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Trilayer graphene is receiving an increasing level of attention due to its stacking-dependent magnetoelectric
and optoelectric properties and its more robust ferromagnetism relative to monolayer and bilayer variants.
Additionally, rhombohedral stacked trilayer graphene presents the possibility of easily opening a gap via either
an external electric field perpendicular to the layers or the application of external strain. In this paper, we consider
an external electric field to open a band gap in rhombohedral trilayer graphene and study the excitonic optical
response of the system. This is done via the combination of a tight-binding model with the Bethe–Salpeter
equation solved semianalytically and requiring only a simple numerical quadrature. We then discuss the valley-
dependent optical selection rules followed by the computation of the excitonic linear optical conductivity for the
case of a rhombohedral graphene trilayer encapsulated in hexagonal boron nitride. The tunability of the excitonic
resonances via an external field is also discussed together with the increasing localization of the excitonic states
as the field increases.
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I. INTRODUCTION

Ever since the discovery and isolation of graphene [1],
a plethora of different layered materials have been studied
in detail. Of these layered materials, we specifically men-
tion hexagonal boron nitride (hBN) [2] and transition metal
dichalcogenides (TMDs) [3]. In hBN, the large band gap
and strong second-order nonlinearities make it well suited
for deep-UV optoelectronics [2,4]. Regarding TMDs, these
display strong spin-orbit coupling and breaking of inversion
symmetry, leading to coupled spin and valley physics and
valley–selective optical excitations [5–8].

The optical response of these materials is dominated by ex-
citons [9], which consist of bound electron–hole pairs. These
are created by the excitation of an electron from the valence
band to the conduction band, leaving behind a hole in the
valence band. The electrostatic interaction [10,11] between
the pair leads to the formation of a bound state inside the
band gap of the material, forming a hydrogen-like system.
The large binding energies of excitons, together with their
efficient coupling with light, makes them highly relevant and
a rich field of research. Recently, various works have focused
their attention on the optical response of excitons in TMDs
both in the linear regime [12,13] and in the nonlinear regime
[14,15].

As graphene lacks the necessary band gap for the forma-
tion of electron–hole bound states, excitonic phenomena are
absent in pristine graphene monolayers. Graphene multilayers
can, however, be engineered to present a band gap and as such
host bound electron–hole pairs. A simple example is biased
bilayer graphene, where a external perpendicular electric field
is applied to a pair of stacked graphene monolayers, opening

*mfcmquintela@gmail.com

a tunable band gap and allowing the formation of excitons.
This system, encapsulated in hBN, was the subject of recent
experimental [16] and theoretical [17–19] studies.

A less-studied system is that of biased trilayer graphene,
where three graphene monolayers are stacked and an external
perpendicular electric field is applied to the multilayer. Fer-
romagnetism has been shown to be more robust in trilayer
graphene than in either monolayer or bilayer graphene, specif-
ically when the layers are stacked in an ABC fashion (i.e.,
rhombohedral stacking) rather than in an ABA fashion (i.e.,
Bernal stacking) [20,21]. While the largest band gaps obtained
in bilayer graphene systems have been around hundreds of
meV, in trilayer graphene band gaps of around 2 eV have been
obtained by tuning the interlayer coupling via compression of
a few GPa [22].

Recent experimental and theoretical works have also
shown that several transport properties depend on the stack-
ing order, including but not limited to thermoelectric [23]
and magnetoelectric [24] transport. Additionally, it has been
shown that a considerable gap can be opened in ABC-stacked
trilayer graphene via an external electric field, while the same
does not occur in ABA-stacked trilayer graphene under the
same situations [25–27]. The possibility of broken symmetry
states has also been explored in weakly disordered ABC-
stacked trilayer graphene via a self–consistent Hartree–Fock
approximation, with gapped broken symmetry states shown to
be favored over both gapless and normal states [28]. Gapped
many-body states have also been investigated of which we
specifically mention quantum Hall states in chirally stacked
systems [29,30].

This paper is structured as follows. In Sec. II, we be-
gin by defining the tight-binding model of the considered
ABC-trilayer system and discuss its band structure. We then
reduce the Hamiltonian to a nearest–neighbor only model as
to simplify the Bethe–Salpeter calculations, discussing the
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FIG. 1. Schematic view of the hoppings included in the tight-
binding model. Red and blue dots represent the two different
sublattices, while the different lines connecting them represent the
different hopping terms considered.

dominant bands and the specific phase factors of each elec-
tronic state. Following from the single-particle regime, in
Sec. III we discuss the excitonic states of the system obtained
by solving the Bethe–Salpeter equation. Finally, in Sec. IV,
we discuss the optical response of the system. After outlining
the method of computing the optical conductivity, we dis-
cuss the excitonic selection rules for both linearly polarized
and circularly polarized light. We then consider an additional

hopping parameter in the Hamiltonian, discussing the result-
ing new selection rules and computing their contribution to
the optical conductivity. Finally, we consider several different
values of the external bias potential, computing the optical
conductivity for each as to ascertain the tunability of the
excitonic response.

II. TIGHT–BINDING MODEL

For describing the excitonic properties of the ABC-stacked
graphene trilayer, we first need to analyze the electronic
properties of the system in the independent-electron ap-
proximation. This stacking order is characterized by the B
sublattice of each layer laying opposite of the A sublattice of
the layer above, but opposite to the honeycomb centers of the
layer below, and is also known as rhombohedral stacking. We
begin defining a tight-binding Hamiltonian written directly
in momentum space and taking into account the hoppings
discussed in Ref. [28]. A schematic view of the hoppings
considered is shown in Fig. 1.

Throughout this paper, we will work in the {|1, t〉,
|2, t〉, |1, m〉, |2, m〉, |1, b〉, |2, b〉} basis, where the 1/2 labels
represent the two sites in the monolayer graphene unit cell
(red/blue dots in Fig. 1, respectively) and the t/m/b labels
represent the top/middle/bottom layers. The tight-binding
Hamiltonian for the ABC-stacked trilayer graphene for the
hoppings shown in Fig. 1 can be written as [28,31,32]

HTB =

⎡
⎢⎢⎢⎢⎢⎣

0 γ0φ(k) γ4φ(k) γ3φ
∗(k) 0 γ2

γ0φ
∗(k) 0 γ1 γ4φ(k) 0 0

γ4φ
∗(k) γ1 0 γ0φ(k) γ4φ(k) γ3φ

∗(k)
γ3φ(k) γ4φ

∗(k) γ0φ
∗(k) 0 γ1 γ4φ(k)

0 0 γ4φ
∗(k) γ1 0 γ0φ(k)

γ2 0 γ3φ(k) γ4φ
∗(k) γ0φ

∗(k) 0

⎤
⎥⎥⎥⎥⎥⎦, (1)

with φ(k) obtained from the honeycomb geometry of the
individual layers as

φ(k) = eikya/
√

3

[
1 + 2e−i3kya/2

√
3 cos

(
kxa

2

)]
(2)

and a = 2.46 Å the carbon–carbon distance in graphene.
As we are interested in the low-energy response of the

system, we restrict our study to the Dirac points of the first
Brillouin zone. Close to these Dirac points, φ(k) can be ap-
proximated as

φ(k) ≈ 3
2 a τkeiτθ ,

with τ = ±1 the Dirac valley index, k = |k| and θ =
arctan( ky

kx
).

The nearest-neighbor intralayer and interlayer hopping
processes γ0 and γ1 are responsible for the general features of
the band structure, while γ2, γ4, and the trigonal warping γ3

parameter have their main impact close to the band-crossing
points. Considering the graphite hopping parameter values
described in Ref. [28], given by γ0 = 3.12 eV, γ1 = 0.377 eV,
γ2 = 0.01 eV, and γ3 = 0.3 eV, as well as the γ4 hopping

parameter described in Ref. [31], γ4 = −0.1 eV, the band
structure near one of the two Dirac points is given in Fig. 2. In
this figure, the band structure for a minimal model Hamilto-
nian where γ2 = γ3 = γ4 = 0 is also plotted in dashed lines.
The agreement between the full and the minimal models is
quite good. No band gap is present in either model, with
the two lowest energy bands intersecting at k ≈ −0.014 Å−1

in the full model and at k = 0 in the minimal model. This
intersection of the lowest energy bands in the full model is
similar to that which is present at k = 0 for the two higher en-
ergy bands, with no band crossing occurring. Focusing on the
higher energy bands, their previously mentioned intersection
at k = 0 occurs at an energy of roughly 380 meV (see Fig. 2,
brown/orange lines for conduction bands and purple/blue
lines for valence bands). The minimum of these two higher
energy bands occurs at 350 meV, significantly higher than the
energy scale of the lowest energy bands.

A. Nearest-neighbor biased Hamiltonian

Since there are no significant differences between the full
tight-binding Hamiltonian and the minimal model close to
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FIG. 2. Electronic bands near the Dirac valley τ = 1 for ABC-
stacked trilayer graphene. Solid lines represent the full tight-binding
Hamiltonian of Eq. (1), while dashed lines represent the minimal
model Hamiltonian where only the hopping parameters γ0 and γ1

were considered.

k = 0, we consider, for matters of simplicity, only the min-
imal model with γ0 and γ1 both finite. The adoption of this
minimal model for the electronic motion in the ABC–trilayer
graphene allows, as discussed ahead, separation of variables
in the eigenvectors of the tight-binding Hamiltonian [see
Eq. (4)], greatly simplifying the momentum integration in the
Bethe–Salpeter equation. The effects of considering nonzero
trigonal warping on the optical selection rules, i.e., setting
γ3 = 0.3 eV, will be discussed in Sec. IV B.

Adding an external electric field perpendicular to the layers
introduces in the Hamiltonian an additional term, which takes
into account the electric potential in the different layers. The
new Hamiltonian reads

H = HTB + Vdiag[1, 1, 0, 0,−1,−1], (3)

where Vdiag[1, 1, 0, 0,−1,−1] represents a diagonal matrix
where the diagonal elements are those in square brackets (i.e.,
[1, 1, 0, 0,−1,−1]); the rest of the elements are zero. This
corresponds to an electric potential of +V in the top layer,
0 in the middle layer, and −V in the bottom layer, meaning
that the total potential difference between the top and the

FIG. 3. Electronic bands near the Dirac valley τ = 1 for a min-
imal model of biased ABC-stacked trilayer graphene with bias
potential V = 0 meV (dashed lines) and V = 100 meV (solid lines).

bottom layers will be 2V . The band structure near the Dirac
point of the τ = 1 valley for V = 0 and 100 meV is given in
Fig. 3.

As expected [25], a gap of Egap = 2V opens at the Dirac
point, although it is not the smallest gap in the system. For
the bias potential considered in Fig. 3 (100 meV), a gap of
� = 160 meV exists at roughly k ≈ ±0.03 Å−1. This second,
smaller gap remains the smallest for all finite values of the
bias potential, although its location depends on the value of V
(minimum at ±0.0085 Å−1 for V = 10 meV and at ±0.05 Å−1

for V = 250 meV). Additionally, when a bias potential is
introduced in the system, a gap also appears between the
two higher energy bands, removing the intersection at k = 0
visible in the dashed lines.

As the characteristic polynomial of this Hamiltonian is of
order six, the exact form of the eigenvector for each of the six
bands is cumbersome. As such, we will not write their explicit
expressions. Instead, and as they have a well-defined phase in
each of the six spinor components of each eigenvector, we will
extract this phase factor explicitly. This separation will prove
useful for solving the Bethe–Salpeter equation, allowing us
to transform the two-dimensional (2D) integral into a 1D
problem. This generic eigenvector will then be given by

∣∣uv,η

k

〉 = [
e3iθτψ

η

1,v, e2iθτψ
η

2,v, e2iθτψ
η

3,v, eiθτψ
η

4,v, eiθτψ
η

5,v
, ψ

η

6,v

]ᵀ
∣∣uc,η

k

〉 = [
e3iθτψ

η

1,c, e2iθτψ
η

2,c, e2iθτψ
η

3,c, eiθτψ
η

4,c, eiθτψ
η

5,c, ψ
η

6,c

]ᵀ
, (4)

where the k dependence has been included in the radial ψ
η

j,c/v radial spinor components for compactness, c/v distinguishes
between conduction and valence bands, and η is the band index that distinguishes the three individual bands in each set (η = −1
for the band closest to the gap, η = 0 for the intermediate band, and η = +1 for the band furthest from the gap; see Fig. 3).

However, due to the definition of the angular variable θ , the complex exponential eiθ becomes ill-defined and discontinuous as
k → 0. To avoid this discontinuity, we group the phase factors such that complex exponentials only appear multiplied by terms
that vanish at k = 0, removing numerical difficulties stemming from this discontinuity [18]. This will lead to different forms of
the eigenvectors from Eq. (4) depending on the specific band given in generic fashion in Eq. (5),∣∣uc,−1

k

〉 = [
ψ−

1,c, e−iθτψ−
2,c, e−iθτψ−

3,c, e−2iθτψ−
4,c, e−2iθτψ−

5,c, e−3iθτψ−
6,c

]ᵀ
∣∣uv,−1

k

〉 = [e3iθτψ−
1,v, e2iθτψ−

2,v, e2iθτψ−
3,v, eiθτψ−

4,v, eiθτψ−
5,v, ψ

−
6,v]ᵀ∣∣uc,0

k

〉 = [
e2iθτψ0

1,c, eiθτψ0
2,c, eiθτψ0

3,c, ψ
0
4,c, ψ

0
5,c, e−iθτψ0

6,c

]ᵀ
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∣∣uv,0
k

〉 = [
eiθτψ0

1,v, ψ
0
2,v, ψ

0
3,v, e−iθτψ0

4,v, e−iθτψ0
5,v, e−2iθτψ0

6,v

]ᵀ
∣∣uc,+1

k

〉 = [eiθτψ+
1,c, ψ

+
2,c, ψ

+
3,c, e−iθτψ+

4,c, e−iθτψ+
5,c, e−2iθτψ+

6,c]ᵀ∣∣uv,+1
k

〉 = [e2iθτψ+
1,v, eiθτψ+

2,v, eiθτψ+
3,v, ψ

+
4,v, ψ

+
5,v, e−iθτψ+

6,v]ᵀ. (5)

This phase choice of the Bloch factors will play a crucial role
in determining the optical selection rules and leads to hydro-
genlike selection rules in the monolayer [18]. It is important
to note, however, that this choice of phase factors breaks
down for sufficiently large values of the bias potential. At
V ≈ 260 meV the phases of η = −1 and η = 0 begin mixing
as the top of the η = −1 band becomes extremely close to the
bottom of the η = 0 band. As such, we end our calculations at
V = 110 meV as to be sufficiently far away from this regime.

Trigonal warping was not included in the minimal model
Hamiltonian as its presence makes separating the phase factor
of each spinor entry similarly to Eqs. (4) and (5) impossible.
Ignoring trigonal warping at this level is not a stringent ap-
proximation as can be seen in the band structure present in
Fig. 2. Still, we will consider its contribution to the dipole
moment operator when selection rules are discussed as it leads
to important new optical selection rules.

III. BETHE–SALPETER EQUATION

Having finalized the discussion of the electronic band
structure, we will now move on to the excitonic states.
To compute the excitonic wave functions and their binding
energies we will solve the Bethe–Salpeter equation. For a
multiband system, the Bethe–Salpeter equation can be written
in momentum space as [33–36]

E ψc,η1;v,η4 (k)

= (
Ec,η1

k − E v,η4
k

)
ψc,η1;v,η4 (k) + +

∑
η2,η3

∑
q

V

× (k − q)
〈
uc,η1

k

∣∣uc,η2
q

〉〈
uv,η3

q

∣∣uv,η4
k

〉
ψc,η2;v,η3 (q), (6)

where ψc,η1;v,η4 (k) is the excitonic wave function that we wish
to obtain, |uv/c,η

k 〉 and E v/c,η
k are the single-particle electronic

wave functions [Eqs. (4–5)] and energies, respectively, and
V (k) is an electrostatic potential coupling different bands
and thus capturing many-body effects including the intrinsic
many-body nature of excitons.

In this paper, we consider the electrostatic potential to
be the Rytova–Keldysh potential [10,11] (usually employed
to describe excitonic phenomena in mono- and few-layer
materials), which can be obtained by solving the Poisson
equation for a charge embedded in a thin film of vanishing
thickness. In momentum space, this potential is given by

V (k) = 2π
h̄cα

ε

1

k(1 + r0k)
,

where α = 1/137 is the fine-structure constant, and ε is the
mean dielectric constant of the medium above/below the
ABC-trilayer graphene. The parameter r0 corresponds to an
in-plane screening length related to the 2D polarizability of
the material. It can be calculated from the single-particle

Hamiltonian of the system, although ab initio calculations
might be necessary for accurate computation of r0 depending
on the material [37]. This screening parameter varies with
the bias potential V , and its numerical value is of the utmost
importance if the excitonic properties of a specific system are
to be studied accurately [38,39]. An in–depth discussion of
the in–plane screening length in bilayer graphene has been
done in Ref. [40], and we perform a simplified version of this
procedure for ABC-trilayer graphene in Appendix A.

To solve the Bethe–Salpeter equation, we assume that the
excitons have a well-defined angular momentum quantum
number m, such that their wave functions can be written as
ψc,η1;v,η4 (k) = fc,η1;v,η4 (k)eimθ . Furthermore, it is important
to note that Eq. (6) is actually a separate equation for each
pair of bands c, η1; v, η4. This implies that there are nine
equations (3 valence × 3 conduction) that must be solved,
stemming from the three valence and three conduction bands.
Additionally, as mentioned previously, a careful choice of the
phases of the single-particle spinors allows us to transform
the BSE into a 1D integral equation. Both the discussion on
the necessary transformations to solving the Bethe–Salpeter
equation in biased ABC-trilayer graphene and the description
of the numeric methodology are available in Appendix B.
Solving this eigenvalue problem, one obtains the excitonic
eigenvalues and eigenfunctions.

Having determined the solutions for a wide range of bi-
ases, we observed that of the nine sets of ψc,η1;v,η4 (k), those
corresponding to η1 = η4 = −1 were by far the dominant
contributions. This is a reasonable and somewhat expected
result, as intuition tells us that the bands close to the gap
should dominate the system’s low-energy response. As such,
calculations can be greatly optimized by restricting the sum
over bands to only the η = −1 bands. It is important to
note that, as the bias potential increases past a certain point
(roughly V ≈ 200 meV), the η = −1 bands are no longer the
sole dominant contribution. At this external bias, one must
also take into account the next pair of bands to obtain a reason-
able result, greatly increasing the computational complexity
and calculation time.

When discussing excitonic states, we adopt a nomenclature
similar to what is used in the hydrogen atom, with states with
angular momentum m = 0 being s-series states, states with
angular momentum |m| = 1 being p–series states, and analo-
gously to higher angular momenta. To distinguish ±m states,
for m �= 0, we will use the sign of the angular momentum in
index (i.e., 3d+ and 3d− states).

To finalize this section, we depict the density plot of the 1s
and the 3d+ excitonic states for three different external bias in
Fig. 4, together with the binding energies of the two excitonic
states in question and the electronic band gap. The 1s state is
presented only for comparison, as it is the only state that is
nonzero at k = 0 and, as such, is sufficiently distinct from all
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FIG. 4. Left: Electronic band gap (black line), together with binding energies of the (optically dark) excitonic 1s ground state (red dots) and
(optically bright) excitonic 3d+ state, for various bias potentials between V = 30 meV and V = 150 meV. Right: Density plot of the absolute
value squared of the excitonic 1s (top panels) and 3d+ (bottom panels) wave functions in ABC-stacked trilayer graphene encapsulated in
hBN with various external biases V = 30 meV, V = 70 meV and V = 110 meV. The region plotted in each panel is a square of side 0.1 Å−1

centered at k = 0.

other excitonic states. However, it is optically dark and will
play no part in the optical conductivity, as we will show in
Sec. IV.

As the external field V increases, the effective screening
length r0 decreases (see Appendix A) leading to more tightly
bound excitons in real space. This is clear by the increase in
the delocalization in momentum space of the excitonic wave
functions as the field increases, which is equivalent to local-
ization in real space in accordance with what was expected
from the decrease in screening length. Considering the wave
function for V = 110 meV, the spread in momentum space of
the 3d+ states is roughly �k ≈ 0.08 Å−1. As such, the spread
in real space will be approximately �r = 2π/�k ≈ 80 Å.

Having obtained the excitonic wave functions and dis-
cussed their dependence on the external bias potential, we will
now compute the optical linear conductivity and discuss the
selection rules obtained from the tight-binding Hamiltonian.

IV. EXCITONIC CONDUCTIVITY

In this section, our goal is to obtain the excitonic linear
optical conductivity for biased trilayer graphene followed by
discussing the tunability of the obtained resonances via the
external potential. We will begin by determining the optical
selection rules of our system and the impact of each hopping
term in the Hamiltonian on these same selection rules. This
discussion will be focused on both linearly polarized light and
circularly polarized light, while the final computations will
focus only on linearly polarized light, as circular polarization
does not generate new possible transitions.

In the dipole approximation, and considering normal inci-
dence, the optical conductivity is given by [34]

σ
(1)
α,β

(h̄ω) ∝
∑

n

En

�n,α�∗
n,β

En − h̄ω − i�n
+ (ω → −ω)∗, (7)

where the sum over n represents the sum over excitonic
states with energy En and wave function ψn,cv , and �n is a
phenomenological broadening parameter considered to be n
dependent in a similar fashion as Ref. [18]. This broaden-
ing parameter is considered to be a fixed value chosen as
to better identify each individual excitonic resonance. The
inhomogeneity of the structure, together with exciton–phonon
interactions and disorder scattering, would provide a signifi-
cant contribution to this broadening [41–43]. In Eq. (7), �n,α

is defined as

�n,α =
∑
c,v

∑
k

ψn,cv (k)
〈
uv

k

∣∣rα

∣∣uc
k

〉
, (8)

with 〈uv
k|rα|uc

k〉 as the interband dipole operator matrix ele-
ment in the α direction obtained using the relation

〈
uv

k

∣∣rα

∣∣uc
k

〉 =
〈
uv

k

∣∣[H, rα]
∣∣uc

k

〉
E v

k − Ec
k

.

Knowing this relation, one then expands the commutator
〈uv

k|[H, rα]|uc
k〉 and the optical selection rules are directly

obtained from the phase factors of the single-particle states
in Eq. (5). With these phase factors fixed, one can then study
which optical transitions become allowed when specific hop-
ping terms are included in the tight-binding Hamiltonian.

As mentioned previously, although only the nearest–
neighbor hopping terms were considered when solving the
Bethe–Salpeter equation, the effects of the trigonal warping
hopping γ3 will also be taken into account during the evalua-
tion of the commutator [H, rα] as it plays a crucial role in the
system’s optical selection rules. The impact of the γ4 hopping
parameter will also be discussed, even though it does not
generate new selection rules. The magnitude of this hopping
parameter is also much smaller than that of γ0, leading to no
significant change in the excitonic peaks. As such, we will not
include its contribution in the final optical conductivity.
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A. Linearly and circularly polarized light

Considering linearly polarized light, fixed (without loss of
generality) in the x direction and taking again the thermody-

namic limit, we write Eq. (8) as

�n =
∑
c,v

∫
ψn,cv (k)

〈
uv

k

∣∣[H, x]
∣∣uc

k

〉
E v

k − Ec
k

k dk dθ. (9)

As such, the optical conductivity will be given by

σ (1)
xx (ω) = e2

4π2ih̄

∑
n

[
En

En − (h̄ω + i�n)

∣∣∣∣∑
c,v

∫
ψn,cv (k)

〈
uv

k

∣∣[H, x]
∣∣uc

k

〉
E v

k − Ec
k

k dk dθ

∣∣∣∣
2]

+ (ω → −ω)∗, (10)

which can be quickly computed as solving the Bethe–Salpeter equation provided us with both En and ψn,cv (k), and the
diagonalization of Eq. (3) provides us with the band structure.

As was discussed in Sec. III, we can safely discard the contribution from higher energy bands and focus only on the two
electronic bands closest to the gap as long as the external bias remains sufficiently small. This somewhat simplifies the previous
expression, with the optical conductivity being given by

σ (1)
xx (ω) = e2

4π2ih̄

∑
n

[
En

En − (h̄ω + i�n)

∣∣∣∣
∫

ψn(k)

〈
uv

k

∣∣[H, x]
∣∣uc

k

〉
E v

k − Ec
k

k dk dθ

∣∣∣∣
2]

+ (ω → −ω)∗, (11)

where ψn corresponds to the excitonic wave functions when
only these two lowest energy bands are considered.

The optical selection rules are now evident, as the integral
of Eq. (9) is only nonzero for states with angular momentum
symmetric to the phase factors obtained by expanding the
commutator 〈uv

k|[H, x]|uc
k〉. Explicitly expanding this commu-

tator, we obtain

[H, x] = 3aτ

2

⎡
⎢⎢⎢⎢⎢⎣

0 γ0 γ4 γ3 0 0
γ0 0 0 γ4 0 0
γ4 0 0 γ0 γ4 γ3

γ3 γ4 γ0 0 0 γ4

0 0 γ4 0 0 γ0

0 0 γ3 γ4 γ0 0

⎤
⎥⎥⎥⎥⎥⎦. (12)

Focusing first on the nearest–neighbor hopping parameter, the
interband matrix element is given by〈

uv
k

∣∣[H, x]
∣∣uc

k

〉 ∝ Aγ0
c,ve−2iτθ + Aγ0

v,ce−4iτθ , (13)

with

Aγ0
c,v = ψ1,cψ2,v + ψ3,cψ4,v + ψ5,cψ6,v,

Aγ0
v,c = ψ1,vψ2,c + ψ3,vψ4,c + ψ5,vψ6,c.

In this expression, we can see that the first term only
leads to a nonzero contribution for m = 2τ states (d series)
and the second term for m = 4τ states (g series). Focusing
on the τ = 1 valley and comparing the relative amplitudes of
the contributions from both series, those from d+-series states
dominate and g+-series states go totally unnoticed, with the
relative amplitude being less than 0.1% for an external bias of
V = 30 meV.

For circularly polarized light, the procedure is equivalent to
that which was performed above, with the only slight change
being the different interband dipole operator matrix element.
In this regime, this operator will be written as 〈uv

k|[H, x ±
iy]|uc

k〉, with ± differentiating between right polarization (+)
and left polarization (−). Focusing on right polarized light for
simplicity, the full interband dipole operator can be written

as〈
uv

k

∣∣[H, x + iy]
∣∣uc

k

〉 ∝ Aγ0
c,v (τ + 1)e−2iτθ + Aγ0

v,c(τ − 1)e−4iτθ .

(14)

The (τ + 1), (τ − 1) factors further restrict the selection
rules, only allowing those to d+-series states in the τ = 1
valley and those to g−-series states in the τ = −1 valley.

B. Trigonal warping effects

Finally, we will consider the effects of the additional
hopping parameters which were discarded when solving the
Bethe–Salpeter equation, namely, γ3 and γ4. Although γ2 was
also discarded, this hopping parameter will not contribute to
the optical selection rules as it appears in the tight-binding
Hamiltonian as a constant term. Computing the dipole oper-
ator matrix element while considering the γ3 hopping term
results in two new allowed transitions.

For x-aligned linearly polarized light, terms proportional to
γ3 lead to〈

uv
k

∣∣[H, x]
∣∣uc

k

〉∣∣
γ3

∝ Bγ3
c,ve−iτθ + Bγ3

v,ce−5iτθ , (15)

with

Bγ3
c,v = ψ1,cψ4,v + ψ3,cψ6,v,

Bγ3
v,c = ψ1,vψ4,c + ψ3,vψ6,c,

only allowing transitions to m = τ (p series) and m = 5τ

(h series) states. Comparing the relative amplitudes of the
contributions from both series, those from p+-series states
dominate and h+-series states go totally unnoticed, with rel-
ative amplitudes again less than 0.1%. Terms proportional to
γ4 in turn lead to〈

uv
k

∣∣[H, x]
∣∣uc

k

〉∣∣
γ4

∝ Cγ4
c,ve−2iτθ + Cγ4

v,ce−4iτθ , (16)

with

Cγ4
c,v = ψ1,cψ3,v + ψ2,cψ4,v + ψ3,cψ5,v + ψ4,cψ6,v,

Cγ4
v,c = ψ1,vψ3,c + ψ2,vψ4,c + ψ3,vψ5,c + ψ4,vψ6,c,
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FIG. 5. Real part of the excitonic xx conductivity for biased ABC-stacked trilayer graphene encapsulated in hBN with a bias potential
V = 30 meV, broadening parameters �nd+ = 0.3 meV and �np+ = 0.1 meV, and a N = 450 point Gauss–Legendre quadrature. First 10 states
of each excitonic series were considered for the total conductivity. Vertical dashed lines represent the band gap at k = 0 (right) and at the band
extremes (left). The different γ s in the legend symbolize the hopping term that leads to specific resonances. The conductivity is given in units
of the conductivity of monolayer graphene σ0 = e2/4h̄.

imposing the same selection rules obtained for γ0. As such,
and as γ0 
 γ4, these will be ignored when computing the
optical conductivity.

For right circularly polarized light a similar valley-
dependent selection rule to the one obtained in Eq. (14) is
present. Explicitly expanding the terms proportional to γ3 in
the commutator, we obtain〈

uv
k

∣∣[H, x + iy]
∣∣uc

k

〉|γ3 ∝ Bγ3
c,v (τ − 1)e−iτθ+

+ Bγ3
v,c(τ + 1)e−5iτθ , (17)

allowing only transitions to m = 5τ (h series) in the τ = 1
valley and to m = τ (p series) in the τ = −1 valley. Analo-
gous to linearly polarized light, terms proportional to γ4 lead
to 〈

uv
k

∣∣[H, x + iy]
∣∣uc

k

〉|γ4 ∝ Cγ4
c,v (τ + 1)e−2iτθ+

+ Cγ4
v,c(τ − 1)e−4iτθ , (18)

allowing only transitions to m = 2τ (d series) in the τ = 1
valley and to m = 4τ (g series) in the τ = −1 valley.

The contribution to the optical conductivity from trigonal
warping goes mostly unnoticed as the intensity is close to
two orders of magnitude smaller (γ 2

3 /γ 2
0 ≈ 0.01), and the

only distinguishable transition is that which is associated with
the 2p+ resonance. This occurs as this resonance is much
larger than all other p-series resonances and occurs far enough
from the resonances originating from the dominant hopping
parameter γ0.

Computing the sum over all the previously mentioned
states, with 10 states for each allowed transition, we plot the

real part of the xx-linear optical conductivity in Fig. 5 for a
external bias of V = 30 meV. The first few states contributing
to the optical conductivity are also plotted individually as to
clearly identify each resonance and they are labeled according
to the hopping parameter that allows the transition in question.
In this figure, we can clearly distinguish three resonances,
namely, those associated with 2p+, 3d+, and 4d+ states, with
a plateau forming close to the band-gap value as the excitonic
resonances become ever closer to each other. The location and
amplitude of these resonances are extremely sensitive to the
external bias, as we will now see in Sec. IV C.

C. Tunability via bias potential

To conclude our study of the ABC-trilayer graphene optical
conductivity, we will now analyze the tunability of the exci-
tonic resonances via the bias potential, considering a broad
range of external biases and computing the excitonic con-
ductivity for the systems in question. It is important to note
that changing the bias potential will also alter the effective
screening length present in the Rytova–Keldysh potential (as
discussed in Appendix A) and we will, therefore, need to
recompute the effective screening length for each individual
external bias. Additionally, it is also important to note that, as
was discussed in Sec. III, the lowest energy bands only dom-
inate the low-energy response of the system for sufficiently
low external biases. As such, we only compute the excitonic
optical conductivity for external biases up to V = 110 meV.
At this external bias, the contributions from higher bands to
�n,α [Eq. (8)] are still negligible, further justifying the use of
only the two bands closest to the gap in our calculations.
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FIG. 6. Real part of the excitonic xx–conductivity for biased ABC-stacked trilayer graphene encapsulated in hBN with various bias
potentials V = 30, 50, 70, and 110 meV; broadening parameters �nd+ = 0.3 meV and �np+ = 0.1 meV; and an N = 450-point Gauss–Legendre
quadrature. First 10 states of each excitonic series were considered for the total conductivity. Vertical dot-dashed lines represent the band gap
at the band extremes, while the band gap at k = 0 will be simply 2V . Leftmost resonance in each curve is associated with the transition to the
2p+ excitonic state, while the dominant peak and those to its right are associated with the transition to the 3d+ and higher nd+ excitonic states,
respectively. The conductivity is given in units of the conductivity of monolayer graphene σ0 = e2/4h̄.

The real part of the resulting optical conductivity for var-
ious external biases is plotted in the right panel of Fig. 6
together with several dashed lines representing the band gap
characteristic of each system. Analogous to what was dis-
cussed in Fig. 5, the optical conductivity plotted in Fig. 6
takes into account both the dominant transitions allowed by
the γ0 hopping and those originating from trigonal warping
(modeled by the γ3 parameter).

As it can be observed, the relative amplitude of the
dominant resonance increases as the external bias increases,
leading to it overpowering the nearby 2p+ resonance for larger
biases (see line for V = 110 meV). Above V = 50 meV, reso-
nances associated with higher nd+ begin to appear at energies
above the dashed lines of the band gap. These states are,
however, still well within the � = 2V gap at k = 0 and, on
inspection of their density plots (similarly to Fig. 4), these
appear to be getting more localized near k = 0, implying
higher delocalization in real space as one would expect from
higher energy states.

V. CONCLUSION

In this paper we studied the excitonic optical response of
biased rhombohedral trilayer graphene. To this end, we began
by reviewing the single-particle electronic properties of the
multilayer system by considering a simplified tight-binding
Hamiltonian. The eigenstates of this tight-binding Hamilto-
nian are then used as the input states for the Bethe–Salpeter
equation, whose solution leads to the excitonic states.

With the excitonic wave functions and binding energies
known, we proceeded to the computation of the optical con-
ductivity of the trilayer. This allowed us to study the optical
selection rules for excitonic transitions while also giving valu-
able insight into the strength of the photon–exciton coupling.
We found that, if trigonal warping is ignored, only d- and
g-series states are optically bright, although the oscillator
strength for g states is negligible when compared with that
of d states. When trigonal warping is taken into account, new
transitions become optically bright, as was expected from the
symmetry breaking this new hopping parameter introduces.
The new couplings make both p- and h-series states optically
bright, although the contribution from h-series states is again
negligible. Additionally, due to the small amplitude of the
trigonal warping parameter relative to the dominant hopping
term, only the 2p state presents a relevant contribution to the
optical conductivity. Additional hopping parameters were also
studied, namely, hopping terms between same sublattice sites
on different layers. The optical selection rules generated were
identical to those from the dominant hopping term, allowing
us to discard this contribution due to the much smaller hop-
ping parameter.

Varying the external bias potential, we observed an in-
crease in the localization of the exciton as the bias increases,
with the state associated with the dominant excitonic reso-
nance spread about 80 Å in real space at an external bias of
110 meV. We also observed that the relative amplitude of the
dominant excitonic resonance, associated with the 3d exci-
tonic state, increased as the potential increases. The smaller 2p
resonance becomes increasingly masked by its proximity to
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the dominant peak, becoming almost indistinguishable from
the 3d resonance at an external bias of 110 meV.
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APPENDIX A: EFFECTIVE SCREENING LENGTH

The effective screening length is given by [40]

r0 = h̄3cα

πm2
0

∑
c,v

∫ ∣∣〈uc
k

∣∣Px

∣∣uv
k

〉∣∣2

[Ec(k) − Ev (k)]3
k dk dθ. (A1)

Substituting the momentum matrix element, defined as

Px = m0

h̄

∂H

∂kx
,

we obtain

r0 = h̄cα

π

∑
c,v

∫ ∣∣〈uc
k

∣∣ ∂H
∂kx

∣∣uv
k

〉∣∣2

[Ec(k) − Ev (k)]3 k dk dθ. (A2)

This effective screening length is, as can be seen in Eq. (A2),
very sensitive to the external bias, falling quickly for higher
values of the external bias [40].

Considering only the lowest energy bands, dominant for
low bias potentials, we obtain

r0 = h̄cα

π

∫ ∣∣〈uc,−1
k

∣∣ ∂H
∂kx

∣∣uv,−1
k

〉∣∣2

[Ec,−1(k) − Ev,−1(k)]3 k dk dθ. (A3)

For V = 50 meV, the value of this screening length will be
r0 = 165.623 Å.

APPENDIX B: BETHE–SALPETER EQUATION

Taking the thermodynamic limit, Eq. (6) can be written as

E fc,η1;v,η4 (k) = (
Ec,η1

k − E v,η4
k

)
fc,η1;v,η4 (k)

− 1

4π2

∑
η2,η3

∫
qdqdθqV (k − q)

〈
uc,η1

k

∣∣uc,η2
q

〉〈
uv,η3

q

∣∣uv,η4
k

〉
fc,η2;v,η3 (q)eim(θq−θk ). (B1)

This problem can be simplified further, as 〈uc,η1
k | uc,η2

q 〉〈uv,η3
q | uv,η4

k 〉 consists of a sum of different term with well–defined phases
if a careful choice of the spinor phases has been made [Eq. (4)]. For compactness, in this Appendix we will suppress the η indices,
instead using c, c′, v, v′ to distinguish the different bands which take part in the calculation. As such, it can be written as〈

uc
k

∣∣uc′
q

〉〈
uv′

q

∣∣uv
k

〉 =
∑

λ

Acc′vv′
λ (k, q)eiλ(θq−θk ), (B2)

where the angular dependence has been extracted from Acc′vv′
λ (k, q).

Regarding the radial integral of the potential term, it can be written as

Im(k, q) =
∫ 2π

0

cos (mθ )

κ (k, q, θ )[1 + r0κ (k, q, θ )]
dθ, (B3)

where κ (k, q, θ ) =
√

k2 + q2 − 2kq cos(θ ) and only the even term is nonzero due to parity. Inspecting the integrand, it is clear
that the I function will be numerically ill–behaved when k = q. For this effect, we decompose the integrand in terms of partial
functions as

Im(k, q) =
∫ 2π

0

cos (mθ )

κ (k, q, θ )
dθ − r0

∫ 2π

0

cos (mθ )

1 + r0κ (k, q, θ )
dθ

= Jm(k, q) − Km(k, q).

With this decomposition, it is clear now that only the Jm(k, q) integral will be problematic when k = q. Substituting Im(k, q) into
Eq. (B1), we write

E fcv (k) = (
Ec

k − E v
k

)
fcv (k)

− 1

4π2

∑
c′v′

∫ +∞

0

∑
λ

{
Jm+λ(k, q)Acc′vv′

λ (k, q) − Km+λ(k, q)Acc′vv′
λ (k, q)

}
fc′v′ (q)qdq. (B4)
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Writing

J cc′vv′
m (k, q) =

∑
λ

Jm+λ(k, q)Acc′vv′
λ (k, q),Kcc′vv′

m (k, q) =
∑

λ

Km+λ(k, q)Acc′vv′
λ (k, q),

the BSE can now be compactly written as

E fcv (k) = (
Ec

k − E v
k

)
fcv (k) − 1

4π2

∑
c′v′

∫ +∞

0

[
J cc′vv′

m (k, q) − Kcc′vv′
m (k, q)

]
fc′v′ (q)qdq. (B5)

We now focus our attention on the problematic J cc′vv′
m (k, q) object. To treat the divergence at q = k, an auxiliary function

gm(k, q) is introduced. This function obeys the limit

lim
q→k

[
J cc′vv′

m (k, q) − gm(k, q)
] = 0

and it modifies the integrals as∫ +∞

0
J cc′vv′

m (k, q) fc′v′ (q)qdq →
∫ +∞

0

[
J cc′vv′

m (k, q) − gm(k, q)
]

fc′v′ (q)qdq + + fc′v′ (k)
∫ +∞

0
gm(k, q)qdq. (B6)

Following Refs. [18,44], this auxiliary function is chosen as

gm(k, q) = J cc′vv′
m (k, q)

2k2

k2 + q2
.

Having finished outlining the analytical procedure, we now proceed to the numerical solution of the BSE. This is performed
using the same methodology as Ref. [18], which we will quickly outline. A variable change is introduced as to convert the
integration limits from [0,+∞) to a finite limit, in this case [0, 1], defined as q = tan( πx

2 ). With this variable change, we
proceed by discretizing x, writing the numeric problem as

E fcv (ki ) = (
Ec

ki
− E v

ki

)
fcv (ki ) + 1

4π2

∑
c′v′

N∑
j=1

[
Kcc′vv′

m (ki, q j ) fc′v′ (q j )q j
dq

dx j

]
−

− 1

4π2

∑
c′v′

{∑
j �=i

[
J cc′vv′

m (ki, q j ) fc′v′ (q j ) + gm(ki, q j )
]
q j

dq

dx j
w j − fc′v′ (ki )

∫ ∞

0
gm(ki, p)pd p

}
, (B7)

where N is the number of points considered in the discretization, w is the weight function of the quadrature in question, and
the discretized variables are defined as qi ≡ q(xi ), and dq

dxi
≡ dq

dx |x=xi . It is important to note that, while
∫ ∞

0 J cc′vv′
m (k, q)qdq is

numerically problematic at q = k,
∫ ∞

0 gm(k, q)qdq is well behaved.
In this paper, we employ a Gauss–Legendre quadrature [45] defined as∫ b

a
f (x)dx ≈

N∑
i=1

f (xi )wi,

where

xi = a + b + (b − a)ξi

2
with ξi the i-th zero of the Legendre polynomial PN (x), and

wi = b − a(
1 − ξ 2

i

)[ dPN (x)
dx

∣∣
x=ξi

]2 .

Finally, it is important to realize that Eq. (B5) can be written as the eigenvalue problem of a 9N × 9N matrix (i.e., a 9 × 9
matrix of N × N matrices). The 81 blocks come from the different combinations of band indices, and each N × N matrix comes
from the numerical discretization of the integral. Solving this eigenvalue problem for a sufficiently large quadrature, one obtains
the excitonic eigenvalues and eigenfunctions.
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