication in index
μ. Putting this result into F and using the fact that the
contour-ordered Green’s function for D and � is symmetric
with respect to the arguments, we obtain F = −D�α . The
lesser (greater) component is obtained from Langreth’s rule,
−F<(>) = Dr�<(>)

α + D<(>)�a
α , which is then our main re-

sult. If we assume reciprocity for �, we can recover the results
for energy and force from Krüger et al. [10].

As we have defined the three conserved quantities as
surface integrals, it is obvious that if we sum over the ob-
jects from α = 1, 2, . . . , N , and N + 1, we should get zero.
The conservation of energy is obtained from the identity
Tr(D>�<−D<�>) = 0, where �>,< is the total. This iden-
tity cannot be used to prove the conservation of total force
and torque due to the extra operator in front of D, but the sum
is indeed zero if �a

∞ = −(va)−1. This is a consequence of
the validity of the Dyson equation. After the summation, the
last common factor in Eq. (4) after the various operators is
Dr�K + DK�a = Dr�K (I + Da�a), and we have used the
Keldysh equation. The extra multiplicative factor I + Da�a

when equated to zero is nothing but the Dyson equation of
the advanced version, recalling �r = ∑N

α=1 �r
α − (vr )−1. For

equations in the frequency domain, the retarded version has
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ω → ω + iη and η → 0+, and the advanced one is obtained
with the Hermitian conjugate.

APPENDIX C: DERIVATION OF POWER, TORQUE, AND
FORCE FORMULAS IN THE EIGENMODE

REPRESENTATION

As shown in Fig. 1(b) in the main text, we assume that the
x direction is periodic so that we can transform the stripe in
this direction into k space. Then, summing over sites becomes
integration over k, while keeping the y direction explicitly in
real space. We use index l to represent different unit cells

in the x direction, m labels the site of carbon atoms in the y
direction, and the z direction is perpendicular to the graphene
plane.

From the main text, the photon’s lesser Green’s function is
defined as

D<
μν (r′, t ′; r, t ) = 1

ih̄
〈Aν (r, t )Aμ(r′, t ′)〉. (C1)

Starting from the surface integral, Eq. (2) in the main text
[or Eq. (4) for the bath at infinity, α = ∞], we can write the
emitted energy as

I = Re
1

μ0

∑
μ,ν,γ ,β,ς

εμνγ εγβς

∫
d�R2R̂μ

∫ +∞

0

dω

π
h̄ω

(
− ∂

∂x′
β

)
D<

νς (r, r′, ω)|r′=r, (C2)

where � is the solid angle. Using the Keldysh equation D<
μν (r, r′, ω) = ∑

ll ′,γ ς Dr
μγ (r, rl , ω)�<,ll ′

γ ς (ω)Da
ςν (rl ′ , r′, ω), we have

I =
∫ ∞

0
dω

−h̄ω2

6π2ε0c3
Im

∑
ll ′,μ

�<,ll ′
μμ (ω), (C3)

where Im is the imaginary part. Similarly, we can write the resulting torque of the angular momentum radiation applied to
graphene along the ẑ direction as

Nz =
∫ ∞

0
dω

h̄ω

6π2ε0c3
Re[�<

xy(ω) − �<
yx(ω)]. (C4)

Here �< is the interacting self-energy summed over all lattice sites. For systems with time reversal symmetry, i.e., in which
the Hamiltonian is real and symmetric, both torque and force are zero at thermal equilibrium. To generate nonzero torque and
force, we have to apply a driven potential bias (μL, μR) to break the symmetry, and the system is not in equilibrium. Moreover,
even in the nonequilibrium state, the nonzero contribution is only from the edge. We apply a periodic boundary condition in the
x direction so that the eigenmode can be characterized by traveling waves. The interaction self-energy can be obtained in the
eigenmode as

�<,ll ′
μν (ω) = −i2π

∑
nn′

〈n|Mνl ′ |n′〉〈n′|Mμl |n〉 fn(1 − fn′ )δ(εn − εn′ − h̄ω), (C5)

where n denotes modes with wave vectors k and the electron band label and M is a vector matrix defined by eV = ∑
i Mi, which

can be expressed explicitly in terms of the matrix elements of velocity, Mi
jk = e(δi jV jk + δikV jk )/2, where i, j, k are site indices.

Substituting Eq. (C5) into Eqs. (C3) and (C4) and performing the frequency integration, we get

I = 4α

3h̄c2

∑
nn′

(εn − εn′ )2�(εn − εn′ )
∑

μ

|〈n|V μ|n′〉|2 fn(1 − fn′ ) (C6)

and

Nz = 4α

3c2

∑
nn′

(εn − εn′ )�(εn − εn′ )Im

{∑
nn′

fn(1 − fn′ )[〈n|V x|n′〉〈n′|V y|n〉 − 〈n|V y|n′〉〈n′|V x|n〉]
}

. (C7)

These two equations are the main formulas we used to calculate the energy and angular momentum radiation. On the other hand,
the force acting on an object is due to the emission of momentum out of the object. With the Maxwell stress tensor, the force
formula integrated over a large sphere surface is equivalent to an integration of the solid angle, i.e., F = ∫

d�R2[ε0(R̂ · E )E −
uR̂]. With Eq. (C1) and its Fourier transform in space, we obtain

F =
∫ ∞

0

dω

π

∫
d�R2

[
ε0(ih̄ω2)

(
D< · R̂ − 1

2
Tr(D<)R̂

)
+ ih̄

2μ0
Tr(∇ × D<× ←

∇ )R̂
]
. (C8)

Since the only dependence of angle � appears in R̂, integration of an odd R̂ produces a value of zero. Thus, we must do a dipole

expansion of Dr
μν (R − rl ) to have an even order of R̂, i.e., Dr

μν (R − rl ) = Dr
μν (R) − rl · ∂

∂R
Dr

μν (R) + · · · . Substituting it into

the Keldysh equation and keeping only the first-order term (ignoring the monopole and higher-order terms), we have

D<
μν = −

∑
ζ ,γ ,ξ,l,l ′

(
Dr

μζ�
<,ll ′
ζγ xl ′

ξ ∂ξ Da
γ ν + xl

ζ ∂ζ Dr
μζ�

<,ll ′
ζγ Da

γ ν

)
, (C9)
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where all the subscript indices indicate directions x, y, and z. As the retarded photon Green’s function is

Dr
μν ≈ − e−i ω

c R

4πε0c2R
(U − R̂R̂)μν, (C10)

the Keldysh equation now can be written as

D<
μν = −i

ω

c

(
1

4πε0c2R

)2 ∑
ζ ,γ ,l,l ′

[
(rl − rl ′ ) · R̂(U − R̂R̂)μζ�

<,ll ′
ζγ (U − R̂R̂)γ ν

]
. (C11)

Substituting Eq. (C11) into the force formula (C8) and integrating over the solid angle, we have

Fμ =
∫ ∞

0
dω

−h̄ω3

60ε0π2c5

∑
ll ′

{
4Tr

(
�<,ll ′)(rl − rl ′ )μ −

∑
ν

[
�<,ll ′

μν (rl − rl ′ )ν + (rl − rl ′ )ν�
<,ll ′
νμ

]}
. (C12)

With Eq. (C5), we have

∑
ll ′

�<,ll ′
μν (ω)rl

γ = −i2π
∑
nn′

Tr

(∑
l

〈n|Mμl rl
γ |n′〉

∑
l ′

〈n′|Mνl ′ |n〉
)

fn(1 − fn′ )δ(εn − εn′ − h̄ω). (C13)

Here we introduce the notation eU μ
γ ≡ ∑

l Mlμrl
γ , where U μ

γ has two indices of directions x, y, and z. The superscript index is
associated with Mμl or the velocity component, and the subscript index is associated with the direction of the coordinate rγ .
Then we obtain the final formula for the force,

Fμ = 4α

30h̄2c4

∑
nn′

(εn − εn′ )3�(εn − εn′ ) fn(1 − fn′ )Tr

[
4

∑
ν

(
ρnU

ν
μρn′V ν − ρnV

νρn′U ν
μ

)

−
∑

ν

(
ρnU

μ
ν ρn′V ν − ρnV

μρn′U ν
ν

) −
∑

ν

(
ρnU

ν
ν ρn′V μ − ρnV

νρn′U μ
ν

)]
, (C14)

where ρn = |n〉〈n| is the density matrix of state n. For a graphene stripe, we find only F x �= 0, and the other component is
identically zero. The group velocity of state |n〉 is calculated by 〈n|V x|n〉, which determines the left or right chemical potential
used in the Fermi function fn.

APPENDIX D: VELOCITY MATRIX

Given a Hamiltonian Ĥ = C†HC in real space with Hermi-
tian matrix Hi j = H∗

ji and the creation (annihilation) operator
C† (C) for the electrons, the velocity matrix is [42]

V jk = 1

ih̄
Hjk (R j − Rk ). (D1)

Let v1 = v(0, 1), v2 = v(−√
3/2,−1/2),

v3 = v(
√

3/2,−1/2), with v = acct/h̄, where acc = 0.142
nm is the bond length between nearest-neighbor carbon atoms
in graphene. For a zigzag graphene nanoribbon, the velocity
operator is

V = iv1

[∑
l,m

a†
l (m + 1)bl (m)

]

− iv2

[ ∑
l,m=odd

b†
l (m)al (m) +

∑
l,m=even

b†
l (m)al−1(m)

]

+ iv3

[ ∑
l,m=odd

a†
l (m)bl−1(m) −

∑
l,m=even

b†
l (m)al (m)

]

+ H.c. (D2)

Here m represents the site as illustrated in Fig. 1, and a (a†)
and b (b†) are annihilation (creation) operators generated by

sublattices A and B, respectively. Performing a Fourier trans-
form in the x direction with Wakabayashi’s convention [48],
the velocity can be written as

V = iv1

∑
kx,m

a†
m+1(kx )bm(kx )

− iv2

∑
kx,m

ξb†
m(kx )am(kx )

+ iv3

∑
kx,m

ξa†
m(kx )bm(kx ) + H.c., (D3)

where ξ = e−ikx ã/2 and ã = √
3acc is the lattice constant. Then

the velocity matrix can be written as

V =
[

0 u
u† 0

]
. (D4)

The explicit expressions for V x and V y can be expressed by ux

and uy, which are given by

ux =
√

3v sin
kxã

2

⎡
⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎦ (D5)
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and

uy = iv

⎡
⎢⎢⎢⎢⎣

−gk/2 0 0 · · · 0
1 −gk/2 0 · · · 0
0 1 −gk/2 · · · 0
...

...
...

. . .
...

0 0 0 · · · −gk/2

⎤
⎥⎥⎥⎥⎦, (D6)

where gk = 2 cos(kxã/2). Similarly, the velocity matrices for
armchair graphene are

ux = iv

⎡
⎢⎢⎢⎢⎣

ξ −1/2 0 · · · 0
−1/2 ξ −1/2 · · · 0

0 −1/2 ξ · · · 0
...

...
...

. . .
...

0 0 0 · · · ξ

⎤
⎥⎥⎥⎥⎦ (D7)

and

uy = iv

√
3

2

⎡
⎢⎢⎢⎢⎣

0 −1 0 · · · 0
1 0 −1 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎦. (D8)

For a stripe with two edges, the angular momenta cancel as
the contributions from each edge are equal in magnitude and
opposite in sign. To obtain the effect of one edge, we use the
method of sharp cutoff. We separate the graphene nanoribbon
into bottom and top parts. The wave functions of atoms in
the top part are set to zero. This is analytically equivalent to
setting elements of velocity matrices to zero for atoms in the
top part.
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