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Thermal Hall response: Violation of gravitational analogs and Einstein relations
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The response of solids to temperature gradients is often described in terms of a gravitational analog: the effect
of a space-dependent temperature is modeled using a space-dependent metric. We investigate the validity of this
approach in describing the bulk response of quantum Hall states and other gapped chiral topological states. To
this end, we consider the prototypical Haldane model in two different cases of (i) a space-dependent electrostatic
potential and gravitational potential and (ii) a space-dependent temperature and chemical potential imprinted by
a weak coupling to noninteracting electron baths or phonons. We find that the thermal analog applied to theses
cases is invalid; while a space-dependent gravitational potential induces transverse energy currents proportional
to the third derivative of the gravitational potential, the response to an analogous temperature profile vanishes in
limit of weak coupling to the thermal bath. Similarly, the Einstein relation, the analogy between the electrostatic
potential and the internal chemical potential, is not valid in such a setup.

DOI: 10.1103/PhysRevB.105.205419

I. INTRODUCTION

Thermal transport in topological matter has been of high
interest as its quantization can reveal the topological nature
of the underlying state of matter [1,2]. Recently, a half-integer
quantized thermal conductance has been measured in ν = 5/2
fractional quantum Hall state [3] and α-RuCl3 [4–6]; the latter
is a candidate for realistic materials of chiral Kitaev spin liquid
[7]. Here a half-integer thermal conductance can be viewed
as a smoking-gun signature of the existence of gapless chiral
Majorana fermion on the edges. While such thermal edge
transport in topological materials is fairly well understood
(e.g., for a chiral spin liquid [7–9]), topological response in the
bulk and the corresponding bulk-boundary correspondence is
actively discussed [10–13].

In contrast with charge transport, where the electro-
static potential is coupled to the electron density and thus
the transport coefficients can be derived from the linear
response theory, there is no apparent term added in the Hamil-
tonian for the thermal transport. Luttinger [14] suggested that
thermal transport can be investigated via the coupling to ficti-
tious and spatially varying metric tensor (i.e., gravity). In this
case the Hamiltonian is given by

H[ψ] =
∫

dd r
√

g(r) h(r) =
∫

dd r [1 + ψ (r)] h(r), (1)

where h(r) is the (flat-space) energy density and the gravita-
tional potential ψ (r) describes how the metric varies spatially.

Roughly, the analogy of transport in curved space with the
problem of a space-dependent temperature T (r) is obtained
when one considers the density matrix

ρ ∼ e− ∫
dd r β(r)h(r), (2)

with a space-dependent inverse temperature β(r) = 1/T (r).
Comparing this to e−βH [�] suggests to identify

1

T (r)
= β(r) = β[1 + ψ (r)], (3)

where T = 1/β is a reference temperature. While this analogy
is appealing, it is also rather obvious that it can only be
of limited validity. Importantly, any problem with a space-
dependent temperature is by definition a nonequilibrium
problem. Thus the density matrix of Eq. (2) does not describe
the steady state of the system. The gravitational analogy is
well established for the calculation of thermal transport in
the thermodynamics limit and has, for example, been used to
classify topological matter [15]. According to the so-called
Luttinger relation, the thermal conductivity tensor κ describes
both the response to gradients of ψ and T

JE = −κ (T ∇ψ + ∇T ), (4)

where JE is the energy current density. Within linear response
theory, κ is therefore routinely calculated by considering
the response to a space- and time-dependent ψ ∼ ei(qr−	t ).
Importantly, one has to use the ‘transport limit’ for such a cal-
culation by taking first the limit q → 0 and only then 	 → 0.
In case that both ψ and T are present, one has to identify T (r)
with the internal temperature calculated from the local energy
density rather than the thermodynamic temperature [16]. The
Luttinger relation is in close analogy to the Einstein relation
for electric transport,

JC = σ∇(φ + μ), (5)

where φ is an external potential and μ the internal chemi-
cal potential calculated from the local density (and not the
electrochemical potential). In the case of broken time-reversal
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FIG. 1. Two systems for the thermal Hall bulk response. (a) A
focused laser beam locally heats the system via phonons and creates a
temperature profile T (r). (b) Using a gravitational analog, this would
correspond to a distorted lattice with space-dependent hoppings. In
a Chern insulator, the curvature induces a circulating energy current,
while the temperature bump has no such effect.

symmetry, one has to be careful when defining the correct
“transport currents” which have to be distinguished from equi-
librium currents related to the magnetization of the sample;
see Refs. [10,12,13,16–18].

In a quantum Hall system both σxy and κxy/T are quantized
while the longitudinal conductivites vanish, κxx = σxx = 0.
There is, however, a remarkable difference in the response
to a static, space-dependent electrostatic potential φ(r) and
a gravitational potential ψ (r). For example, φ(r) may arise
from an electric charge close to the surface of a topological
insulator [19]. In this case, the potential induces circulating
currents perpendicular to the potential gradients which can be
computed directly from Eq. (5). Remarkably, this is not the
case when the response to ψ (r) is calculated which may arise
due to a bump in the 2D material, see Fig. 1(b). In the context
of relativistic field theories, the bulk response is given by [20]

JE
i (r) = h̄c2(cR − cL )

96π
εi j∂ jR

≈ − h̄c2(cR − cL )

48π
εi j∂ j∇2ψ, (6)

where c is the speed of light, R = −2∇2ψ + O(ψ2) the
curvature, and cR − cL the difference of left-moving and right-
moving central charge characterizing the edge modes of the
system. cR − cL is directly related to the quantized thermal
Hall conductivity,

κxy

T
= (cR − cL )

π2k2
B

3h
. (7)

Remarkably, Eq. (6) predicts that the thermal topological
response to a gravitational potential is proportional to the
third derivative of ψ (r) while the Luttinger relation suggests
a response Eq. (4) proportional to the first derivative. This is
not a direct contradiction because Eq. (6) has been calculated
for a smooth static potential, i.e., by taking first the limit
	 → 0, while Eq. (4) is valid in the opposite limit where one
first considers the limit q → 0. The topological bulk response
Eq. (6) is directly linked to the gravitational anomaly [21] of
the edge theory: an apparent violation of energy conservation
at the edge in the presence of gravitational potentials can be
explained by the inflow of energy from the bulk [20,22].

An interesting observation from Eq. (6) is that the topo-
logical bulk response of relativistic theories is proportional

FIG. 2. Schematic drawing of the model. Each lattice point i in
the Haldane lattice model [cf. Eq. (8)] is weakly coupled to both a
phonon bath (wiggly line) with temperature Ti and to an electronic
wire with chemical potential μi and the same temperature Ti via a
tunnel contact (dashed line). On the right-hand side we show the
corresponding Keldysh self-energy diagrams which are evaluated
self-consistently.

to c2 which immediately suggests that the effect cannot be
fully universal in nonrelativistic topological phases where it
is unclear what should replace the speed of light. In this
context, it would be desirable to understand the bulk response
for nonrelativistic theories realized in all condensed matter
settings.

In this paper, we investigate whether the gravitational
analogy and Luttinger relations can be used to calculate the
response to space-dependent temperature profiles which arise
when a system is heated locally [see Fig. 1(a)]. More specif-
ically, we will show that the gravitational analogy does not
hold for temperature profiles T (r) even in a regime where T (r)
is much smaller than the gap of the system. Similar statements
hold for the electric case. Furthermore, we argue that the bulk
response to local gravitational potentials is not quantized in
nonrelativistic theories.

II. GRAVITATIONAL RESPONSE

As a concrete example, we consider the Haldane model
[23], which describes a Chern insulator, defined on a honey-
comb lattice.

Ĥ[ψ] = −
∑
i, j

ti j[1 + ψ (ri j )]c
†
i c j +

∑
i

vi[1 + ψ (ri )]c
†
i ci,

(8)

where ti j encodes a real-valued nearest-neighbor hopping t1
and a purely imaginary next-nearest neighbor hopping ±it2
(see Fig. 2). vi = ±vs is a staggered potential. To model the
effect of a gravitational potential, all terms in the Hamiltonian
depend on a smoothly varying gravitational potential ψ (ri j )
with ri j = (ri + r j )/2.

At vs < 3
√

3t2, the system is in a topological phase with
Chern number cR − cL = −1. At the quantum phase transition
to the trivial phase at vs = 3

√
3t2, the gap closes at the K while

it remains finite at the K ′ point [23]. Close to this transition,
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the system is accurately described by its continuum limit

Ĥ [ψ] ≈ Ĥc[ψ] =
∫

[1 + ψ (r)]ĥc(r)d2r, (9)

ĥc(r) = �†(r)
[−ivσ · ∇r + (

M − λ2∇2
r

)
σz

]
�(r),

with M = vs − 3
√

3t2, v = −√
3t1a/2, and λ2 = 3

√
3t2a2/4.

Here a is the lattice constant. The two-component spinor
�† = (�†

1 , �
†
2 ) creates electrons close to the K point.

Employing this continuum model, we first consider the
response to a gravitational potential ψ (r) and an electrostatic
potential φ(r) at zero temperature and for vanishing chemical
potential. For simplicity, it is assumed that ψ (r) and φ(r) vary
only in the x direction, but are constant in the y direction.

For the calculation of the gravitational response, we
first define the energy current density operator ĴE

ψ (r) in

the presence of ψ (r). ĴE
ψ (r) can be uniquely determined

by (i) requiring the continuity equation ∇r · ĴE
ψ (r) = i{[1 +

ψ (r)]ĥc(r), Ĥc[ψ]}/h̄ and (ii) imposing that ĴE
ψ is related

to the zero-potential energy current operator ĴE as ĴE
ψ =

(1 + ψ )2ĴE [16,17,24]. The calculation is done most con-
veniently in momentum space, where ĴE (q) has a form
ĴE (q) = ∫

dK/(2π )2�
†
K−q/2JE

K−q/2;K+q/2�K+q/2. Using stan-
dard linear-response theory, the expectation value of the
energy current operator JE

ψ (r) ≡ 〈ĴE
ψ (r)〉 can be obtained in

the linear order of the static gravitational potential ψ (see
Appendix A for details). Expanding in q for smoothly varying
ψ (x) we obtain

JE
y,ψ (r) ≈ ∂3

x ψ (r)

96π

(
4λ2Mθ (−M )

+ v2

{
sgn(M ) − 3 log

[
4e−5/3K2

cutλ
4

v2 + 4λ2Mθ (M )

]})
.

(10)

where we used that ψ (r) = ψ (x) depends only on the x-
coordinate in our setup. Here Kcut is a ultra-violet momentum
cutoff which is needed to obtain a finite result.

Two main conclusions can be drawn from Eq. (10).
(i) We have confirmed that the response to a static gravita-
tional potential is not proportional ∂xψ as suggested by the
Luttinger relation, Eq. (4), (which has been derived for a
time-dependent potential in the “transport limit”). It is instead
proportional to ∂3

x ψ as suggested by the relativistic anomaly
formula, Eq. (6). (ii) The prefactor of the anomaly response
is, however, not simply given by h̄c2

48π
[cf. Eq. (6)]. Instead it

is nonuniversal and depends on the microscopic parameters
and the cutoff in a nonuniversal way. As discussed above,
this is not completely unexpected as the relativistic formula,
Eq. (6), depends on a dimension-full quantity, the speed of
light. We have checked that the same calculation which re-
sults in Eq. (10), leads to JE

y,ψ (r) = h̄c2

96π
∂3

x ψ (r)sgn(M ) when
one uses a fully relativistic model (λ = 0, Kcut = ∞), thus
(cR − cL ) = 1

2 sgn(M ) consistent with the half-integer Chern
number of the fully relativistic model.

In contrast, a calculation for the charge response to φ(r)
results in

JC
y,φ (r) = e∂xφ(r)θ (−M )/(2π h̄) (11)

FIG. 3. Hamiltonian response. (a, b) The electrical Hall current
JC

y,φ and (c, d) the energy Hall current JE
y,ψ in response to electro-

static potential φ(x) = φ0 exp(−x2/σ 2) and gravitational potential
ψ (x) = ψ0 exp(−x2/σ 2), respectively. Left: topological phase, right:
trivial phase. Red dots: numerical calculation using the Haldane
lattice model (see Appendix C). Blue lines: analytical result using
Eq. (11) for the electrical response. For the gravitational response a
fit to JE

y,ψ = C v2

48π
∂3

x ψ (x) is shown with C ≈ 8.7 for panel (c) and
C ≈ 0.67 for panel (d). Parameters: σ = 10a, φ0 = ψ0 = 0.1, t1 =
t2 = 1 and the staggered potential vs = (3

√
3 − 1)t2 in the topologi-

cal phase (left) and vs = (3
√

3 + 1)t2 in the trivial phase (right).

as expected (see Appendix A). In this case the response is
linear in gradient consistent with Eq. (5), the prefactor is fully
universal and given by the topological response of the Haldane
model characterized by σxy = e2

2π h̄ .
In Fig. 3 we show the charge and heat currents [25] cal-

culated directly from the lattice model Eq. (8) in response
to an electric and a gravitational potential, respectively. The
numerics confirm that the responses are proportional to ∂xφ

and ∂3
x ψ [26]. In the electric case the response is only

finite in the topological phase and the prefactor matches
exactly the universal result of Eq. (11). The gravitational re-
sponse, JE

y,ψ = C v2

48π
∂3

x ψ (x), is nonuniversal, with C ≈ −8.7
in the topological and C ≈ −0.67 in the trivial phase for the
chosen parameters. The result from the continuum model (Ap-
pendix C) depends strongly on the cutoff with C ≈ −12 and
C ≈ −4.4 for Kcut = 2π (C ≈ −9.8 and C ≈ −2.3 for Kcut =
π ), but it is roughly consistent with the lattice calculation.

III. RESPONSE TO TEMPERATURE BUMP

We next consider the temperature bump T (r) and the chem-
ical potential bump μ(r) in the absence of ψ (r) and φ(r). To
be able to change locally the temperature and the chemical
potential, we couple weakly to each lattice site i of a Chern
insulator (see Appendix D), both a bath of phonons with
temperature Ti and a wire with a chemical potential μi and
the same temperature Ti, see Fig. 2, using a tunneling contact
of strength V . The coupling is described by Ĥt + Ĥph with

Ĥt =
∑
i,q

εqd†
i,qdi,q + V d†

i,qci + H.c.,

Ĥph =
∑
i,q

ωqa†
i,qai,q + gc†

i ci(a
†
i,q + ai,q ), (12)
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FIG. 4. Statistical response. (a) The electrical Hall current Jy in
response to chemical potential μ(x) = μ0 exp(−x2/σ 2) and (b) the
thermal Hall current JE

y in response to temperature T (x) = T +
T0 exp(−x2/σ 2) calculated for topological phase of a square lat-
tice model (see Appendix F for more details) with v = λ = |M|,
T /|M| = 0.05, T0/|M| = 0.0125. The model includes both wires
and phonon baths coupled to each lattice site. Parameters: �/|M| =
0.05, 0.1, 1, α = 0.1 bottom to top in panel (a); �/|M| = 0.01, α =
0.1, 0.5, 1 in panel (b). The blue dashed curves are drawn under the
assumption that Einstein and Luttinger relations, Eq. (5) and Eqs. (3)
and (10) are valid, showing that those relations cannot be used to
describe this statistical response [the curve in panel (b) is drawn with
the 20-fold reduced value for better visibility].

where we parametrize the (ohmic) phonon coupling by the
parameter α with πg2 ∑

q δ(ω − ωq) = αω and the tunnel
coupling by � = πV 2 ∑

q δ(ω − εq). For simplicity we as-
sume that both α and � are ω independent. The information
on Ti (Ti and μi) is encoded in the i-dependent Bose func-
tion (Fermi functions) used to describe the occupation of the
phonons (fermions). Within our model, the phonon baths are
strictly local and thus unable to transport heat, which simpli-
fies the analysis of heat currents.

As we are studying now a nonequilibrium state, we use
the Keldysh formalism. The attached wires are treated exactly,
while we use a self-consistent one-loop approximation for the
phonons; see Fig. 2. This is equivalent to the solution of a
corresponding quantum-Boltzmann equation [27]. We use μi

and Ti which are translationally invariant in the y direction.
The system is infinite in the y direction, while we use either
16 or 32 sites in the x direction with periodic boundary condi-
tions. In the following, we assume (i) that all temperatures
and chemical potential are always much smaller than the
gap, |μi|, Ti � |M|, and (ii) that they vary on a length scale
σ larger than both the correlation length ξ ∼ v/|M| of the
gapped system and the phonon-induced mean-free path ξph of
thermal excitations, σ  ξ, ξph.

To determine the local temperature and the local chem-
ical potential imprinted on our Chern insulator at position
r, we have to calculate the local distribution function de-
fined by f eff

r (ω) = G<
r,r(ω)/[GR(ω) − GA(ω)] with the local

Green functions GR/A(ω). As the Green functions decay on
the length scale ξ for |ω| � |M| and on the length scale ξph

for |ω| � |M|, the distribution function is effectively averaged
over these length scales. As σ  ξ, ξph, the local tempera-
ture [28] and chemical potential of the Chern insulator are
thus well defined and determined by the attached wires and
phonons, f eff

ri
(ω) ≈ 1/(e(ω−μi )/Ti + 1) as explicitly shown in

Appendices E and F.
In Fig. 4 we show the electrical and energy currents calcu-

lated from G< for three different values of � and three values

of α (solid lines) in comparision to the result obtained from
the Luttinger and Einstein relation, i.e., by replacing the tem-
perature and chemical potential profile by the corresponding
gravitational and electrical potentials (dashed lines). The plot
shows that these quantities are unrelated and the discrepancies
remain and become larger when � or α is reduced. For vanish-
ing phonon coupling, α = 0, and low T one can calculate the
heat currents induced by the couplings to the wire analytically
(shown in Appendix D)

JE
y ≈ −π2k2

BT

6h

�

πM

(
∂xT + v2

6M2
∂3

x T

)
. (13)

It is nonuniversal and linear in �. Similarly, we find nu-
merically that JE

y ∝ α for � → 0 at low T , see Fig. 4. The
interpretation of this result is that some heat tunnels through
the gapped topological insulator. This type of transport does,
however, vanish for small � and α. We conclude that spatially
varying temperatures and chemical potentials do not induce
any universal topological currents in Chern insulators.

While small space-dependent temperature profiles thus do
not affect the gapped bulk, the situation is qualitatively dif-
ferent along the gapless chiral edge. The dissipationless heat
current along the edge satisfies

dJE
edge(T )

dT
= (cR − cL )

πk2
B

6h̄
T . (14)

This implies immediately an anomalylike source term on the
right-hand side of the continuity equation for energy

d

dt
eedge + ∂xJE

edge = (cR − cL )
πk2

B

6h̄
T ∂xT, (15)

which is linear in the first derivative of temperature in contrast
to the gravitational anomaly

d

dt
eedge + ∂xJE

edge = (cR − cL )
h̄

24π
v2∂3

x ψ, (16)

where v is the velocity of the edge, assumed here to be
identical for all edge modes. In Appendix B we show that this
formula remains valid in the nonrelativistic setting, in contrast
to Eq. (10). Note that the prefactor of the ∂3

x ψ (Ref. [20]
gets 48 instead of 24) depends on the used definition of JE

edge
as discussed in Appendix B. If one considers a stationary
temperature profile induced, e.g., by the coupling to acoustic
phonons, then Eq. (15) predicts the constant production of
energy. As has been explored in detail in Refs. [8,9], this flow
of energy will, however, not result in some dissipationless
bulk current but instead will go into the acoustic phonon
system. In Refs. [8,9] it has been shown that this effect is
an essential prerequisit for the experimental observation of an
approximately quantized thermal Hall effect.

IV. CONCLUSION

In this paper we have analyzed and clarified to what extent
the Luttinger relation, Eq. (4), the Einstein relation, Eq. (5),
and the gravitational analogy, Eqs. (3) and (6) can be used
to describe the response to local and static variations of tem-
perature and chemical potential in Chern insulators. It turns
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out that none of these relations apply. A local temperature
profile, T (r), imprinted by heating a Chern insulator locally
does, for example, not produce any intrinsic heat currents
at least as long as T (r) remains small compared to the gap.
Thus the physics of a space-dependent temperature is com-
pletely different from the physics of a gravitational potential
which produces heat currents. Similarly, local variations of
the chemical potential, μ(r), do not induce intrinsic transverse
electric currents, while an external potential does. Ultimately,
this difference can be traced back to the fact that space-
dependent T (r) and μ(r) simply do not show up as terms
in the Hamiltonian but are effective quantities encoded in
distribution functions which arise either from the coupling to a
local bath or by local equilibration. The Luttinger and Einstein
relations remain fully valid only in the so-called transport
limit (	 → 0 after q → 0).

We have also shown that the gravitational bulk response of
Chern insulators is not universal but depends on high-energy
properties of the model. Transverse energy currents propor-
tional to the third derivative of the gravitational potential may
even be induced in topologically trivial phases. Unfortunately,
such dissipationless energy currents are much more difficult
to measure than the magnetic field created by their electric
counterpart. It would be interesting to explore whether it is
possible to induce gravitational potentials (e.g., by modulating
the laser intensity) and measure such currents in ultracold-
atom experiments in optical lattices, using, e.g., time-of-flight
measurements.
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APPENDIX A: RESPONSE TO ELECTROSTATIC OR
GRAVITATIONAL POTENTIAL

In this Appendix, we analytically calculate the Hall re-
sponse to a smoothly varying electrostatic potential φ(r) and
gravitational potential ψ (r) at zero chemical potential and
temperature.

1. Response to electrostatic potential bump

The calculation is performed in the continuum limit of the
Haldane model, Eq. (9). In the momentum space, the system
is described by the Hamiltonian

Ĥ0 =
∑

k

�†(k)[vk · σ + (M + λ2k2)σz]�(k)

=
∑

k

�†(k)ĥ[k]�(k), (A1)

with a vector of the Pauli matrices σ = (σx, σy). The two
component spinor �†(k) = [�†

1 (k), �†
2 (k)] creates electrons

with momentum k = (kx, ky). A static electrostatic potential

is linearly coupled to the system as

Ĥφ =
∑

σ=1,2

∫
drφ(r)�†

σ (r)�σ (r). (A2)

For simplicity, the electrostatic potential is assumed to vary in
the x direction while being constant in the y direction.

The continuity equation for the charge density results in

∇ · ĴC (r, t ) = e
dn̂(r, t )

dt
= ie

h̄
[Ĥ0, n̂(r, t )]

= − ie

h̄

∫
dK

(2π )2

∑
q

eiq·r�†
(

K − q
2
, t

)

× (vq · σ + 2K · qλ2σz )�
(

K + q
2
, t

)
. (A3)

Here −e is the electron charge with e > 0. From Eq. (A3), the
electrical current density operator can be identified as

ĴC (r) = − e

h̄

∫
dK

(2π )2

∑
q

eiq·r�†
(

K − q
2

)

× (vσ + 2Kλ2σz )�
(

K + q
2

)
. (A4)

We consider the expectation value JC
φ (r) ≡ 〈ĴC (r)〉, written as

JC
φ (r) = ie

h̄

∫
dK

(2π )2

∑
q

∫
dω

2π
Tr[(vσ + 2Kλ2σz )

× G<
K+q/2,K−q/2(ω)], (A5)

in the presence of a static electrostatic potential bump
[φ(r)]. The average is taken over the eigenstates of the
Hamiltonian H0 + Hφ . The trace is performed over the bands
of the continuum model. The lesser Green’s function G< can
be obtained by expanding up to the first order in φ(r) as

G<
σ ′k′,σk(ω) = g<

σ ′k,σk(ω)δkk′ +
∑

r1

∑
σ1

ei(k−k′ )·r1φ(r1)

× [
gR

σ ′k′,σ1k′ (ω)g<
σ1k,σk(ω)

+ g<
σ ′k′,σ1k′ (ω)gA

σ1k,σk(ω)
]
. (A6)

The g’s are the Green’s functions in the absence of the elec-
trostatic potential, explicitly written as

gR/A
k′,k(ω) = δk,k′

(ω − h[k] ± iη)
,

g<
k′,k(ω) = f0(ω)δk,k′

(
1

ω − h[k] − iη
− 1

ω − h[k] + iη

)
.

(A7)

Plugging Eq. (A6) into Eq. (A5), we obtain the charge cur-
rent density JC

y,φ (r) flowing along the y direction (the Hall
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response)

JC
y,φ (r) = 2

e

h̄

∫
dω

2π

∫
dK

(2π )2

∫
dq

(2π )2

∫
dr1φ(r1) f0(ω)

× Im

{
eiq·(r−r1 )Tr

[
(vσy + 2λ2σzKy)

× 1

ω − h(K + q/2) + iη

1

ω − h(K − q/2) + iη

]}
.

(A8)

Being interested in the long-range physics, we expand the
term inside the trace in momentum q. The leading contribution
comes from the term linear in qx. The direct calculation of the
integral of the linear term ∼qx in Eq. (A8) results in

JC
y,φ (r) ≈ 2

e

h̄

∫ 0

−∞

dω

2π

∫
dK

2π
∂xφ(r)

× Im

{
2v2K (λ2K2 − M )

[(λ2K2 + M )2 + K2v2 + (η − iω)2]2

}

= −e∂xφ(r)

2π h̄
θ (−M ). (A9)

The transverse conductivity is fully universal and given by
σxy = e/(2π h̄) (σxy = 0) in the topological (trivial) phase
[M < 0 (M > 0)].

2. Gravitational response

We next turn our intention to the thermal response to a
gravitational potential bump ψ (r). The gravitational potential

is linearly coupled to the Hamiltonian density ĥc(r) of the
continuum limit of the Haldane model as

Ĥψ =
∫

d2r[1 + ψ (r)]ĥc(r). (A10)

In the momentum space, the Hamiltonian density ĥc(r) reads

ĥc(r) =
∫

dk
(2π )2

∑
k′

ei(k′−k)·r�†
k [d(k, k′) · σ]�k′ , (A11)

with

d(k, k′) = h̄v

(
k + k′

2

)
+ h̄(M + λ2k · k′)ẑ. (A12)

The energy current operator ĴE
ψ can be derived from the con-

tinuity equation for the energy density

∇ · ĴE
ψ (r) = i

h̄
[1 + ψ (r)][ĥc(r), Ĥψ ]

= i

h̄
[1 + ψ (r)]

∫
d2r′[1 + ψ (r′)][ĥc(r), ĥc(r′)].

(A13)

Inserting Eq. (A11) into Eq. (A13) and employing the anti-
commutation relation for the fermion fields, we arrive at

∇ · ĴE
ψ (r) = i

h̄
[1 + ψ (r)]

∫
dk′′

(2π )2

∑
k,k′

∫
d2r′[1 + ψ (r′)]

× �
†
k

({
ei[(k′′−k)·r−(k′′−k′ )·r′] − ei[(k′′−k)·r′−(k′′−k′ )·r]

}
[d (k, k′′) · d (k′′, k′) + iσ · d (k, k′′) × d (k′′, k′)]

)
�k′ . (A14)

We (i) replace k′′ with the derivative with respect to r′

k′′ei((k′′−k)·r−(k′′−k′ )·r′ ) = (i∇r′ + k′)ei[(k′′−k)·r−(k′′−k′ )·r′],

k′′ei((k′′−k)·r′−(k′′−k′ )·r) = (−i∇r′ + k)ei[(k′′−k)·r′−(k′′−k′ )·r], (A15)

(ii) integrate over k′′ to obtain the delta function δ(r − r′), and (iii) use the integration by parts to move the derivative to act on
(1 + ψ (r′)). Those procedures (i), (ii), and (iii) result in

∇ · ĴE
ψ (r) = i

h̄
[1 + ψ (r)]

∫
dk

(2π )2

∑
k′

ei(k′−k)·r�†
k [d (k, k′ − i∇r) · d (k′ − i∇r, k′) − d (k, k + i∇r) · d (k + i∇r, k′)

+ iσ · [d (k, k′ − i∇r) × d (k′ − i∇r, k′) − d (k, k + i∇r) × d (k + i∇r, k′)][1 + ψ (r)]�k′ . (A16)

The right-hand side of Eq. (A16) has a form of ∇ · {[1 + ψ (r)]2ĴE (r)}, where the energy current density ĴE (r) in the absence of
the gravitational potential is written as

ĴE (r) = h̄
∫

dK
(2π )2

∑
q

�
†
K−q/2eiq·rJE

K−q/2;K+q/2�K+q/2,

JE
K−q/2;K+q/2 = [v2 + 2λ2(M + λ2K2)]K + λ2

[
ivσ · (K × ẑ) − λ2

2
K · q

]
q − i

4
(v2σz − 2vλ2σ · K )(ẑ × q). (A17)

Here, we have used central mass momentum K = (k + k′)/2 and relative momentum q = k′ − k. Note that the locality condition
[10,16,17] is fulfilled such that the energy current is uniquely defined as ĴE

ψ (r) = [1 + ψ (r)]2ĴE (r).
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We next consider the expectation value JE
ψ (r) ≡ 〈ĴE

ψ (r)〉 in the presence of the gravitational field ψ (r), given by

JE
ψ (r) = −ih̄[1 + ψ (r)]2

∑
q

∫
dK

(2π )2

∫
dω

2π
eiq·rJE

K−q/2,σ ;K+q/2,σ ′G<
K+q/2,σ ′;K−q/2,σ (ω). (A18)

The average is taken over the eigenstates of the Hamiltonian Hψ . The lesser Green’s function G< can be obtained from the
standard linear response theory, expanded up to the first order in the static ψ (r)

G<
σ,k;σ ′,k′ (ω) = g<

σσ ′ (k, ω)δkk′ +
∑

r1

ei(k′−k)·r1ψ (r1)
∑
σ1,σ2

{
gR

σσ1
(k, ω)[d (k, k′) · σ ]σ1σ2

g<
σ2σ ′ (k′, ω)

+ g<
σσ1

(k, ω)[d (k, k′) · σ ]σ1σ2
gA

σ2σ ′ (k′, ω)
}
. (A19)

Here the g’s denote Green’s functions in the absence of ψ (r) as explicitly written in Eq. (A7). Plugging Eq. (A19) into Eq. (A18)
results in

JE
ψ (r) = −2[1 + ψ (r)]2

∫
dr1

∫
d2K

(2π )2

∫
d2q

(2π )2

∫
dω

2π
f0(ω)ψ (r1)Im

{
eiq·(r−r1 )Tr

[
JE

K−q/2;K+q/2

× gR(K + q/2, ω)hK+q/2;K−q/2gR(K − q/2, ω)
]}

. (A20)

Here h0,k;k′ = h̄vσ · (k + k′)/2 + h̄σzλ
2(k · k′) arises from the Fourier transformation of the energy density. Being interested in

the long-range physics, we expand the term inside the trace in momentum qx. The leading contribution comes from the qubic
term q3

x . Performing the direct calculation of the integral only for the qubic term, we obtain the energy current JE
y,ψ (r), flowing

along the y direction

JE
y,ψ (r) = −3h̄

96
[1 + ψ (r)]2∂3

x ψ (r)
∫

dK

(2π )

K3(λ2K2 − M )(2λ4K2 + 2λ2M + v2)2

(λ4K4 + 2λ2K2M + M2 + K2v2)2
. (A21)

The integral can be further performed with the momentum cutoff Kcut, resulting in

JE
y,ψ (r) = h̄

96π
[1 + ψ (r)]2∂3

x ψ (r)

{
(−2λ2M + v2)sgn(M ) + (2λ2M + 5v2)

− 3v2 log

[
v2 + 2K2

cutλ
4 + 2λ2

(
M +

√
M2 + (2λ2M + v2)K2

cut + λ4K4
cut

)
v2 + 2λ2(M + |M|)

]}
. (A22)

In large momentum cutoff limit, Eq. (A22) is approximated as Eq. (10). If one repeats the same calculation sketched above in
the relativistic case of λ = 0 and v → c, then one obtains instead for the thermal current flowing along the y direction

JE
y,ψ (r) = − h̄c2

96π
[1 + ψ (r)]2∂3

x ψ (r)sgn(−M ). (A23)

Note that the relativistic response is not simply obtained by taking the limit λ → 0, Kcut → ∞ of the nonrelativistic model. This
relativistic topological gravitational response, Eq. (A23), coincides with the response derived from the gravitational Chern-Simon
term in Ref. [20].

APPENDIX B: ONE DIMENSIONAL GRAVITATIONAL
ANOMALY

In this Appendix, we consider the gravitational anomaly in
an one-dimensional edge channel. We show that the anomaly
term does not depend on the full dispersion of the edge mode
but only on the Fermi edge velocity.

We consider an one-dimensional edge channel propagat-
ing along the x direction, coupled to a gravitational potential
ψ (x) as

Ĥψ =
∫

dx[1 + ψ (x)]ĥedge(x). (B1)

The edge channel is assumed to have both linear and quadratic
dispersion around Fermi momenta k = 0 as

ĥedge(x) = ∫
dk

(2π )

∑
k′ ei(k′−k)x�

†
k hk;k′�k′ ,

with

hk;k′ = h̄v1

(
k + k′

2

)
+ h̄v2kk′. (B2)

Employing the same procedure as specified in Eqs. (A13)–
(A17) of Appendix A 2, we find the energy current for this
one-dimensional model

JE
k;k′ = hk;k′ [v1 + v2(k + k′)]. (B3)

The 1D energy current JE
edge(x) in the presence of the gravita-

tional potential is given by

JE
edge(x) = −2[1 + ψ (x)]2

∫
dx1

∫ ∞

−∞

dK

(2π )

∫ ∞

−∞

dq

(2π )

×
∫

dω

2π
f0(ω)ψ (x1)Im

[
eiq(x−x1 )JE

K−q/2;K+q/2

× gR(K + q/2, ω)hK+q/2;K−q/2gR(K − q/2, ω)
]
.

(B4)
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We next use the gradient expansion approach discussed in
Appendix A. The leading contribution comes from the
quadratic term in q. Direct integration only for the quadratic
term over q, K and x1 results in

JE
edge(x) = h̄

24π
sgn(v1)v2

1∂
2
x ψ (x). (B5)

The corresponding gravitational anomaly equation reads

d

dt
eedge + ∂xJE

edge = h̄

24π
sgn(v1)v2

1∂
3
x ψ (x)

= h̄

24π
(cR − cL )v2

1∂
3
x ψ (x). (B6)

Here, we added the time derivative of the energy density
d
dt eedge by hand, which is zero in the static perturbation. Fur-
thermore, we generalize our results to the case with several
chiral modes in the second equality, where the velocities of
the modes are assumed to be identical. Importantly, there is no
v2 dependence on Eq. (B6). Equation (B6) shows that the 1D
gravitational anomaly depends on the Fermi velocity rather
than the entire dispersion of the edge channel.

In Ref. [20] a similar equation is obtained in the relativis-
tic limit with v1 replaced by the speed of light (set to 1 in
Ref. [20]) and cR − cL denoted by c. Furthermore, the result
quoted by Stone, Eq. (75) of Ref. [20], is a factor of 2 smaller.
This discrepancy can be traced back to a different definition
of the heat current. We recover the result of Stone
by redefining the energy-momentum tensor T μσ → T μσ +
c2 cR−cL

96π
1√
gε

μσ R. This transformation ensures that T μσ = T σμ.
In the relativistic case bulk and edge anomalies match.

To see this, consider a spatially varying mass gap in the
y direction with M(y) > 0 (M(y) < 0) for y > 0 (y < 0).
In this case the relativistic theory, Eq. (A23), predicts that
an energy current is flowing towards the boundary, which
precisely matches the edge anomaly h̄

48π
(cR − cL )c2∂3

x ψ (x)
for cR − cL = 1 when using the symmetric version of T μσ

discussed above. This is, however, not the case in the nonrela-
tivistic case, where the bulk response is nonuniversal and even
the edge response depends on the nonuniversal Fermi velocity
of the edge mode. The disagreement between Eq. (A22) and
Eq. (B6) implies that extra nonuniversal energy currents exist
with components parallel to the boundary (i.e., along the x di-
rection) which are not described by the edge theory alone. The
calculation of these extra edge currents is beyond the scope of
this work. We expect that they arise from the scattering of bulk
modes from the edge.

APPENDIX C: LATTICE CALCULATION

In this Appendix, we discuss the Haldane lattice model
coupled to a smoothly varying gravitational (electrostatic)
potential, and calculate the thermal (electrical) Hall response
to the potential.

We consider a honeycomb lattice (cf. Figs. 2 and 5) that
contains two sublattices, A (denoted as red dots) and B (de-
noted as blue dots) per unit cell. The lattice vectors are
given by

a1 = a

(
1

2
,

√
3

2

)
, a2 = a

(
1

2
,−

√
3

2

)
, (C1)

FIG. 5. Haldane lattice model. The honeycomb lattice with the
nearest neighbor hoppings (right), the next-nearest neighbor hop-
pings with strength −it2 (middle) and stagger potentials ±vs (right).
For a lattice simulation, we consider a strip with finite size in the x
direction, but infinitely long along the y direction.

with the lattice constant a, and the lattice sites that belongs
to A (B) sublattice can be written as ri,A = m1,ia1 + m2,ia2

(ri,B = m1,ia1 + m2,ia2 + δ1) with integers m1,i and m2,i (cf.
Fig. 5). The Haldane model is described by three terms:
real-valued nearest-neighbor hoppings −t1, purely imaginary
next-nearest neighbor hoppings ±it2, and a staggered poten-
tial which takes different values ±vs on sublattices A and B.

Ĥ =
∑

ri

ĥri =
∑

ri

(ĥNN,ri + ĥNNN,ri + ĥsp,ri ), (C2)

where the local Hamiltonians are written as

ĥNN,ri = − t1
∑

�=1,2,3

c†
ri,A

cri+δ�−δ1,B + H.c.,

ĥNNN,ri = − it2
∑

�=1,2,3

(
c†

ri+σ�,A
cri,A − c†

ri+σ�,B
cri,B − H.c.

)
ĥsp,ri =vs

(
c†

ri,A
cri,A − c†

ri,B
cri,B

)
. (C3)

Here δ1 = a(0,−1/
√

3), δ2 = a(1, 1/
√

3)/2, δ3 =
a(−1, 1/

√
3)/2, and σ1 = a(1, 0), σ2 = a(−1,

√
3)/2,

σ3 = −a(1,
√

3)/2 as shown in Fig. 5.
We next consider a smoothly varying gravitational poten-

tial ψ (r) [electrostatic potential φ(r)], locally coupled to the
lattice Hamiltonian, Eq. (C3) (to the charge density). While
the electrostatic potential is put on each lattice site, the grav-
itational potential is put on the center (ri + r j )/2 of the links
by the Hamiltonian to connect lattice sites ri and r j as

Ĥ [ψ, φ] =
∑

ri

ĥri =
∑

ri

(
ĥNN,ri [ψ] + ĥNNN,ri [ψ]

+ ĥsp,ri [ψ] + ĥep,ri [ψ, φ]
)
, (C4)

with the local Hamiltonian

ĥNN,ri [ψ] = − t1
∑

�=1,2,3

[1 + ψ (ri + δ�/2)]

× (
c†

ri,A
cri+δ�−δ1,B + H.c.

)
,
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ĥNNN,ri [ψ] = − it2
∑

�=1,2,3

{
[1 + ψ (ri + σ�/2)]c†

ri+σ�,A
cri,A

− [1 + ψ (ri + δ1 + σ�/2)]c†
ri+σ�,B

cri,B

− H.c.
}

ĥsp,ri [ψ] =vs
{
[1 + ψ (ri )]c

†
ri,A

cri,A

− [1 + ψ (ri + δ1)]c†
Ri,B

cri,B
}
.

ĥep,ri [ψ, φ] ={
[1 + ψ (ri )]φ(ri )c

†
ri,A

cri,A

− [1 + ψ (ri + δ1)]φ(ri + δ1)c†
ri,B

cri,B
}
. (C5)

We now sketch how to obtain the smoothly varying energy
current density operator from this lattice model for calculating
the energy current density. (i) The local and discrete energy
current operator ĴE

i j to flow from r j to ri can be identified from
the continuity equation

∂

∂t
ĥri =

∑
r j

ĴE
i j = i

h̄

∑
r j

[ĥri , ĥr j ], (C6)

as

ĴE
i j = i

h̄
[ĥri , ĥr j ]. (C7)

Note that ĴE
i j = −ĴE

ji as it should be. (ii) Being interested
in the long-range behavior of the energy current, we find
the continuous energy density operator ĥψ (r) and the energy
current density ĴE

ψ (r). ĥψ (r) can be obtained from the local

Hamiltonian ĥRi as

ĥψ (r) =
∑
Rri

ĥri f (r − ri ), (C8)

Here, we introduce a smoothing function f (r − ri ) that decays
in length scale W , much larger than the lattice constant a,
but much smaller than σ where ψ (r) and φ(r) decay. f (r) is
defined to normalize as

∫
dr f (r) = 1. Similarly ĴE

ψ (r) can be
written as

ĴE
ψ (r) =

∑
ri,r j

f
(

r − ri + r j

2

) (ri − r j )

2
ĴE

i j . (C9)

The continuity equation ∂ ĥψ (r)/∂t + ∇ · ĴE
ψ (r) = 0 is shown

to be valid as the smoothing function changes monotonously
in the atomic scale ∼a such that the linear-order expansion
remains valid,

∇ f
(

r − ri + r j

2

)
≈ f (r − r j ) − f (r − ri )

ri − r j
. (C10)

(iii) Although ĴE
ψ (r) in Eq. (C9) is defined to satisfy the

continuity equation, ĴE
ψ (r) has a degree of freedom to add

∇ × g(r) with a continuous function g(r). To uniquely define
ĴE

ψ (r), we impose the locality condition [16,17,24]

ĴE
ψ (r) = [1 + ψ (r)]2ĴE

ψ=0(r). (C11)

We note from Eqs. (C7) and (C5) that ĴE
i j contains the

terms with ∼[1 + ψ (ri )][1 + ψ (r j )] at different locations
ri �= r j , which apparently do not fulfill the locality condi-
tion Eq. (C11). To ensure Eq. (C11) fulfilled, we expand

[1 + ψ (ri )][1 + ψ (r j )] at ri j = (ri + r j )/2 to the linear
order as

[1 + ψ (ri )][1 + ψ (r j )]

≈ [1 + ψ (ri j )]
2 + (ri + r j − 2ri j )

2
∂ri j {[1 + ψ (ri j )]

2}.
(C12)

Since the smoothing function acts as a delta function on the
scale σ in Eq. (C9), the first term in Eq. (C12) results in [1 +
ψ (r)]2, and hence satisfy the locality condition [Eq. (C11)].
This locality condition can be achieved also in the second term
of Eq. (C12) after first replacing ri j with r and then subtract-
ing off the relevant terms in the form ∇ × {[1 + ψ (r)]2g(r)},
allowed by the remaining degree of freedom of ĴE

ψ from the
continuity equation.

We consider this Haldane lattice model with finite size Nx

in the x direction, labeled by i, j = 1, . . . , Nx, but infinitely
long in the y direction (cf. Fig. 5). For simplicity, the gravi-
tational (or electrostatic) potential is assumed to vary only in
the x direction while it remains constant in the y direction.
Periodic boundary conditions are imposed both in the x and y
directions. From Eq. (C9), the charge current density JC

y (x) at
x along the y direction can be written as

JC
y (x) =

∑
i, j=1,··· ,Nx

∑
αβ

∑
n

∫ π
3a

− π
3a

dky

(2π )
f
(

x − riα + r jβ

2

)

× φ∗
niα (ky)AC

i j,αβ (ky)φn jβ (ky). (C13)

Here, φn jα (ky) is the wave function of band n at position
r jα = (r j,α )x with momentum ky along the y direction in the
presence of the gravitational (electrostatic) potential. This
wave function can be obtained from the exact diagonal-
ization of the Nx × Nx lattice Hamiltonian. We sum only
over occupied states. Moreover, we defined a kernel AC

i j,αβ ≡∑
(ri,α−r j,β )y

JC
i j,αβ (ri,α − r j,β )ye−iky (ri,α−r j,β )y/2 for the thermal

(charge) response. The kernel AC
i j for the charge response

reads

AC
i j = −e{t1δ1,y[σy cos(kyδ1,y) + σx sin(kyδ1,y)]δi, j

+ t1δ2,y[σy cos(kyδ2,y) + σx sin(kyδ2,y)]

× (δi, j+1 + δi, j−1)

− 2it2σzσ2,y sin(kyσ2,y)(δi, j+1 − δi, j−1)}. (C14)

The numerical results for the charge current density JC
y (x)

are plotted in Figs. 3(a) and 3(b). The calculation has been
done with the exact diagonalization of the 100 × 100 lattice
Hamiltonian. We use σ = 10a, φ0 = 0.1t1, t1 = t2 = 1, and
the staggered potential vs = (3

√
3 − 1)t2 in the topological

phase (left) and vs = (3
√

3 + 1)t2 in the trivial phase (right).
The width of the smoothing function is set to W = 3a. The nu-
merical results match well with the analytic formula Eq. (11).
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From the procedure (i), (ii), and (iii) stated above, we also
obtain the energy current density along the y direction:

JE
y (x) =

∑
i, j=1,··· ,Nx

∑
αβ

∑
n

∫ π
3a

− π
3a

dky

(2π )
φ∗

niα (ky)φn jβ (ky)

×
[

f
(

x − riα + r jβ

2

)
AE (1)

i j,αβ (ky)

+ ∂x f
(

x − riα + r jβ

2

)
(riα − r jβ )AE (2)

i j,αβ (ky)

]
.

(C15)

Note that compared with the charge current, Eq. (C13), there
are additional terms ∼∂x f arising from the locality condition,
Eq. (C11). The energy kernels AE (1)

i j , AE (2)
i j for the energy

response are given by

AE (1)
i j = − 4t2

2 σ3,yI sin(2kyσ3,y)δi, j

+ (
2t2

2 − t2
1

)
σ3,yI sin(kyσ3,y)(δi, j+1 + δi, j−1)

− 2it2vsσ3,yI sin(kyσ3,y)(δi, j+1 − δi, j−1)

− 2t2
2 σ3,yI sin(2kyσ3,y)(δi, j+2 + δi, j−2)

− 2t2
2 σ3,yI sin(kyσ3,y)(δi, j+3 + δi, j−3), (C16)

and

AE (2)
i j = − t1t2δ1,y[cos(kyδ1,y)σx − sin(kyδ1,y)σy]δi, j

+ 2t1t2δ1,y[cos(2kyδ1,y)σx + sin(2kyδ1,y)σy]δi, j

+ it2
1 σ3,yσz cos(kyσ3,y)(δi, j+1 − δi, j−1)/4

− it1vsδ2,y[cos(kyδ2,y)σx − sin(kyδ3,y)σy]

× (δi, j+1 − δi, j−1)/4

+ t1t2δ2,y[cos(kyδ2,y)σx − sin(kyδ2,y)σy]

× (δi, j+1 + δi, j−1)/4

+ t1t2δ1,y[cos(kyδ1,y)σx − sin(kyδ1,y)σy]

× (δi, j+2 + δi, j−2)/4

+ t1t2δ2,y[cos(kyδ2,y)σx − sin(kyδ2,y)σy]

× (δi, j+3 + δi, j−3)/12, (C17)

respectively.
The numerical results for the energy current density JE

y (x)
are plotted in Figs. 3(c) and 3(d) in the main text. We used pa-
rameters Nx = 100, σ = 10a, ψ0 = 0.1, t1 = t2 = 1, and the
staggered potential vs = (3

√
3 − 1)t2 in the topological phase

(left) and vs = (3
√

3 + 1)t2 in the trivial phase (right). The
width of the smoothing function is set to W = 3a. The numer-
ical results for JE

y (x) can be nicely fitted to JE
y = C v2

48π
∂3

x ψ (x),
but the coefficient C is highly nonuniversal depending on the
lattice parameters, in contrast with the electrical response.

APPENDIX D: RESPONSE TO TEMPERATURE OR
CHEMICAL POTENTIAL BUMP

In this Appendix, we analytically calculate the Hall re-
sponse to a smoothly varying chemical potential, μ(r), and
temperature, T (r), in the absence of ψ (r) and φ(r) employing

the gradient expansion approach. To be able to change locally
the temperature and the chemical potential of the system, we
couple weakly to each lattice site i of the honeycomb model,
Eq. (8), a wire with a chemical potential μi and temperature
Ti, see Fig. 2, using a tunneling contact of strength V . For
simplicity, the chemical potential and the temperature are
assumed to vary in the x direction while being constant in the y
direction. In this Appendix, we neglect phonon baths attached
to the system, but the effect of phonons will be discussed in
Appendix F.

In the continuum limit one can describe the coupling to
these wires by the Hamiltonian

Ĥt =
∫

d2r
∑
q,σ

[
εqd†

σ,r,qdσ,r,q + V d†
σ,r,q�σ (r) + H.c.

]
,

(D1)

where d†
σ,r,q creates an electron with energy εq in a wire

attached to the point r and sublattice σ of the Haldane model.
Chemical potentials μi and temperatures Ti of the wires vary
in the real space: μi = μ(ri ) and Ti = T (ri ). This information
is, however, not encoded in the Hamiltonian but in the Fermi
function f (ω, r) describing incoming electrons of the wire
attached at position r. We use the continuum limit of the
Haldane model, Eq. (9).

The process of tunneling back and forth between the sys-
tem and the wires is encoded in the retarded and advanced part
of the self energy

�
R/A
σk,σ ′k′ = δσσ ′

∑
q

∑
r

e−ik·r |V |2
ω − εq ± iη

eik′ ·r

= δσσ ′δkk′
∑

q

|V |2
ω − εq ± iη

≈ ∓iδσσ ′δkk′�, (D2)

where we assumed a constant density of states, NF , of
the wires with a large bandwidth. The tunneling rate � ≡
πNF |V |2 is thus frequency independent. Note that the retarded
and advanced part of the self energy are translationally in-
variant and momentum independent. The lesser part of the
self energy, on the other hand, does depend on position and
therefore also on momentum

�<
σk,σk′ =

∑
q

∑
r

e−ik·r|V |2[2π iδ(ω − εq)] f (εq, r)eik′·r

= 2i�
∑

r

f (ω, r)e−i(k−k′ )·r, (D3)

reflecting the momentum transfer to the wires. Employing the
Keldysh equations,

GR/A(ω) = gR/A(ω) + gR/A(ω)�R/A(ω)GR/A(ω), (D4)

G<(ω) = GR(ω)�<(ω)GA(ω), (D5)

the full dressed retarded and advanced Green’s function, and
the lesser Green’s function are given by

GR/A
σ ′k′,σk

(ω) =
(

1

ω − h[k] ± i�

)
σ ′σ

δkk′ , (D6)
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G<
σ ′k′,σk(ω) = 2i�

∑
r

f (ω, r)ei(k−k′ )·r

×
(

1

ω − h[k′] + i�

1

ω − h[k] − i�

)
σ ′σ

.

(D7)

1. Response to chemical potential bump

We next consider the charge Hall current in response
to a chemical potential bump with μ(x) = μ0e−x2/σ 2

. The
information of μ(x) is encoded in the Fermi function
f (ω, r) = f [ω − μ(x)] in the lesser Green’s function of
Eq. (D7).

Plugging Eqs. (D6) and (D7) into Eq. (A5), we obtain the
electric current density JC

y,μ(r) flowing along the y direction

JC
y,μ(r) = −2�e

∫
dω

2π

∫
dK

(2π )2

∫
dq

(2π )2

×
∫

dr1 f (ω, r1)eiq·(r−r1 )Tr
[
(vσy + 2λ2σzKy)

× 1

ω − h(K + q/2) + i�

1

ω − h(K − q/2) − i�

]
.

(D8)

Being interested in smooth potentials, we expand the term
inside the trace in qx. The leading contribution comes from
the linear order in qx, and the direct calculation of the integral
of the linear term in qx results in

JC
y,μ(r) = h̄�ev2∂xμ

π2

∫
dKK (M − λ2K2)

[(λ2K2 + M )2 + v2K2 + �2]2
.

(D9)

We have also expanded ∂x f (ω, r) ≈ ∂ f (ω)
∂μ

|μ=0∂xμ(x) around

zero chemical potential. As GR/A in Eq. (D8) is always

FIG. 6. Exponential suppression of the electric current JC
y,μ

by energy gap. The logarithm of the normalized electric current
JC

y,μ ≡ JC
y,μ[kBT ]/JC

y,μ[kBT = |M| = 1] is plotted as a function of
|M|/(kBT ). We choose �/|M| = 0.005. In the intermediate scale of
1 < |M|/(kBT ) < log(|M|/�), JC

y,μ is exponentially suppressed by
energy gap.

finite for |ω| � M and � → 0, it follows directly from
Eq. (D7) that G< ∝ � and thus JC

y,μ ∝ � for � → 0. The phys-
ical interpretation of this result is that some charge tunnels
between the attached wires through the gapped topologi-
cal insulator. This type of transport does, however, vanish
in the limit � → 0. We conclude that spatially varying
chemical potentials do not induce any topological currents
in Chern insulators, implying that the Einstein relation is
not valid.

We next consider the effect of the finite temperature. The
logarithm of the function JC

y,μ[ kBT
|M| ]/JC

y,μ[ kBT
|M| = 1] is plotted as

a function of |M|/(kBT ) in Fig. 6. We choose �/|M| = 0.005.
In the intermediate scale of temperatures |M|/ log(|M|/�) <

kBT < |M| (equivalently, |M|e−|M|/(kBT ) < � and kBT <

|M|), the electric current exponentially is suppressed as JC
y,μ ≈

exp(−α|M|/kBT ) with numerical constant α � 0.63. This
exponentially small contribution originates from excitations
above the energy gap.

2. Response to temperature bump

Finally, we consider the Hall energy current in response to a temperature bump, T (x), in the absence of the gravitational
potential.

Plugging Eqs. (D6) and (D7) into Eq. (A18) (with ψ (r) = 0), we obtain the energy Hall current JE
y,T (r)

JE
y,T (r) = 2�

∫
d2K

(2π )2

∫
d2q

(2π )2

∫
dω

2π

∫
dr1 f (ω, r1)eiq·(r−r1 )Tr

(
1

ω − h(K + q/2) + i�

1

ω − h(K − q/2) − i�

×
{

[v2 + 2λ2(M + λ2K2)]Ky − i

4

[
v2σz − 2vλ2(σxKx + σyKy)

]
qx

})
. (D10)

The leading contribution comes from the term linear in qx and results in

JE
y,T (r) = 2�

∫
dK

2π

∫
dω

2π

∫
d2q

(2π )2

∫
dr′ iK (λ2K2 − M )v2qxeiq·(r−r′ ) f (ω, r′)ω

[(λ2K2 + M )2 + K2v2 + �2]2 − 2ω2[(λ2K2 + M )2 + K2v2 − �2] + ω4

= 2�

∫
dK

2π

∫
dω

2π
∂x f (ω, x)

K (λ2K2 − M )v2ω

[(λ2K2 + M )2 + K2v2 + �2]2 − 2ω2[(λ2K2 + M )2 + K2v2 − �2] + ω4
. (D11)
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The chain rule ∂x f (ω, x) = ∂xT ∂T f (ω) and the Sommerfeld expansion yield

JE
y,T (r) = ∂xT (x)

∂

∂T

{∫
dω

2π

∫
dK

2π

2�K (λ2K2 − M )v2ω f (ω)

[(λ2K2 + M )2 + K2v2 + �2]2 − 2ω2[(λ2K2 + M )2 + K2v2 − �2] + ω4

}

= ∂xT (x)
∂

∂T

(
π2(kBT )2

6h

{∫
dK

2π

2�K (λ2K2 − M )v2

[(λ2K2 + M )2 + K2v2 + �2]2
+ O[

(kBT )2

|M|2 ]

})

≈ π2k2
BT

3h
∂xT

{∫
dK

π

�K (λ2K2 − M )v2

[(λ2K2 + M )2 + K2v2 + �2]2

}
. (D12)

In the last expression, we neglect the higher order terms
O[(kBT/|M|)2], which in turn yields the exponential suppres-
sion by the energy gap. The direct integration over momentum
K in the limit � → 0, and |M| � v2/λ2 leads to

JE
y,T (r) ≈ −π2k2

BT

6h

�

πM

[
∂xT + v2

6M2
∂3

x T + O
(
∂5

x T
)]

.

(D13)

Here, the gradient term ∝ ∂xT is directly from Eq. (D12)
while the third derivative term ∝ ∂3

x T is the next leading
contribution obtained from the cubic term q3

x in the gradient
expansion using the similar procedure as in Eqs. (D11) and
(D12). Our calculation confirms the absence of a thermal Hall
response in the weak coupling limit, � → 0. Note that also all
contributions proportional to higher derivatives of T (x) vanish
in this limit.

APPENDIX E: TEMPERATURE IMPRINTED BY THE
ATTACHED WIRES

In this Appendix we show numerically that the local
temperature of the Chern insulator is determined with high
precision by the temperature of the locally attached wires
under the conditions specified below. To show this, we con-
sider the local distribution function of electrons in the Chern
insulator defined by

f eff
r (ω) = − G<

r,r(ω)

(GR − GA)(ω)
. (E1)

The retarded and advanced Green function of the system are
simply given by GR/A

σ ′k′,σk
(ω) = ( 1

ω−h[k]±i� )σ ′σ δkk′ , where the
only effect of the coupling to the attached wires is the broad-
ing induced by the term i�. The lesser Green function, G<, in
contrast, is not translationally invariant but can be computed
exactly from f (ω, r) and GR,A in position space

G<
r j ,ri

(ω) =2i�
∑

rn

GR
r j ,rn

(ω) f (ω, rn)GA
rn,ri

(ω). (E2)

Furthermore, we study the value of the local temperature
defined by the following procedure: we attach to position
r of the system a quantum wire (the “thermometer”) by a
tunneling contact with temperature Tth. The thermometer is in
local thermal equilibrium with the system if the energy current
into or from the thermometer vanishes, JE

th (r). Here the energy
current is obtained from the Meir-Wingreen formula [29]

as

JE
th (r) = ie

h

∫
dω ω ρth|tth|2

× Tr[ fth(ω)(GR − GA)(ω) + G<
r,r(ω)]

= ie

h

∫
dωωρth|tth|2

× Tr{[ fth(ω) − f eff
r (ω)](GR − GA)(ω)}, (E3)

where fth(ω) = 1/[exp(ω/Tth ) + 1] is the distribution func-
tion of the thermometer with constant density of states ρth

and tunneling rate tth. Therefore, the effective local tempera-
ture T eff (r) = Tth is determined from the condition JE

th (r) = 0.
This thermometer should not be confused with the attached
wires considered in the paper so far.

The distribution function f eff
r (ω) of the Chern insulator can

be calculated by discretizing the system as a N × N square
lattice and computing the Green’s functions G<

r,r, GR, and
GA, explicitly, see Eq. (E2). The dots in Fig. 7(a), show the
effective distribution function f eff

r (ω) at three different posi-
tions r obtained from Eq. (E1) assuming that the temperature
profile of the attached wires is given by T (x) = T0e−r2/σ 2

. The
solid lines is simply given by the Fermi function f (ω, r) =
1/{exp[ω/T (r)] + 1}. The perfect agreement shows that the
temperature of the Chern insulator matches indeed the local
temperature of the wires in this example for low T and σ much
larger than the correlation length ξ = v/|M| of the Chern in-
sulator. Figure 7(b) shows the comparison of the temperature
profile T (r) of the attached wires (solid line) to the effective
temperature T eff (r) obtained from the attached thermometer
described above.

The fact that the temperature of the wire is directly
imprinted onto our Chern insulator can be understood by
inspecting the formula for G<, Eq. (E2). Provided that (i)
all temperatures are much smaller than the gap T (r) � |M|,
the main contribution of the integral in Eq. (E3) arises within
the frequency range of ω ∈ (−T0, T0) inside the gap in which
the spectral function A(ω) = −Im[(GR − GA)(ω)]/π is pro-
portional to �. In this frequency range the retarded and
advanced Green functions decay on the length scale ξ =
v/|M|. Thus G<

r,r is only sensitive to distribution functions in
the proximity of r. As we considered a case where ξ is much
smaller than a length scale σ over which the temperature pro-
file varies, the local G< is thus only affected by temperatures
very close to T (r). This explains the perfect agreement of
the measured temperature to the temperature of the attached
wires.
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(a)

(b)

(c)

FIG. 7. Temperature imprint onto a Chern insulator by a temper-
ature profile T (x) = T0e−x2/σ 2

of attached wires (Fig. 2). (a) Local
distribution function f eff

x (ω) (filled dots) of the Chern insulator and
the distribution f (ω, x) (solid curves) of the attached wires with
three different positions x; x/σ = 0 (Green), x/σ = 1 (red), and
x/σ = 1.5 (blue). Remarkably, two distribution functions are in ex-
cellent agreement, showing that the local temperature of the Chern
insulator is indeed imprinted by the temperature profile of the at-
tached wires. (b) The local temperature T eff(x) = Tth(x) (green dots)
of the Chern insulator at r and the temperature profile T (x) (the green
curve) of the wires as a function of x. (c) T eff (x = 0) = Tth (x = 0)
as a function of � with three different T0; T0 = 0.05 (blue), T0 =
0.1 (green), and T0 = 0.2 (red). T eff starts to deviate from T0 in
� ∼ |M| exp[−|M|/(kBT0 )] due to thermal excitations across the gap
|M|. Parameters: v = λ = −M = 1, σ = 32a, and N = 129 for pan-
els (a–c), and � = 0.1|M| for panels (a), (b).

These arguments remains valid as long as thermal excita-
tions across the gap—which are not localized on the length
scale ξ—can be neglected. They are exponentially suppressed

with e−|M|/T0 . But, when � is extremely small such that
�/|M| � e−|M|/T0 , the dominant contribution to the integral in
Eq. (E3) does not arise from inside the gap, but rather from
thermal excitations above the gap. These thermal excitations
in turn renders the local temperatures of the Chern insula-
tors to deviate from the temperature profiles of the wires. In
Fig. 7(c) we show the ratio of the measured temperature T eff

at r = 0 and the local temperature of the wire as a function of
� for three different temperatures. Small deviations between
the two temperatures for small � are exponentially suppressed
when the temperature is lowered.

In conclusion, we have shown that under the conditions
specified above, the temperature profile of the wires is suc-
cessfully imprinted onto the Chern insulator. Therefore, a
genuine response to a temperature or chemical potential pro-
file can be obtained from the model with attached wires.

(a)

(b)

FIG. 8. Local effective temperatures of a Chern insulator coupled
to phonon baths with a temperature profile T (x) = T + T0e−x2/σ 2

.
(a) Local distribution function f eff

x (ω), defined in Eq. (E1), (filled
dots) of the Chern insulator and the distribution f (ω, x) (solid
curves) of the phonon baths with three different positions; x/σ = 0
(Green), x/σ = 1 (red), and x/σ = 1.5 (blue). T /|M| = 0.05 and
T0/|M| = 0.0125 are chosen. Remarkably, two distribution functions
are in perfect agreement, showing that the local temperature of the
Chern insulator is indeed imprinted by the temperature profile of
the phonon baths. (b) The local temperature T eff(x) (the green dots)
of the Chern insulator at x, determined such that JE

th (x) vanishes in
Eq. (E3), and the temperature profile T (x) (the green curve) of the
phonons as a function of x. Parameters: v = λ = −M = 1, σ = 8a,
Nx = 32, α = 0.1, and � = 0.01.
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APPENDIX F: VIOLATION OF THE LUTTINGER
RELATION IN A PHONON-COUPLED CHERN INSULATOR

In this Appendix we consider a model where additionally
we attach phonon baths to a Chern insulator and demonstrate
that the Luttinger relation is invalid. Attaching the phonon
baths has two advantages. First, the model leads to equilibra-
tion of the system even in the absence of any attached wires.
Second, the phonon bath allows to imprint a temperature
profile onto the system in a way which is much closer to
an experimental setting, where one would use, e.g., a laser
to heat the system locally. If such an experiment is done on
an insulator, then phonons provide the dominant equilibration
channel.

To describe a Chern insulator with a simpler model, we
consider a discretized version of the continuum model defined
in Eq. (A1) realized on the square lattice (avoiding the longer-
ranged hoppings of the Haldane model). The model contains
two orbitals σ =↑,↓ per lattice site ri. It includes two nearest
hopping terms and an on-site term,

H = H1 + H2 + H3,

H1 = ih̄v

2a

∑
ri

(�†
ri+ax̂σx�ri + �

†
ri+aŷσy�ri − H.c.),

H2 = −λ2

a2

∑
ri

(�†
ri+ax̂σz�ri + �

†
ri+aŷσz�ri + H.c.),

H3 =
(

M + 4
λ2

a2

)∑
ri

�†
ri
σz�ri . (F1)

Here a is the lattice constant. The two-component spinor
�†

ri
= (�†

ri↑, �
†
ri↓) creates electrons in the two orbitals, ↑ and

↓, at site ri. Note that the Fourier transform of Eq. (F1) is

identical with Eq. (A1) in the continuum limit, k → 0. At
−4λ2/a2 < M < 0 (−8λ2/a2 < M < −4λ2/a2), the system
is in a topological phase with Chern number cR − cL = −1
(+1) while at M > 0 or M < −8λ2/a2, the system is in a
trivial phase. At the quantum phase transition to the trivial
phase at −4λ2/a2 = M, the gap closes at k = (±π/a, 0) and
k = (0,±π/a) while it remains finite at k = (0, 0) point.

We next attach to each lattice site and orbital a phonon
bath with temperature Tri . The temperature Tri varies in the
real space; Tri is assumed to vary in the x̂ direction, but to be
constant in the ŷ direction, Tri = T (x). The coupling to the
phonon baths can be described by the Hamiltonian

Ĥph =
∑
riσq

(
g�†

riσ
�riσ

(
a†

riσq + ariσq
) + ωqa†

riσqariσq
)
, (F2)

with electron-phonon coupling strength g. Here a†
riσq absorbs

a phonon with energy ωq and momentum q attached to the
point ri and orbital σ of the lattice. As considered before,
we also attach to each lattice site a wire with a chemical
potential μri and the same temperature Tri as the phonon baths
[see Eq. (D1)]. These wires are required to control the local
chemical potentials of the Chern insulator.

The effect of the electron-phonon coupling is captured
within Keldysh theory using a self-consistent one-loop ap-
proximation (i.e., the second order perturbation in g). Using
that the system is translationally invariant in the ŷ direc-
tion, we introduce momenta ky but write all self-energies
and Green functions as matrices in the x coordinates (using
either 16 or 32 sites with periodic boundary conditions). Be-
low, we denote the diagonal elements of these matrices by
�(x) and G(x). The local lesser self-energy �<

ph(x) and the
imaginary part of the local retarded self-energy Im�R

ph(x) are
given by

�<
ph(x, ω) = −2g2

∫
dω1

(2π )
b(ω − ω1, x)

∑
q

ImDR(x, q, ω − ω1)
∑

ky

G<(x, ky, ω1),

Im�R
ph(x, ω) = −g2

∫
dω1

(2π )

∑
q

ImDR(x, q, ω − ω1)
∑

ky

[ImG<(x, ky, ω1) − 2b(ω1 − ω, x)ImGR(x, ky, ω1)]. (F3)

Here b(ω, x) is the Bose function at position x, i.e.,
b(ω, x) = 1/(exp(ω/(kBT (x))) − 1), and DR is the phonon
retarded Green function. The real part of the retarded self
energy is numerically obtained from the Kramers-Kronig
relation, i.e., Re�R

ph(x, ω) = P
∫ ∞
−∞ dω′Im�R

ph(x, ω′)/(ω′ −
ω)/π . Furthermore, the phonon baths are assumed to fol-
low the Ohmic behavior, i.e., g2 ∑

q ImDR(x, q, ω) ≡ αω with
dimensionless and spatially independent coupling constant
α. The Green functions can be written in terms of the self
energies

GR(ky, ω) = {[gR(ky, ω)]−1 − �R(ω)}−1,

G<(ky, ω) = GR(ky, ω)�<(ω)GA(ky, ω), (F4)

with �R = �R
ph + �R

wire, �< = �<
ph + �<

wire, and bare Green
function gR(ky, ω). The �wire’s are the self-energies from the

attached wires and can be written as �<
wire(ω, x) = 2i� f (ω, x)

and �R
wire(ω) = −i� as shown in Eqs. (D2) and (D3). Then,

Green functions can be self-consistently calculated using
Eqs. (F3) and (F4).

Our iteration scheme is as follows: For the initialization,
the Green functions are obtained in the absence of the phonon
baths. The Green functions are plugged into Eq. (F3) to obtain
the self-energies, which are used to calculate the Green func-
tions by matrix inversion employing Eq. (F4). This procedure
is repeated until the Green functions converge. Convergence
is typically reached by less than 10 iterations.

As specified in Appendix E, provided that (i) all tem-
peratures are much smaller than the gap T (r) � |M|, the
main contribution of the integral in Eq. (E3) arises within
the frequency range of ω ∈ (−T0, T0) inside the gap. In this
frequency range, the retarded Green function decays on the
length scale ξ = v/|M| and hence the temperature at r is only
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sensitive to the temperatures in the vicinity of r. Therefore,
if (ii) ξ  σ , then the temperature of the system is imprinted
by the temperature profile of the phonons. At higher temper-
atures, when one has to consider the presence of thermally
excited quasiparticles, one has also to make sure that σ is
large compared to the scattering length ξph due to phonon
scattering. For the plots shown in the paper, we focus, how-
ever, on the low-T regime where thermal excitations can be
ignored.

Those arguments above can be checked from the ef-
fective distribution function f eff

r (ω) of the Chern insulator,
Eq. (E1), obtained from computing the local Green’s functions
G<(x, x), GR(x, x), and GA(x, x), explicitly. Nx = 32 and σ =
8 are used for this numerical simulation. In Fig. 8, f eff

r (ω) is
plotted as a function of ω with three different positions x/σ =

0 (green dots), x/σ = 1 (red dots), and x/σ = 1.5 (blue dots).
f eff
r (ω) are in perfect agreement with the local Fermi-Dirac

distribution function (solid lines) dictated by local phonon
temperatures T (x) = T + T0 exp(−x2/σ 2). Figure 8(b) shows
the comparison of temperature profile T (r) of the phonons
(solid line) to the effective temperature T eff (x) obtained from
the attached thermometer. They are in good agreement, show-
ing that the temperature of the system is imprinted by the
temperature profile of the phonons. The slight deviation from
the local phonon temperatures can be understood as a finite
size effect. The smaller (larger) value at the center (edge) of
the temperature profile implies that the temperature at posi-
tion r is averaged over temperatures in the position range of
(r − σ, r + σ ). A bigger system with larger σ will suppress
this deviation.

The charge current JC
y (x) and the energy current JE

y (x) along the ŷ direction at position x can be written from the same
procedure specified in Appendix C as

JC
y (x) = ie

∫ π/a

−π/a

dky

2π

∫
dω

2π
Tr

{[
vσy cos(kya) + 2λ2

a
σz sin(kya)

]
G<(x, ky, ω)

}
(F5)

and

JE
y (x) = − 1

h̄a

∫ π/a

−π/a

dky

2π

∫
dω

2π

{[
2

(
M + 2λ2

a2

)
λ2 sin(kya) +

(
h̄2v2

2
− 2λ4

a2

)
sin(2kya)

]
Tr[iG<(x, ky, ω)]

+ h̄2v2

4
cos(kya)Tr(σzIm{[G<(x, x + a; ky, ω) − G<(x, x − a; ky, ω)]})

− h̄λ2v

2a
sin(kya)Tr(σyIm{[G<(x, x + a; ky, ω) − G<(x, x − a; ky, ω)]})

− h̄λ2v

2a
cos(kya)Tr(σxRe{[G<(x, x + a; ky, ω) + G<(x, x − a; ky, ω)]})

}
. (F6)

Employing the lesser Green function obtained from the iteration scheme, we numerically obtain JC
y (x) and JE

y (x). JC
y (x) and

JE
y (x) are plotted in Fig. 4 with the parameters written in the corresponding figure caption; Nx = 16 and σ = 4 are used. The

plot clearly shows that the Luttinger relation is invalid.
We have thus obtained very similar results for a model where a temperature profile is imprinted by attached wire and a model

where it arises from the coupling to a phonon bath. This shows that the violation of the Luttinger relation is a generic feature
of systems with spatially varying temperature profiles. It is independent on how the temperature is induced and independent of
whether the system is interacting or not.
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