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Quantum dot spin valves are characterized by exchange fields which induce spin precession and generate
current spin resonances even in the absence of spin splitting. Analogous effects have been studied in double
quantum dots, in which the orbital degree of freedom, the pseudospin, replaces the spin in the valve configuration.
We generalize, now, this setup to allow for arbitrary spin and orbital polarization of the leads, thus obtaining
an even richer variety of current resonances, stemming from the precession dynamics of entangled spin and
pseudospin. We observe for both vectors a delicate interplay of decoherence, pumping, and precession which
can only be understood by also considering the dynamics of the spin-pseudospin correlators. The numerical
results are obtained in the framework of a generalized master equation within the cotunneling approximation
and are complemented by the analytics of a coherent sequential tunneling model.
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I. INTRODUCTION

The coherent manipulation of spins is at the heart of
quantum information technology. In this regard, electron spin
resonance (ESR) is a compelling tool able to accomplish this
task in a controlled way [1–3]. The basic working principle
of ESR requires a constant magnetic field splitting the spin
energy levels together with a magnetic field oscillating at
the resonant frequency. In a system comprising several spin
centers, however, it is very challenging to produce localized
magnetic fields which address one spin at a time. To overcome
this obstacle, it was shown that, by mixing charge and spin
degrees of freedom, it is possible to manipulate the electronic
spins also by electrical gates [4]. In this particular setup,
a Pauli-spin blockade was lifted in a double quantum dot
(DQD)—addressing the dots individually—via the nonuni-
form Zeeman field of an electrically tuned micromagnet.

Triggering spin precession with electrical signals is also
achieved without a time dependent driving by pushing the
magnetic component into the leads. The spin resonance with-
out spin splitting [5] is obtained, for example, in a quantum dot
spin valve. Here, the spin of the quantum dot precesses around
the constant exchange field arising by charge fluctuations to-
wards ferromagnetic leads with noncollinear polarization. The
spin precession lifts the blockade due to the valve configura-
tion of the leads and a resonant current flows. As the resonance
condition does not depend on the local magnetic field gradi-
ents but rather on the tunneling couplings, scalability of such
spin resonant devices is envisaged by means of local gating of
the individual dots.

Exchange fields, generated by the electronic fluctua-
tions, characterize, in general, the dynamics of degen-
erate, interacting quantum systems weakly coupled to
the leads [6–10]. Those electronic fluctuations lead to a

*christoph.rohrmeier@ur.de

renormalization of system energies [11,12] which—under the
right circumstances—also drive precession dynamics of the
system degrees of freedom, similar to external magnetic fields
[13].

A profuse interest has been attracted by interacting spin
valves with increasing complexity. Spin and Coulomb spec-
troscopy has been achieved with artificial molecules [14],
and also pure spin currents have been predicted by pumping
protocols in a DQD valve [15]. More recently, a continuously
electrically tunable quantum dot spin polarization of 80% [16]
has been realized with individual split gates and a gate tunable
enhanced magnetoresistance has been predicted by exploiting
exchange renormalization of the dot levels [17].

The interplay of ferromagnetism and Kondo resonance
[18] as well as the spatial resolution of spin states [19] has
been investigated in single-molecule junctions, while gate
field controlled magnetoresistance has been reported in car-
bon nanotubes [20,21].

In a recent publication [22], we extended the concept
of exchange field mediated spin resonances to include the
pseudospin. There, the orbital degree of freedom of a DQD
yields distinctive resonances in transport setups where a ge-
ometrically induced pseudospin valve suppresses the current.
Interestingly, the resonance is split in the presence of parallel
polarized ferromagnetic leads, thus highlighting the emer-
gence of a tunable synthetic spin-orbit coupling.

Moreover, an easier tunability of the system parameters
characterizes, in general, the pseudospin degree of freedom.
The polarization of the leads, for example, is for the pseu-
dospin a property of the interface, and as such tunable in
strength and direction, together with the tunneling amplitudes.
The spin polarization, however, relies on material properties,
hardly tunable and, above all, difficult to integrate, for exam-
ple, in semiconductor heterostructures.

In this work, we extend the analysis to an interacting
DQD spin valve with generic spin and pseudospin polariza-
tions. The interplay of spin and pseudospin produces, within
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the one-particle Coulomb diamond, a rich pattern of current
resonances, strongly modulated by the direction and strength
of the pseudospin polarization. Moreover, Coulomb interac-
tion induces pseudospin anisotropy on the DQD, thus defining
a pseudospin hard axis. The angle between this axis and the
pseudospin polarization direction of the leads is the crucial pa-
rameter tuning the entanglement between spin and pseudospin
on the DQD.

The paper is organized as follows: In Sec. II, we introduce
our model of a DQD spin valve. We elaborate in Sec. III on the
transport theory necessary for a consistent description of the
expected interference effects. Numerical results of transport
characteristics are presented in Sec. IV. The analytics of a
coherent sequential tunneling model follow in Sec. V, where
we analyze and generalize the appearing current resonances.
In Sec. VI special relevance is given to important limiting
cases of our setup, while Sec. VII is dedicated to the emerging
entanglement between spin and pseudospin. The discussion of
feasible experimental implementation of our concept can be
found in Sec. VIII and it is followed by an overall conclusion
(Sec. IX).

II. MODEL

We consider a spinfull DQD weakly coupled in parallel to
ferromagnetic leads. The setup is described by the following
system-bath Hamiltonian:

Ĥ = ĤDQD + Ĥleads + Ĥtun, (1)

which contains contributions of the DQD, the leads, and the
tunneling coupling. The Hamiltonian of the DQD reads

ĤDQD =
∑
i=1,2

[(ε0 + eVg)n̂i + Un̂i↑n̂i↓] + V n̂1n̂2, (2)

where n̂iσ = d̂†
iσ d̂iσ is the number operator for electrons on the

ith dot with spin σ , d̂iσ being the corresponding electronic an-
nihilation operator, e the electronic charge, and n̂i = ∑

σ n̂iσ .
The gate voltage is denoted by Vg and the on-site energy by
ε0. Moreover, we differentiate between U the local and V
the interdot Coulomb interaction, with the general condition
U > V favoring electron delocalization over the full DQD.
The electrons in the DQD are completely characterized by a
spin and an orbital degree of freedom. The latter identifies the
occupation of a specific dot, simply labeled as “1” or “2.” In
analogy to the spin degree of freedom, we introduce, for the
orbital one, a pseudospin description. The three components
of the pseudospin operator are given by

T̂α = 1

2

∑
τ i j

d̂†
iτ σ

α
i j d̂ jτ , (3)

where α = x, y, z and σα are the Pauli matrices. The occupa-
tion numbers for dot 1 and dot 2 can thus be expressed as

n̂1,2 = N̂

2
± T̂z, (4)

where N̂ = n̂1 + n̂2 is the total particle number operator of
the system. A finite component of the pseudospin in the z
direction is thus associated to an excess occupation of the dot

FIG. 1. Energy splitting of the two-particle states: the spin-
triplet, pseudospin-singlet states are depicted in blue (Sz = 0, ±1
and T = 0). The pseudospin anisotropy splits the pseudospin-triplet,
spin-singlet states (highlighted in orange; Tz = 0, ±1 and S = 0)
energetically.

1 with respect to the dot 2. HDQD can be reformulated in terms
of the pseudospin operators as

ĤDQD =
(
ε − U

2

)
N̂ + U + V

4
N̂2 + (U − V )T̂ 2

z , (5)

where ε = eVg + ε0.
The eigenstates of ĤDQD can be classified in terms of spin

and pseudospin quantum numbers. The latter are crucial for
the understanding of the DQD dynamics considered in this
manuscript. We thus analyze them with considerable detail.
The extreme occupation numbers (0 and 4) are both spin as
well as pseudospin singlets. The one-particle sector, instead,
is spanned by four degenerate states. On one hand, we can
identify them as |σ, 0〉 or |0, σ 〉, i.e., as states with an electron
with spin σ occupying respectively the first or the second
dot. Alternatively, according to Eq. (3), these states of spin
Sz = ±1/2 are also characterized by a pseudospin Tz = ±1/2.
A state with a finite pseudospin component in the x or y direc-
tion, requires, instead, a coherent superposition of localized
states. Analogous considerations concern the three-particle
sector, understood in terms of states with a single hole.

The perfect symmetry between spin and pseudospin ob-
served in the sectors with the outer occupation numbers is
broken in the two-particle sector. The latter highlights, in-
stead, against its perfect spin isotropy a pseudospin anisotropy
of the DQD. As U > V , the delocalization of the two
electrons is energetically favored and the pseudospin de-
velops an easy x-y plane as indicated by the last term of
Eq. (5). The latter vanishes in the zero- and four-particle
subspaces (both pseudospin singlets), while it reduces to a
constant energy shift when evaluated on the one- and the
three-particle subspaces (corresponding both to pseudospin
doublets). In the two-particle subspace, we have to deal with
a combination of spin/pseudospin triplets and singlets. An
overview of the resulting six states is visualized in Fig. 1.
The fourfold degenerate ground state consists of the three
spin-triplet, pseudospin-singlet states (blue) and the (Tz = 0)-
pseudospin-triplet, spin-singlet state (orange). The remaining
(Tz = ±1)-pseudospin-triplet states are split off with an en-
ergy U − V higher than the one of the ground state. This
energy splitting in the pseudospin space will be the key to un-
derstanding the richness of the observed current resonances.
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The leads are baths of (effectively) noninteracting
fermions, described by the leads Hamiltonian Hleads =∑

b εbĉ†
bĉb. The collective index b = {l�kσl} labels an electron

according to its location (l = L/R for the left/right lead), mo-
mentum �k, and spin σl along the spin quantization axis of the l
lead. The quantization axes of the system and of the individual
leads do not necessarily coincide, and a more general choice
helps in the description of noncollinearly polarized leads. The
annihilation operator ĉb destroys the lead electron with the
corresponding energy εb. Furthermore, we assume the leads
to be spin polarized with a spin polarization for the lead l
defined as Pl

S = (gl↑l − gl↑l )/(gl↑l + gl↑l ), with g�σ being the
spin resolved density of states for the lead l . We keep the leads
at the same temperature T , with the electrochemical potentials
μl modulated by the external bias μL,R = ±eVb/2.

Finally, the tunneling Hamiltonian reads

Ĥtun =
∑
biσ

tb,iσ ĉ†
b d̂iσ + t∗

b,iσ d̂†
iσ ĉb, (6)

where the tunneling amplitudes tb,iσ connect the operators of
the leads with the four system operators {d̂1↑, d̂1↓, d̂2↑, d̂2↓}.
The tunneling amplitudes allow us to define the tunneling rate
matrix

�l
iσ, jσ ′ (E ) = 2π

h̄

∑
�kσl

t∗
l�kσl ,iσ

tl�kσl , jσ ′ δ
(
E − εl�kσl

)
, (7)

which incorporates the properties of the tunneling process. In
this work, we assume negligible intrinsic spin-orbit interac-
tion and very localized dot wave functions, so that we can fac-
torize the tunneling rate matrices into an orbital/pseudospin
and a spin component. We write thus, for the tunneling rate
matrix for the l lead,

�l = �l
0

(
12

2
+ Pl

T

2
�nl

T · �σ
)

⊗
(
12

2
+ Pl

S

2
�nl

S · �σ
)

, (8)

where we introduced the bare tunneling rate �l
0, and the

spin/pseudospin polarization strength Pl
S/T and direction �nl

S/T .
The pseudospin polarization of the lead allows for a sim-
ple physical interpretation, in connection to the pseudospin
formulation of the system Hamiltonian. Full pseudospin po-
larization in the z direction indicates an exclusive coupling to
the dot 1 or, depending on the direction, to the dot 2. Compo-
nents in the x-y plane describe instead coherent tunneling to
both orbitals.

The tuning of the system geometry yields different tunnel-
ing setups with different tunneling rate matrices. In Fig. 2 one
of the tunneling configurations considered in this manuscript
is visualized. We distinguish for clarity between spin and
pseudospin channels, even if, except for some limiting cases,
the full system dynamics results from their interplay, as sug-
gested by the curved arrows. In the spin degree of freedom, we
will limit our considerations to a valve configuration, where
the polarization vectors of the leads are almost antiparal-
lel. The latter leads to an overall suppression of the current
through the tunneling junction associated to a spin accumu-
lation. The pseudospin polarization vectors of the leads are,
instead, parallel to each other, though they do not coincide, in
general, with the pseudospin hard axis of the DQD (indicated

FIG. 2. Interplay of spin and pseudospin channels determines the
transport through the system: in the spin space, the polarization vec-
tors of the leads are almost antiparallel (φ ≈ π ), which translates into
a spin valve configuration. Through pseudoexchange fields (purple)
one can rotate the spin of the system and thus lift the current suppres-
sion of the spin valve. In the pseudospin space, we consider parallel
polarization of the leads. Since there is a preferential plane in the
pseudospin, indicated by the red lines, one defines the polarization
direction of the leads in respect to this plane (θ ). The pseudospin of
the system can precess under the influence of the pseudoexchange
field �BT .

by dashed black line) nor do they belong to the easy plane
(indicated schematically by the solid red lines).

Due to the spin isotropy of the DQD and its rotational
invariance around its hard axis, we can parametrize the po-
larization vectors with just two angles:

�nL
S = (0, 0, 1), �nR

S = (sin φ, 0, cos φ), (9)

�nL/R
T = (sin θ, 0, cos θ ) = �nT . (10)

Moreover, throughout this work we will use equal spin and
orbital polarization for the leads (PS = PL/R

S ; PT = PL/R
T ).

III. TRANSPORT THEORY

We investigate the transport characteristics of the DQD
spin valve via a generalized master equation (GME) for the re-
duced density matrix. In particular, we consider a perturbative
approach in the tunneling coupling to the leads. We comple-
ment the lowest perturbative order—the sequential tunneling
approximation—with the cotunneling contributions, in which
also the simultaneous and correlated two-electron tunneling
events are taken into account. Most of the current features
presented in this manuscript already appear in sequential tun-
neling. Thus the cotunneling approximation also serves to
demonstrate the robustness of the observed effects.

By numerical integration of the GME, we evaluate the
steady state reduced density matrix, from which observables
like the current, the spin, the pseudospin, the populations of
the dots, and the concurrence are evaluated. We will adhere
very closely to the formalism presented in our recent publi-
cation [22] and based on the Nakajima-Zwanzig projection
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operator technique [23,24]. The equation of motion for the
projected component of the density operator P ρ̂ reads [25]

P ˙̂ρ(t ) = LDQDP ρ̂(t ) +
∫ t

0
dsK(t − s)P ρ̂(s), (11)

where the projector P =: Trleads{•} ⊗ ρ̂leads is defined as the
partial trace over the leads times the equilibrium density ma-
trix of the leads. Furthermore, we introduced the Liouville
operator for the DQD: LDQD =: −i/h̄[ĤDQD, ρ̂]. Analogously
defined Liouvilleans corresponding to the other components
of the Hamiltonian in Eq. (1) can be found in the kernel
superoperator

K(t ) = PLtunḠQ(t )LtunP, (12)

which combines tunneling Liouvillans with the propagator

ḠQ(t ) = e(LDQD+Lleads+QLtunQ)t (13)

containing, moreover, the complementary projector
Q = 1 − P .

Equation (11) is exact and it contains all orders in the tun-
neling Liouvillian Ltun as it is easily verified by inspection of
Eq. (13). Moreover, Eq. (11) also captures memory effects, as
the dynamics of the reduced density matrix at time t depends
on the state of the system at all previous times. In the present
work, we concentrate, though, only on the steady state of the
system, defined as ρ̂∞

red := Trleads{ρ̂(t → ∞)}. With the help
of the Laplace transformation, the convolutive form of the
kernel, and the final value theorem, we obtain the following
equation for the stationary reduced density operator [26–29]:

Trleads
{
(LDQD + K̃)ρ̂∞

red ⊗ ρ̂leads
} = 0, (14)

with

K̃ = PLtun

∞∑
n=0

(G̃0QLtunQ)2nG̃0LtunP, (15)

where

G̃0 = lim
λ→0+

1

λ − LDQD − Lleads
(16)

is the Laplace transform of the free propagator for the DQD
and the leads, but in the absence of tunneling coupling. Notice
that memory effects do not affect the steady state properties of
the system and the Markovian limit of the GME would yield
the same results.

For sufficiently small coupling to the leads (h̄�0 �
U, kBT ) a perturbative expansion of the propagation kernel
in Eq. (15) in the tunneling Liouvillian is justified. Through-
out this work, we will focus on the first two terms in this
expansion, namely the sequential tunneling (n = 0) and the
cotunneling terms (n = 1). We refer to [22,26–29] for a more
detailed discussion about the sequential and cotunneling ker-
nels of Eq. (15) with the evaluation of the respective energy
integrals. Any stationary expectation value of a system ob-
servable can be obtained as O = TrDQD{Ôρ̂∞

red}. From the
stationary density matrix ρ̂∞

red, also the stationary current at
lead l is evaluated,

Il = TrDQD+leads
{
KIl ρ̂

∞
red ⊗ ρ̂leads

}
, (17)

with the current kernel KIl obtained from the propagator ker-
nel in Eq. (15) by changing the leftmost tunneling Liouvillian
with the current operator,

Îl = ie

h̄

∑
kσl aσ

tlkσl ,aσ ĉ†
lkσl

d̂aσ − t∗
lkσl ,aσ d̂†

aσ ĉlkσl , (18)

where e is the electronic charge. Based on this formalism, we
have implemented a transport code which includes all reduced
density matrix coherences between energetically degenerate
states. The latter are necessary to capture the interference
effects which characterize our system.

IV. NUMERICAL RESULTS

In Fig. 3, we show the current through the DQD calculated,
according to the transport theory presented in the previous
section, within the cotunneling limit. In particular, we set par-
allel pseudospin polarization with PT = 0.6 and pseudospin
polarization angle with respect to the z hard axis of θ = 1.5,
as well as PS = 0.99 with a relative spin polarization angle
φ = 0.95π .

The current, given in logarithmic scale, is normalized to
a reference value I0. The latter is the one expected for a
quantum dot spin valve in the high bias limit, but without
pseudospin polarization [6]. In terms of the system param-
eters introduced in the previous section, we calculate I0 =
2(�L

0 �R
0 )/(�L

0 + �R
0 ){1 − [PS sin(φ/2)]2}. Such a current nor-

malization highlights the effects of the pseudospin on the
transport characteristics, since I0 gives the scale of the under-
lying spin valve suppression.

The stability diagram is characterized, on the large scale,
by five Coulomb diamonds where the Coulomb interaction
suppresses the current, thus stabilizing a constant charge on
the system. The quantized occupation of the DQD increases
from 0 to 4 electrons by lowering the single-particle level, as
indicated on the figure. The size U and V for, respectively,
the two- and one- or three-particle Coulomb diamonds is
determined by the corresponding addition energies. Besides
the electron-electron interaction, the current in the Coulomb
diamonds is further suppressed, at biases larger than the tem-
perature, by the spin valve configuration, which promotes spin
accumulation on the system with an orientation antiparallel to
the one of the drain lead.

A distinctive current resonance protrudes into the Coulomb
blockade area of the central diamond. It is a spin resonance
which lifts the additional current suppression due to the spin
valve configuration. We rationalize such a resonance, in the
same spirit of [5,22], by introducing the exchange field:

�B2S =
∑

l

2PS�
l
0[pl (E32g) − pl (E2g1)]�nl

S, (19)

with

pl (x) = Re� (0)
(

1
2 + i x−μl

2πkBT

)
2π

, (20)

where � (0)(z) is the digamma function, T the temperature,
and kB the Boltzmann factor. The subscript of the energy Ess′

labels the energy difference between the many-body eigen-
states s and s′.
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FIG. 3. Current plot of a DQD in a Vg-Vb map shows an intricate set of current resonances: the N = 1, 2, 3-Coulomb diamonds are
decorated with resonances which cut deep into the Coulomb blockade regions. In the central N = 2 diamond a simple ground-state-to-
ground-state transition is appearing. The parameters are the following: U = 2V , kBT = 0.05V , PT = 0.6, PS = 0.99, θ = 1.5, φ = 0.95π ,
�L

0 = 1 × 10−2V = 2�R
0 , and ε0 = −2V .

The electronic fluctuations from and to the leads, in combi-
nation with the Coulomb interaction on the system, are at the
origin of this exchange field. The latter is only effective in the
presence of a degenerate energy spectrum. Analogous to an
external magnetic field, it generates a spin procession on the
triplet sector of the two-particle ground state (cf. Fig. 2). This
mechanism counteracts the spin accumulation and lifts the
spin valve suppression by promoting precession towards the
spin states more aligned to the drain polarization. The position
of the resonance can thus be predicted by the vector condition
�B2S · (�nL

S − �nR
S ) = 0 [5,13,22]. The latter defines, in fact, the

exchange field which maximizes the precession towards the
drain spin direction.

Also the one- and three-particle diamonds are decorated
by current resonances. Their pattern is, though, more intricate
than the one of the central Coulomb diamond and it cannot
be explained solely in terms of exchange field induced spin
precession. The explanation requires a more detailed analysis
involving the interplay with the pseudospin degree of free-
dom. Due to the particle-hole symmetry of the Hamiltonian,
we will restrict ourselves to the one-particle diamond. Results
for negative energies can be deduced by a simultaneous reflec-
tion of both the bias and the gate voltage.

The intimate relation between the current resonances of the
one-particle diamond and the pseudospin degree of freedom
is presented in Fig. 4. The current resonances are plotted
here as a function of the pseudospin polarization PT and the
pseudospin polarization angle θ . Not only the position and
the strength of the resonances, but even their number, depends
on the control parameters. For example, the angle dependence
shows a single peak for θ = 0 which splits into two and
even acquires a third resonance for larger angles. The mere
z polarization of the leads for θ = 0 allows one to identify
parallel transport channels for each of the dots and could be
rationalized by a spin exchange field similar to Eq. (19). The
same procedure, though, fails to capture all the resonances for
intermediate angles 0 < θ < π/2 and intermediate polariza-
tion strengths 0 < PT < 1.

For a more complete understanding of the entire parameter
range, we introduce, in the next section, a reduced model and

study the dynamics of the system within the lowest order in
the tunneling coupling.

V. COHERENT SEQUENTIAL TUNNELING MODEL

We deduce the equations for the minimal model by con-
sidering only the sequential tunneling contributions to the full
GME. For simplicity, we perform also the Markov approxima-
tion which, anyway, does not influence the stationary solution.
Under these conditions, the equation of motion for the reduced
density operator reads

˙̂ρred = − i

h̄
[ĤDQD + ĤLS, ρ̂red] + LTρ̂red, (21)

where LT describes the tunneling events among many-body
states with consecutive particle numbers and ĤLS is the Lamb
shift Hamiltonian, which renormalizes the coherent DQD dy-
namics and is due to virtual charge fluctuations [8]. A detailed
derivation of Eq. (21) for the model at hand is given, for exam-
ple, in [22], where, though, a completely different parameter
regime has been analyzed.

The richest pattern of anomalous current resonances is
found in the one-particle Coulomb diamond (cf. Fig. 3).
Thus we further restrict ourselves only to the elements of the
density matrix describing the empty and the single-occupied
DQD.

The system exhibits a fourfold degenerate one-particle
spectrum and single-particle tunneling rate matrices which
cannot be diagonalized simultaneously. Thus, in general, all
the one-particle coherences should be retained for a correct
description of interference effects [8]. Their dynamics is, in
fact, coupled to the one of the corresponding populations, in-
dependent of the representation basis. Such a transport regime
goes under the name of coherent sequential tunneling [13].

In summary, the nonequilibrium dynamics of the DQD
weakly coupled to the source and drain leads reduces, in the
above-mentioned limit, to a set of 17 coupled linear differen-
tial equations, involving the empty-state population and each
of the 16 elements of the one-particle density matrix.
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FIG. 4. Current resonances modulated by the pseudospin polarization angle θ and strength PT : (a) θ -Vb map and (b) PT -Vb map, both at
Vg = 1.5V , exhibit a strong dependence on the respective parameters. The white dashed lines indicate the parameter set of Fig. 3. The black
and magenta dashed lines are the resonance conditions for the �S− and �S+ channel, which are explicitly discussed in Sec. VI.

An alternative description involves the expectation val-
ues of a complete set of operators: P0 = 〈P̂0〉 and P1 = 〈P̂1〉
are the populations of the empty and the single-occupied
state, respectively, with P̂0 = |∅〉〈∅| and P̂1 = ∑

iσ d̂†
iσ P̂0d̂iσ

the corresponding projectors; Tα = 〈T̂α〉 and Sα = 〈Ŝα〉 are
the pseudospin and the spin vectors, respectively, with T̂α

as the α = x, y, z component of the pseudospin operator de-
fined in Eq. (3) and analogously Ŝα = 1/2

∑
iττ ′ d̂†

iτ σ
α
ττ ′ d̂iτ ′ ;

the spin-pseudospin correlator �αβ = 〈T̂α Ŝβ〉 completes the
set. In our considered setup, this correlator is in general not
proportional to the product of the spin and pseudospin due
to their intertwined dynamics P1〈T̂α Ŝβ〉 �= 〈T̂α〉〈Ŝβ〉. The cor-

relator captures therefore the mutual influence on each other
of the spin and pseudospin variables. Within these 17 linearly
independent variables, we replace, in this manuscript, �S and
� by the four vectors:

�S± = �S
2

± �eT · �, ��⊥ = �e⊥ · �, ��y = �ey · �, (22)

which involve the orthogonal basis �ey = (0, 1, 0), �eT = �nT ,
and �e⊥ = (�ey × �eT ). This basis adapts to the orientation of
the (parallel) pseudospin polarization of the leads and anal-
ogously it occurs to the set of variables in Eq. (22) chosen to
describe the system. The equation of motion for such observ-
ables reads

Ṗ0 = + γ −(P1 + 2PT �eT · �T ) − 4γ +P0 + 2D+ �γ − · �S+ + 2D− �γ − · �S−,

Ṗ1 = − γ −(P1 + 2PT �eT · �T ) + 4γ +P0 − 2D+ �γ − · �S+ − 2D− �γ − · �S− = −Ṗ0,

�̇T = − γ − �T + 2�ωT × �T − [
γ − PT

2 P1 − 2γ +PT P0 + D+ �γ − · �S+ − D− �γ − · �S− − 4�ωa
S · ��y

]
�eT

+ [
4�ω− · ��⊥ − 2�ωa

S · (�S+ − �S−) − 2�γ − · ��y
]
�ey − [4�ω− · ��y + 2�γ − · ��⊥]�e⊥,

�̇S± = − γ −D± �S± + 2(�ωS ± �ω−) × �S± + D±
[
�γ +P0 − �γ −

4 (P1 ± 2�eT · �T )
] + 2�ωa

S × ��⊥ ∓ 2ωa
T

��y ± �ωa
S (�ey · �T ),

�̇�⊥ = − γ − ��⊥ + 2�ωS × ��⊥ − 2ω+ ��y − PT �γ − × ��y − �ω−(�ey · �T ) − �γ −
2 �e⊥ · �T + �ωa

S × (�S+ + �S−),

�̇�y = − γ − ��y + 2�ωS × ��y + 2ω+ ��⊥ + PT �γ − × ��⊥ + �ω−(�e⊥ · �T ) − �γ −
2 �ey · �T − �ωa

S (�eT · �T ) + ωa
T (�S+ − �S−),

(23)

where several functions have been defined to express the
tunneling, as well as the Lamb shift contribution of the Li-
ouvillian. On one hand, we have introduced scalar and vector
rates, respectively,

γ ± =
∑

l

γ ±
l with γ ±

l = �l
0

4
f ±
l (ε) (24)

and

�γ ± =
∑

l

�γ ±
l with �γ ±

l = PS�nl
Sγ

±
l , (25)

in which, for the Fermi functions, we adopt the notation
f ±
l (ε) = [e±(ε−μl )/(kBT ) + 1]−1. Furthermore, we set D± =

1 ± PT to quantify the coupling strength to the different pseu-
dospin sectors.

The Lamb shift contribution to the GME yields several
exchange fields, which are responsible for precession dynam-
ics for the vectorial components in Eq. (23). To this end, we
introduce the frequencies ωl

xx′,yy′ = �l
0[pl (Exx′ ) − pl (Eyy′ )]/4,

which involve the difference of two digamma functions, and
fluctuations towards both the zero- and the two-particle neigh-
boring states. In terms of those frequencies, we define the
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exchange fields:

�ωT = PT

∑
l

(
ωl

10,2g1�nT + ωl
2e1,2g1 cos θ �ez

)
,

�ωS = PS

∑
l

ωl
10,2e1�nl

S,

�ω− = PT PS

∑
l

(
ωl

10,2g1 − ωl
2e1,2g1 cos2 θ

)
�nl

S,

�ωa
S = PT PS sin θ cos θ

∑
l

ωl
2e1,2g1�nl

S. (26)

The list of auxiliary functions appearing in the model equa-
tions (23) is complemented by the scalars

ωa
T = PT sin θ cos θ

∑
l

ωl
2e1,2g1,

ω+ = PT

∑
l

(
ωl

10,2g1 + ωl
2e1,2g1 cos2 θ

)
. (27)

Despite their complexity, Eqs. (23) display simple recurring
patterns, which can guide us in the understanding of their
physical implications.

The first two equations express the rate of change in the
zero- and one-particle populations. It holds, in particular, Ṗ0 =
−Ṗ1 as follows from the probability conservation and the ne-
glect of populations with particle number larger than one. This
assumption strongly reduces the number of equations needed
to describe the DQD, but it also restricts their validity to the
region of the one-particle diamond closer to the 0–1 charge
degeneracy point.

The rate of change of P0 (and P1) not only depends on pop-
ulations, but also on the spin and pseudospin vectors, respec-
tively, �S± and �T . The latter appear within scalar products with,
respectively, the spin and the pseudospin polarization vectors
in the leads. Indeed, like for a spin valve, electron tunneling
is favored by the alignment of the spin or the pseudospin
degree of freedom of the DQD with the corresponding lead
polarization.

We now turn to the equation of motion for the vectorial
components in Eqs. (23), which all share the same structure
and encompass three main effects: decoherence, precession,
and pumping. The first two effects are described by the terms
involving the very same vector whose time derivative appears
on the left-hand side of the equation. We collect instead
under the concept of pumping all the other terms, involv-
ing populations as well as the other vectors describing the
DQD.

The rate of decoherence is always proportional to γ − as
tunneling events towards the zero-particle state reduce both
the spin as well as the pseudospin on the DQD. Such pro-
cesses, though, are strongly suppressed within the one-particle
diamond, due to Coulomb interaction. We thus expect weak
decoherence. Even the correlator vectors ��y and ��⊥ are
subject to the same decoherence rate. Notice, moreover, the
D± weight is modulating the rate of the spin variables �S±,
which implies a further reduction of decoherence for the spin
variable �S− in the presence of large pseudospin polarization.

The exchange fields characterizing the precession terms
strongly vary, among the different vectorial components, both

FIG. 5. Current in the one-particle Coulomb diamond calculated
with two different approaches: in panel (a) the full cotunneling cal-
culation is presented. Panel (b) shows the corresponding result in the
coherent sequential tunneling limit. Both currents are renormalized
by the current I0 expected for a spin valve in the high bias limit. The
white dashed line should help for the comparison with Fig. 4.

in direction and intensity. The pseudospin exchange field al-
ways points into the direction �eT , i.e., the one of the parallel
pseudospin polarizations of the leads. The spin exchange field
results instead from a delicate balance between the almost
antiparallel source and drain contributions. Thus both the
strength and the intensity of the fields �ωS ± �ω− are strongly
modulated within the one-particle Coulomb diamond.

The pumping component of the (pseudo)spin dynamics is
the one responsible for the (pseudo)spin accumulation on the
DQD observed in the stationary limit. Naturally, such a phe-
nomenon characterizes the spin channels, due to the spin valve
configuration of the leads polarization. The spin pumped from
the source lead accumulates, in the absence of spin precession,
on the DQD and it has hardly any chance to escape towards the
almost antiparallel polarized drain. The terms encompassing
this dynamics are the ones proportional to the populations
P0 and P1. The pumping component contains, moreover, also
terms which intertwine the spin dynamics to the one of the
pseudospin and that of the correlator vectors ��y and ��⊥.
Analogously, thanks to the coupling to the other vectorial
variables, also the pseudospin can be pumped along a generic
direction, despite the parallel polarization of the leads along
�eT .

The effects of such an intricate system dynamics on the
transport characteristics and, in particular, the crucial role
played by the spin and the pseudospin degree of freedom is
illustrated by the current formula:

Imodel = 4(γ +
L − bγ +) − 2PT (γ −

L − bγ −)�nT · �T ∞

− 2(�γ −
L − b�γ −) · (D+ �S∞

+ + D− �S∞
− ), (28)

in which b = (γ −
L + 4γ +

L )/(γ − + 4γ +) and the superscript
“∞” indicates observables calculated in the steady state limit.

A comparison between the current in the one-particle
Coulomb diamond obtained in the cotunneling approximation
with the one stemming from this coherent sequential tunneling
model is depicted in Fig. 5. Despite the strong simplifications
in the model calculation, the two currents show a good qual-
itative agreement. In particular, the main resonance which is
bending towards the point (Vg ≈ 1.3, Vb = 0) as well as its
anticrossing near the point (Vg ≈ 1.4, Vb ≈ 0.1) are captured
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FIG. 6. Pseudospin depends strongly on the gate and bias voltages: the components (a) �ey, (b) �eT , (c) �e⊥ of �T underline the vector character
of the pseudospin. The (anti)alignment of the pseudospin (decreases) increases the current flow through the DQD. Focusing on the upper right
corner, one observes a clear rotation of �T in the y direction. Same parameters as in Fig. 3.

in the model description. Of the distinctive cross-shaped fea-
ture of the cotunneling calculation, though, only one arm is
well visible in the model calculation. The other arm is buried
inside the fermionic tail of the current inside a Coulomb
diamond and therefore it is barely discernible. Moreover, a
poorer match is expected for the side of the Coulomb diamond
closer to the 1–2 charge degeneracy point. As we neglect,
for simplicity, direct tunneling to the two-particle states, the
current of the model decreases exponentially for decreasing
gate voltages.

The first component in Eq. (28) yields the current expected
for PS = PT = 0. As it only contains Fermi functions cen-
tered around the 0–1 transition resonance, this contribution
to the current is smooth within the one-particle Coulomb dia-
mond. Consequently, the sharp current resonances observed in
Fig. 5(b) can only be ascribed to the sharp modulations of the
stationary pseudospin and spin vectors appearing respectively
in the second and third term of Eq. (28).

In Fig. 6, the components of �T in the basis of �ey, �eT , and �e⊥
are displayed. Distinct features in the pseudospin components
are clearly correlated to the current resonances in Fig. 5. For
most of the bias and gate voltages, �T ∞ points along the �eT

direction and, in the areas of (anti)alignment of �T with respect
to �eT , the current is (lowered) raised. There are, though, also
areas in which the other components of �T prevail and the
pseudospin contribution to the current vanishes, as can be
derived from Eq. (28). Altogether, it is thus clear how the
vectorial character of �T must be considered for a thorough
description of the transport phenomena. In particular, it is the
intertwining of the spin and pseudospin degrees of freedom
which foster the drastic deviation of the pseudospin direction
of the DQD from the polarization direction of the leads, as
will be highlighted later by analyzing limiting cases of the
pseudospin polarization angle θ .

We now turn to the spin contribution of the current. The
first qualitative understanding is obtained in the framework
of the phenomenology of a quantum dot spin valve. The last
term of Eq. (28) substantially decreases the current due to
the almost antiparallel alignment of the source and drain and
the corresponding spin accumulation along the source spin
polarization direction.

More specifically, we refer in Eq. (28) to the combinations
of the spin vector �S and the spin-pseudospin correlator �

proposed in Eq. (22). The latter define spin observables which,
for specific limiting cases, identify independent spin channels.
The full separation is only obtained when �nT coincides with
the hard axis (θ = 0) or it belongs to the easy plane (θ = π/2)
for the pseudospin of the DQD and will be discussed in detail
in Sec. VI. Insight into the spin dynamics can though be
gained also for the case at hand (θ = 1.5) as it is demonstrated
by the predicting character of the magenta and black dashed
lines in Fig. 4(b).

In Fig. 7, we compare the modulus of the two spin variables
�S+ and �S− as calculated from the full cotunneling and from the

FIG. 7. Comparison of stationary spin variables �S±: panels
(a) and (c) are obtained from the full cotunneling calculation, while
(b) and (d) refer to the reduced sequential tunneling model. Same
parameters as in Fig. 3.
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coherent sequential tunneling model. The model captures the
rich texture of the stationary spins even better as compared
to the current presented in Fig. 5. Particularly, the cross-
shaped feature appears more distinctively, although for |�S−|
the model predicts the wrong sign for the positive slope signal.
Most interestingly, we observe how the spin channels can be
blocked or unblocked individually, as the separate regions of
high, respectively low, modulus indicate. Qualitatively, we
can rationalize this phenomenon as a transfer of probability
between the + and the − channel occurring when one of them
is unblocked due to a fast precession dynamics.

A more quantitative description is obtained, analyzing the
equation of motion for �S±. The latter can be divided into a
decoherence, a precession, and a pumping component:

�̇S± = −a± �S±︸ ︷︷ ︸
decoherence

+ �B± × �S±︸ ︷︷ ︸
precession

+ �x±(P1, �T , ��y, ��⊥)︸ ︷︷ ︸
pumping

. (29)

The steady state solution of this equation is given by �S∞
± =

�F (a±, �x±, �B±) with

�F (a, �x, �B) = a

a2 + | �B|2
(

�x + �B · �x
a2

�B + �B × �x
a

)
. (30)

We define the input parameters as a± = D±γ − and �B± =
2(�ωS ± �ω−). Furthermore, we use for the pumping the steady
state solution of the other variables:

�x± = D±

[
�γ +(1 − P∞

1 ) − �γ −

4

(
P∞

1 ± 2�eT · �T ∞)]

+ 2�ωa
S × ��∞

⊥ ∓ 2ωa
T

��∞
y ± �ωa

S (�ey · �T ∞). (31)

We do not have a closed form solution of the intricate
Eqs. (23). The analysis of the semianalyitical Eq. (30) gives,
though, relevant insights on the accumulation dynamics of the
spin variables.

We distinguish among three different regimes, depending
on the ratio of | �B±|/a±. If the decoherence rate is much larger
than the precession frequency (| �B±|/a± � 1) the respective
stationary spin is given by �S± ≈ �x±/a±, at most, corrected
by the small precession contribution �B± × �x±/a2

±. Essentially,
the pumping defines the accumulation direction.

The opposite regime is obtained whenever | �B±|/a± � 1.
In this case, the second term of Eq. (30) dominates and results
in dephasing, with all components suppressed except for the
ones pointing in the direction of the exchange fields.

In the intermediate regime (| �B±|/a± ≈ 1), also the last
term, which represents a coherent precession of the pumped
spin, plays an important role. Inside the one-particle Coulomb
diamond, it holds | �B±|/a± � 1 so that the spin is mainly
determined by the absolute value of the pumping |�x±| and
the angle ∠(�x±, �B±) between pumping direction and exchange
field.

If the pumping occurs for a given spin variable in a di-
rection perpendicular to the exchange field, the corresponding
spin is strongly dephased and, for that channel, the spin
blockade is strongly lifted. Since the same condition cannot
occur simultaneously for both spin channels, the other one
absorbs probability. This probability transfer corresponds to
an increase of the pseudospin component along �eT . The latter,

in turn, is also precessing (see Fig. 6) and it gives feedback on
the spin pumping direction.

While the population transfer between the + and the −
spin channels rationalizes the complementary behavior of the
spin plots in Fig. 7, the interplay between the spin and the
pseudospin is at the origin of the correlation between Figs. 6
and 7.

All together, the two-spin-channel description represents a
good starting point for unraveling the dynamics of the DQD
spin valve under consideration. A fully vectorial approach to
the pseudospin, going beyond the population difference of the
spin channels (the latter being represented by the �eT · �T ), is
though necessary for a generic orientation of the pseudospin
polarization.

VI. LIMITING CASES

We consider, in this section, two limiting cases of pseu-
dospin polarization direction: first, we assume with θ = 0 that
�eT coincides with the hard pseudospin axis; afterwards, we
take �eT in the easy plane, i.e., θ = π/2. The symmetry of
the system Hamiltonian with respect to any rotation around
the hard pseudospin axis ensures the equivalence of all pseu-
dospin polarizations belonging to the easy plane.

The fundamental simplification obtained for θ = 0 or θ =
π/2 is the vanishing of the exchange field �ωa

S as well as of
the scalar ωa

T . Both functions derive from the Lamb shift con-
tribution of the Liouvillian and, in particular, they originate
from the pseudospin anisotropy of the DQD. Interestingly, for
both limiting angles the variables ��⊥, ��y, are only coupled to
themselves and to the components �ey · �T , �e⊥ · �T of the pseu-
dospin, but they are independent of P0, P1, �S+, �S− and �eT · �T .
If the system of Eqs. (23) admits a unique stationary solution,
the latter will correspond to the trivial choice for the set of
coupled variables which do not include the populations. It is in
fact the probability conservation to fix the normalization of the
kernel for the Liouvillian. The relevant part of Eqs. (23) can
be cast with the help of P± = P1

2 ± �nT · �T into the following
equations:

Ṗ± = 2D±[γ +P0 − γ −P± − �γ − · �S±],

�̇S± = D±
[
P0 �γ + − γ − �S± − P±

2 �γ −] + 2 �B± × �S±,
(32)

complemented by Ṗ0 = −Ṗ+ − Ṗ− due to probability conser-
vation. Further simplifications apply if θ = 0, as the exchange
field �B± reduces to D± �ωS . Thus, in this limit, D± factorizes in
the equations of the spin variables. We are left with a single
spin resonance with the condition given by �ωS · (�nL

S − �nR
S ) =

0. Interestingly, the prefactors D± drop completely from the
stationary solutions. They can simply be interpreted as scaling
factors for the time evolution of the different channels. As
such, they cannot influence the stationary state, achieved in
the infinite time limit.

In the case θ = π/2, instead, the two spin variables are
characterized by two independent resonant conditions �B± ·
(�nL

S − �nR
S ) = 0. The splitting of the resonances as a function of

the angle and pseudospin polarization strength is highlighted
in Fig. 4.
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FIG. 8. Spin dephasing as the main mechanism behind spin resonances: (a) the limiting case θ = π/2 shows a splitting into the ± channels.
The default situation is that the electrons occupy P+ (red area) since the pumping is polarized in that direction. P− is prevailing on the resonance
condition for the “+” channel (white dashed line) since there the + electrons can leave the spin valve blockade and thus only “−” electrons
remain. (b) On the resonance, the spin coherence decreases faster than the respective population. (c) Clear resonance condition for the −
channel is outside of this Vg-Vb window; thus the coherence of this channel is maintained and yields a blockade. Parameters of Fig. 3 except
for θ = π/2.

In Fig. 8, we further analyze the spin dynamics underlying
such resonances. The observable P+ − P− ≡ 2 �T · �eT shows a
very strong transfer of probability from the + towards the −
channel in the vicinity of the �S+ spin resonance (highlighted
by the white dashed line). A comparison with Fig. 8(b) in-
dicates, moreover, how the spin dephasing is at the origin
of the population transfer. The fast precession opens the +
spin channel and the average spin amplitude (perpendicular
to the exchange field) drops even faster than the correspond-
ing population. Spin accumulation for the slow precessing
− channel completes the picture. This observation contrasts,
though, with the picture of coherent rotation as unblocking
mechanism, as the latter would conserve the rotated spin
length or, at least, the ratio between the spin and the corre-
sponding population.

The understanding of the limiting cases allows us to infer a
similar dynamics for θ = 1.5 ≈ π/2. Figure 4(b) shows how
the resonances predicted for θ = π/2 closely follow two of
the actual resonances. The other two resonances of this plot
can be rationalized, instead, by the semianalytical ansatz of
Eq. (30) as a delicate interplay of the pumping vector and the
involved magnetic fields. The elements �ey · �T and �e⊥ · �T feed
into the spin channels and cause, there, an accumulation of
spin components which are eventually not blocked.

Remarkably, in the areas where both unblocking conditions
were met simultaneously, i.e., in Fig. 5 around the anticrossing
of Vg ≈ 1.6 and Vb ≈ 0.2, a near to perfect lifting of the spin
blockade is reached. The current closely approaches the one
that would be obtained for normal leads, in the complete
absence of spin valve.

VII. ENTANGLEMENT OF SPIN AND PSEUDOSPIN

The interaction between the spin and the pseudospin,
discussed in the previous section and triggered by an in-
termediate pseudospin polarization angle, yields not only
correlation but also entanglement between the two degrees
of freedom. As a measure of the phenomenon, we choose
the concurrence (see Fig. 9) which, together with the closely

related entanglement of formation, quantifies the degree
of quantum entanglement of a system [30]. In particular,
for a bipartite system, the entanglement of formation is
calculated as

E (C) = h

(
1 + √

1 − C2

2

)
, (33)

where h(x) = −x log2 x − (1 − x) log2(1 − x) is the Shannon
entropy function [31] and C is the concurrence. The entangle-
ment of formation E ranges from 0 to 1 and is a monotonically
increasing function of the concurrence. Since the concurrence
C also ranges from 0 to 1, it can also be seen as a stand-alone
measurement of entanglement.

The concurrence is obtained by different, though compati-
ble, formulas depending on the state of the system. For a pure
state |�〉, C is given as

C(�) = |〈�|�̃〉|, (34)

FIG. 9. Concurrence C in dependence of gate and bias voltage:
remarkably, only in a limited area entanglement between spin and
pseudospin can be observed. These features are determined by the
correlator vectors ��y and ��⊥. Same parameters as in Fig. 3.
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where |�̃〉 = σ y ⊗ σ y|�∗〉 with ∗ the complex conjugation
which, together with the two σ y’s, represents the spin flip
operation for each of the two involved degrees of freedom.
For the one-particle sector of our DQD, we can express this
combined spin flip with the help of the spin and pseudospin
operators: |�̃〉 = 4ŜyT̂y|�∗〉.

Notice that, with our choice, we do not measure the con-
currence between the spin on each dot, but rather the one
between the spin and the pseudospin of the full DQD. In
this respect, the state (| ↑, 0〉 − |0,↓〉)/

√
2 is an example

of maximal entanglement. It yields concurrence 1 because a
simultaneous pseudospin and spin flip, up to a sign, does not
alter the state. In contrast, (| ↑, 0〉 − |0,↑〉)/

√
2 gives zero

concurrence, since the simultaneous flip of spin and pseu-
dospin leads to a state orthogonal to the original one.

We are interested, though, in the concurrence for a generic
state of our bipartite spin-pseudospin DQD, described by the
one-particle component ρ̂red,1 of the reduced density matrix.
Following [30], we thus calculate the concurrence as

C(ρ̂red,1) = max(0, λ1 − λ2 − λ3 − λ4), (35)

where the λi’s are the square roots of the eigenvalues, in
decreasing order, of the non-Hermitian matrix ρ̂red,1ρ̃red,1.
Analogous to |�̃〉, we define the pseudospin- and spin-flipped
state as ρ̃red,1 = (σ y ⊗ σ y)ρ̂∗

red,1(σ y ⊗ σ y).
In Fig. 9, the concurrence of our system is displayed in

dependence of bias and gate voltages. One appreciates how
quantum mechanical entanglement of spin and pseudospin
is only present on the resonances (“cross”-shaped structures)
which are not captured by the limiting case of the independent
+ and − spin channels. Consequently, the finite values of the
concurrence closely correlate to the �ey and �e⊥ components
of �T shown in Figs. 6(a) and 6(c). The mediator of the en-
tanglement between the spin and pseudospin in the DQD is
the synthetic spin-orbit interaction induced by the electronic
fluctuations.

With the concurrence, we can quantify and compare the
degree of entanglement with respect to other systems or
polarization configurations. In graphene, for example, en-
tanglement between spin and sublattice pseudospin leads to
the formation of states which violate the Bell inequality
[32]. The latter should be detectable via Cooper pair split-
ting experiments. The time-varying concurrence generated in
graphene by the intrinsic spin-orbit interaction ranges in their
calculation between 0.5 and 0.6. Beyond its relevance for
fundamental physics, the study of entanglement [33] is crucial
for the development of current quantum technologies. In this
spirit, the discussed electrical manipulation of quantum entan-
glement represents an interesting path for the implementation
of qubit operations in DQD.

VIII. EXPERIMENTAL REALIZATION

To our knowledge, spin/pseudospin resonances, as the
ones outlined in this publication, have—up to now—not been
realized experimentally. However, we are convinced that,
though very challenging, these experiments are feasible. Pseu-
dospin resonances bear the advantage that a huge variety of
systems exhibit the necessary twofold degeneracy in their
valley/orbital degree of freedom and, moreover, that the nec-

essary high pseudospin polarizations of the leads have been
already implemented in interference experiments [34].

In general, suitable candidates for detection of these reso-
nances are quantum dots realized in carbon nanotubes [34,35],
in semiconductors [16], or in molecules within a STM setup
[36]. The quest is to combine the two main prerequisites
which are already individually achieved in experiments: on
the one side, a valve configuration [16] and on the other side
off-diagonal tunneling rate matrices, i.e., coherent tunneling
[9,34]. For example, in [22] we elaborate theoretically a mi-
croscopic model of DQD where such off-diagonal tunneling
rate matrices are obtained manipulating the distance between
the quantum dots and with respect to the leads.

IX. CONCLUSIONS

The transport characteristics of interacting systems with a
degenerate many-body spectrum are prone to exhibit interfer-
ence effects [6,9,10,37] already in the sequential tunneling
regime. Interference appears whenever the single-particle
tunneling matrices of the leads [see Eq. (7)] cannot be di-
agonalized simultaneously or, in other terms, whenever it is
not possible to identify parallel transport channels running
between the source and the drain lead.

In this work, we analyzed an interacting DQD weakly
coupled to ferromagnetic leads in almost antiparallel spin
valve configuration. This set up naturally ensures interference
between the spin transport channels. Moreover, we choose
a tunneling coupling with parallel pseudospin polarization,
which, naively, should correspond to independent pseudospin
channels.

On the other hand, the tendency of the electrons to avoid
each other due to the Coulomb interaction induces pseudospin
anisotropy on the DQD, thus defining a pseudospin hard axis.
It is the angle θ between this axis and the polarization di-
rection of the leads to control the mixing of the pseudospin
channels.

For θ = 0, the stationary pseudospin is completely
quenched and the dynamics reduces to the one of a quantum
dot spin valve [5]. In the case of θ = π/2, instead, we can
identify two different spin variables, �S+ and �S−, associated
with opposite pseudospin directions and showing indepen-
dent dynamics. Thus the pseudospin reduces itself to a single
component, the one parallel to the lead polarization, which
measures the imbalance P+ − P− between the populations of
the two spin channels. Finally, for any other intermediate
angle, the spin and the pseudospin are correlated, with the
stationary pseudospin changing strength and direction as a
function of the bias and gate voltage applied to the system.

We focused on the angle θ = 1.5 ≈ π/2. Here, the sig-
natures of the intertwined spin and pseudospin dynamics are
current resonances emerging inside the one-particle Coulomb
diamond. Besides the spin resonances closely related to the
ones of the limiting case with θ = π/2, we identify a cross-
shaped feature which can only be understood in terms of
spin-pseudospin correlations.

In general, all the observed current resonances result from
the lifting of the spin blockade induced by the spin valve
configuration. The exchange fields induce a fast precession
of the spin variables, which results in spin dephasing. Thus

205418-11



CHRISTOPH ROHRMEIER AND ANDREA DONARINI PHYSICAL REVIEW B 105, 205418 (2022)

the electrons can again tunnel towards the drain, despite its
high spin polarization. In particular, the direction of the ex-
change fields controls the efficiency of the dephasing and
thus the position of the spin resonances within the Coulomb
diamond. The cross-shaped resonance, instead, stems from
the interplay of spin and pseudospin and their mutual influ-
ence in their pumping dynamics, where also the correlation
vectors ��y and ��⊥ are involved. Ultimately, we could show
that, in the vicinity of the cross-shaped resonance, spin and
pseudospin are not only correlated, but also entangled. To this
end, the calculation of the concurrence gives a figure of merit
for the effect. A fundamental issue addressed in this study is
the emergence of spin-pseudospin correlation and entangle-
ment, despite the factorized form of the tunneling matrices.
Moreover, the different nature of the current resonances ob-
served in the one-particle Coulomb diamond shows how to
address different transport channels and stir the dynamics of
different degrees of freedom of an interacting system solely
by electrical means, i.e., the bias or the gate voltages across
the nanojunction.

Systems with larger (N > 2) level degeneracy exhibit a
coherent dynamics involving a rapidly increasing number
of degrees of freedom. Together with their fast increasing
complexity, though, they also offer more control nobs. Mod-
ulating the tunneling amplitudes between a multilevel system
and the leads induces variations of the exchange fields arising
from electronic fluctuation. Ultimately, the results presented
here indicate, in principle, how to achieve in a single device
an all electronic control of the precession dynamics for several
entangled degrees of freedom, a very desirable feature for the
current quest of a scalable quantum information technology.
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