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Charge-dipole and dipole-dipole interactions in two-dimensional materials

Roman Ya. Kezerashvili 1,2 and Vladimir Ya. Kezerashvili1
1Department of Physics, New York City College of Technology, The City University of New York, Brooklyn, New York 11201, USA

2The Graduate School and University Center, The City University of New York, New York, New York 10016, USA

(Received 31 January 2022; accepted 27 April 2022; published 11 May 2022)

We derive the explicit analytical form for the charge-dipole and dipole-dipole interactions in two-dimensional
(2D) configuration space. We demonstrate that the reduction of dimensionality can alter the charge-dipole and
dipole-dipole interactions in the 2D case. The asymptotics of these interactions at long distances coincide to
the charge-dipole and dipole-dipole interactions in three-dimensional configuration space. The obtained charge-
dipole and dipole-dipole interactions will find wide application and contribute to the advancement of research
on novel two-dimensional materials.

DOI: 10.1103/PhysRevB.105.205416

In classical electrodynamics for description of the field
produced by a system of electric charges at long distances the
concepts of dipoles and multipole moments are very impor-
tant and well developed [1,2]. This approach is based on the
potential of a single charge in three-dimensional (3D) con-
figuration space. Ordinary matter is more or less uncharged,
but it is reach in pair of charges called dipoles. Dipoles are
building blocks of bulk dielectric and magnetic materials. Not
surprisingly, it turns out to be efficient mathematically to deal
with the dipole not as just a pair of individual positive and
negative charges.

In the past two decades, discoveries and studies of
two-dimensional (2D) materials have attracted a consider-
able interest. Atomically thin materials, such as graphene
and monolayer transition-metal dichalcogenides (TMDCs),
phosphorene, and Xenes (silicene, germanine, and stanene),
exhibit remarkable physical properties resulting from their
reduced dimensionality and crystal symmetry. The family
of semiconducting transition-metal dichalcogenides is an
especially promising platform for fundamental studies of
two-dimensional systems with potential applications in opto-
electronics and valleytronics due to their direct band gap in the
monolayer. The exciton is the simplest bound complex formed
by an electron in a conduction band and hole in a valence
band. The description of excitons, trions, and biexcitons in
2D material requires knowledge of electrostatic interaction in
reduced dimensionality.

The interaction of two charge particles in two-dimensional
space is studied in detail, and the analytical expression for
two-charged particle interaction is well known [3,4] and
widely used for the description of excitonic complexes in
2D materials (see reviews: Refs. [5–7]). In 3D configura-
tion space when charged particles interact via the Coulomb
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potential the corresponding charge-dipole and dipole-dipole
potentials are well known. In contrast, the influence of the
reduction of dimensionality on the charge-dipole and dipole-
dipole interactions in 2D configuration space has not yet been
investigated. We still lack the analytical expression for the
charge-dipole and dipole-dipole 2D interactions. Below we
derive the explicit analytical form for the charge-dipole and
dipole-dipole interactions in 2D space.

I. CHARGE-CHARGE INTERACTION
IN 2D CONFIGURATION SPACE

An interaction of two charged particles in the context of
thin semiconductor films was derived analytically by Ry-
tova [3] and a decade later by Keldysh [4], and it was shown
that the electron-hole interaction potential in a thin semicon-
ductor layer is not Coulombic. This potential describes the
interaction between two particles in a film of finite thickness
d and dielectric constant ε and implies the intrinsic assump-
tion that the screening can be quantified by the dielectric
constant. Three decades later a strict 2D derivation of the
macroscopic screening derived by Keldysh as a limiting case
of a thin film was provided in Ref. [8]. This potential has
the same functional form as Refs. [3,4] but the macroscopic
screening in this case is quantified by the 2D polarizability.
Over the course of a decade the effective 2D potential has
been widely used to describe the electrostatic interaction of
few-body complexes, such as excitons, trions, and biexcitons
in monolayer transition-metal dichalcogenides, phosphorene,
and Xenes [7]. When a monolayer is encapsulated by di-
electrics, the effective electron-hole potential, which takes
into account screening due to the reduction of dimensionality
is given by [8,9]

V (R) = −πke2

2κρ0

[
H0

(
R

ρ0

)
− Y0

(
R

ρ0

)]
. (1)

In Eq. (1), k = 9×109 N m2/C2, R = |R| is the magnitude
of the relative electron-hole separation, κ = (ε1 + ε2)/2 de-
scribes the surrounding dielectric environment, where ε1 and
ε2 correspond to the dielectric constants of the materials above
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FIG. 1. Schematics for the charge-dipole and dipole-dipole inter-
actions in 2D configuration space.

and below the monolayer, H0 and Y0 are the Struve and
Bessel functions of the second kind, respectively, and ρ0 is the
screening length, which has a different physical meaning than
in Ref. [4] even it has the dimension of a length. In the case of
atomically thin 2D materials encapsulated by dielectrics with
ε1 and ε2 the screening length is given by Refs. [8,9],

ρ0 = 2πχ2D

κ
, (2)

where χ2D is the 2D polarizability, which can be calculated
via ab initio methods or considered as a phenomenological pa-
rameter. In the strictly 2D limit of a polarizable semiconductor
in vacuum (ε1 = ε2 = 1), ρ0 = 2πχ2D, which is determined
by the polarizability χ2D of the dielectric layer [8]. The in-
clusion of finite thickness effects in a 2D dielectric requires
a microscopic treatment of the screening (see, for example,
Ref. [10]). The screening length typically ranges from roughly
30 to 80 Å [6]. The effective interaction potential (1) has
an asymptotic behavior ∼1/R only at long distances between
the particles, that follows from Refs. [11,12]. This limit-
ing case corresponds to the Coulomb interaction unaffected
by the dielectric polarization of a 2D layer as most of the
electric-field lines between two distant charges go outside of
the 2D semiconductor. Interestingly enough, in this limiting
case two charges are interacting the same way as in vacuum.
At shorter distances the potential deviates strongly from the
usual 1/R form, and the dependence has a logarithmic behav-
ior ∼ln(2/r) − γ [8,11,12], where γ = 0.5772 · · · is Euler’s
constant.

Below we derive the explicit analytical form for the charge-
dipole and dipole-dipole interactions in 2D configuration
space. The starting point is the functional form (1) that does
not depend by the microscopic treatments of screening.

II. CHARGE-DIPOLE INTERACTION
IN 2D CONFIGURATION SPACE

Consider two opposite closely spaced charges in a mono-
layer that form a dipole with the dipole moment d = er and a
single charge placed at a distance R as shown in Fig. 1. The
point charge interacts with the dipole via the potential in the
functional form (1). In this case following notations in Fig. 1
for the charge-dipole interaction we have

Vcd(R) ≡ Veh(R) + Vhh(|R + r|)

= −πke2

2κρ0

[
H0

(
R

ρ0

)
− Y0

(
R

ρ0

)]

+ πke2

2κρ0

[
H0

( |R + r|
ρ0

)
− Y0

( |R + r|
ρ0

)]
, (3)

where

|R + r| = R

√
1 + 2R · r

R2
+ r2

R2
. (4)

For R � r (1 + 2R·r
R2 + r2

R2 )1/2 � 1 + 1
2 ( 2R·r

R2 + r2

R2 ). Consider-
ing only linear terms with respect to r, Eq. (3) can be written
as

Vcd(R) = −πke2

2κρ0

[
H0

(
R

ρ0

)
− Y0

(
R

ρ0

)]

+ πke2

2κρ0

[
H0

(
R

ρ0

[
1 + R · r

R2

])

−Y0

(
R

ρ0

[
1 + R · r

R2

])]
. (5)

Expand the Struve H0( R
ρ0

[1 + R·r
R2 ]) and Bessel Y0( R

ρ0
[1 +

R·r
R2 ]) functions in terms of power of r

R when R � r and
consider linear terms with respect to r,

H0

(
R

ρ0

[
1 + R · r

R2

])
� H0

(
R

ρ0

)
+ H ′

0(x)|x=R/ρ0

R

ρ0

R · r
R2

= H0

(
R

ρ0

)
+ H−1

(
R

ρ0

)
R

ρ0

R · r
R2

,

(6)

Y0

(
R

ρ0

[
1 + R · r

R2

])
� Y0

(
R

ρ0

)
+ Y ′

0 (x)|x= R
ρ0

R

ρ0

R · r
R2

= Y0

(
R

ρ0

)
+ Y−1

(
R

ρ0

)
R

ρ0

R · r
R2

.

(7)

Here we use that H ′
0(x) = H−1(x) and Y ′

0 (x) = −Y1(x) =
Y−1(x) [11–13]. Using (6) and (7) Eq. (5) can be written as

Vcd(R) = πke2

2κρ2
0

[
H−1

(
R

ρ0

)
− Y−1

(
R

ρ0

)]
R · r

R
, (8)

or

Vcd(R) = πke

2κρ0

[
H−1

(
R

ρ0

)
− Y−1

(
R

ρ0

)]
R · d
ρ0R

. (9)

Consider the asymptotic of Vcd(R) interaction when
R→∞. For the difference of H−1(x) − Y−1(x) when x → ∞
we have [11,12,14]

Hν (x) − Yν (x) −−−→
x→∞

(
x
2

)ν−1

√
π
(ν + 1/2)

. (10)

For ν = −1 H−1( R
ρ0

) − Y−1( R
ρ0

) = 4ρ2
0

R2
1√

π
(−1/2) . Therefore,

Vcd(R) −−−→
R→∞

−ke

κ

R · d
R3

, (11)

where we use 
(−1/2) = −2
√

π. Thus, one can conclude
that in 2D configuration space the charge-dipole interaction
has the form (9) that has the asymptotic (11).

Evidently, the charge-dipole potential goes like 1
R2 at large

R and it falls off more rapidly than potential (1). For the
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charge-dipole interaction in 3D configuration space we have
well known expression,

V C
cd(R) = −ke

κ

R · d
R3

. (12)

Here κ = ε is the dielectric constant of the bulk material. We
can conclude that Vcd(R) in 2D and V C

cd(R) in 3D configura-
tion spaces, respectively, vary as 1

R2 at large separation of the
charge and the dipole.

III. DIPOLE-DIPOLE INTERACTION
IN 2D CONFIGURATION SPACE

Consider two dipole d1 = er1 and d2 = er2 interaction in
2D configuration space. One can consider a dipole-dipole
interaction as the interactions of positive and negative charges
of one dipole with the second dipole. Following notations
in Fig. 1 for a dipole-dipole interaction in 2D space we
have

Vdd(R) = Vhd

(
R

ρ0

)
+ Ved

( |R + r2|
ρ0

)
. (13)

Using (9) for the charge-dipole interaction in Eq. (13), we have

Vdd(R) = πke2

2κρ2
0

[
H−1

(
R

ρ0

)
− Y−1

(
R

ρ0

)]
R · r1

R
− πke

2κρ2
0

[
H−1

( |R + r2|
ρ0

)
− Y−1

( |R + r2|
ρ0

)]
(R + r2)·r1

|R + r2| . (14)

We focus on the second term in Eq. (14), which represents the second term in Eq. (13). For R � r2 considering the terms linear

with respect to r2, we have |R + r2| = R(1 + 2R·r2
R2 + r2

2
R2 )1/2 � R(1 + R·r2

R2 ) and 1
|R+r2| = 1

R (1 + 2R·r2
R2 + r2

2
R2 )−1/2 � 1

R (1 − R·r2
R2 )

and the second term in (14) becomes

Ved

( |R + r2|
ρ0

)
= −πke2

2κρ2
0

[
H−1

( |R + r2|
ρ0

)
− Y−1

( |R + r2|
ρ0

)]
(R + r2)·r1

|R + r2|

= −πke2

2κρ2
0

{
H−1

(
R

ρ0

[
1 + R · r2

R2

])
− Y−1

(
R

ρ0

[
1 + R · r2

R2

])}(
(R + r2)·r1

R
− R·r1R · r2

R3

)
. (15)

Expand the Struve H−1( R
ρ0

[1 + R·r2
R2 ]) and Bessel Y−1( R

ρ0
[1 + R·r2

R2 ]) functions in terms of the power of r2
R when R � r2 and

consider linear terms with respect to r2,

H−1

(
R

ρ0

[
1 + R · r2

R2

])
� H−1

(
R

ρ0

)
+ H ′

−1(x)|x=R/ρ0

R

ρ0

R · r2

R2
, (16)

Y−1

(
R

ρ0

[
1 + R · r2

R2

])
� Y−1

(
R

ρ0

)
+ Y ′

−1(x)|x=R/ρ0

R

ρ0

R · r2

R2
. (17)

When R � r1 and R � r2 by considering only terms linear with respect to r1 and r2 and using (16) and (17) finally, Eq. (15) can
be written as

Ved

( |R + r2|
ρ0

)
= −πke2

2κρ2
0

[
H−1

(
R

ρ0

)
− Y−1

(
R

ρ0

)](
R·r1

R
+ r1·r2

R
− R·r1R · r2

R3

)

−πke2

2κρ2
0

[
H ′

−1

(
R

ρ0

)
− Y ′

−1

(
R

ρ0

)]
R·r1R · r2

ρ0R2
. (18)

Let us find H ′
−1( R

ρ0
) − Y ′

−1( R
ρ0

) which presents in (18). The recurrence relations for the Struve functions Hν−1(x) + Hν+1(x) =
2ν
x Hν (x) + ( x

2 )ν 1√
π
(ν+3/2) and Hν−1(x) − Hν+1(x) = 2H ′

ν (x) − ( x
2 )ν 1√

π
(ν+3/2) [11,12] lead to H ′
ν (x) = Hν−1(x) + 1

x H−1(x). On

the other hand, for the second kind Bessel function Y ′
ν (x) = Yν−1(x) − ν

x Yν (x) [11]. Therefore, for ν = −1 we obtain: H ′
−1( R

ρ0
) −

Y ′
−1( R

ρ0
) = H−2( R

ρ0
) − Y−2( R

ρ0
) + ρ0

R [H−1( R
ρ0

) − Y−1( R
ρ0

)]. The latter expression allows to rewrite Eq. (18) as

Ved

( |R + r2|
ρ0

)
= −πke2

2κρ2
0

[
H−1

(
R

ρ0

)
− Y−1

(
R

ρ0

)](
R·r1

R
+ r1·r2

R

)
− πke2

2κρ2
0

[
H−2

(
R

ρ0

)
− Y−2

(
R

ρ0

)]
R·r1R · r2

ρ0R2
. (19)

Replacing the second term in Eq. (14) by expression (19) we obtain the dipole-dipole interaction in 2D configuration space,

Vdd(R) = − πk

2κρ0

{[
H−1

(
R

ρ0

)
− Y−1

(
R

ρ0

)]
d1·d2

ρ0R
+

[
H−2

(
R

ρ0

)
− Y−2

(
R

ρ0

)]
R·d1R · d2

ρ2
0 R2

}
. (20)

Using Eq. (10) for ν = −1 and ν = −2 for the first and
second terms in Eq. (20), respectively, one can find the
asymptotic of the Vdd(R) interaction when R → ∞. The

first term in Eq. (20) has the following asymptotic behavior
( R

2ρ0
)−2 1√

π
(−1/2)
d1·d2
ρ0R = − 2ρ0

π
d1·d2

R3 . Whereas the asymptotic

of the second term is ( R
2ρ0

)−3 1√
π
(−3/2)

R·d1R·d2

ρ2
0 R2 = 6ρ0

π

R·d1R·d2
R5 .
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FIG. 2. Left panel: The ratios of effective 2D (1) and Coulomb potentials, charge-dipole interaction Vcd in 2D configuration space, and V C
cd

for bulk materials and the second factors of the dipole-dipole interaction in a monolayer and bulk material. Calculations are performed for the
phosphorene and MoS2. Right panel: The universal dependence of the ratio of Vcd/V C

cd and V (R)/V C (R) on R/ρ0 for any 2D material.

Combining the latter expressions we obtain

Vdd(R) −−−→
R→∞

k

κ

1

R3

[
d1 · d2 − 3

(R · d1)(R · d2)

R2

]
. (21)

For comparison the dipole-dipole interaction in 3D configura-
tion space has the following form:

V C
dd(R) = k

κ

1

R3

[
d1 · d2 − 3

(R · d1)(R · d2)

R2

]
, (22)

where κ = ε is the dielectric constant of the bulk material.
Thus, Vdd(R) asymptotic coincides with the dipole-dipole in-
teraction in 3D configuration space where charges interact via
the Coulomb potential. In numerical calculations, we focus
only on freestanding phosphorene and monolayer MoS2. We
use for MoS2 polarizability χ2D = 6.6 Å [9] obtained within
density functional theory and subsequent random-phase ap-
proximation calculations for TMDC monolayers. For the
phosphorene polarizabilty the value of χ2D = 4.1 Å [15] is
used. The right panel in Fig. 2 presents the ratio of charge-
dipole interaction potentials Vcd(R) in phosphorene and MoS2

and V C
cd(R) in the same bulk materials. The values of the

negative order Struve H−1( R
ρ0

) and Bessel Y−1( R
ρ0

) functions
were evaluated with the in-built codes in Mathematica. There
are five distinguished features: (i) The value of Vcd(R) is
bigger than the value of V C

cd(R); (ii) at short distances Vcd(R)
falls more slowly than the Coulomb potential induced charge-
dipole interaction in the same bulk material; (iii) at short
distances the slope of the ratio fall demonstrate the sensitivity
of Vcd(R) to the 2D polarizability and dependence on the ratio
of dielectric constant of the bulk material and the polarizabil-
ity of monolayer; (v) the asymptotic of the ratio is the value
of the dielectric constant of the bulk material. This means that
when R → ∞ the charge-dipole interaction in a monolayer is
the same as in vacuum.

Both dipole-dipole interactions (20) and (22) have two
terms: One is proportional to d1 · d2, and the other one is
proportional to (R · d1)(R · d2). The comparison of factors
in front of d1 · d2 shows that their ratio has the same de-
pendence as the ratio Vcd/V C

cd. The ratios of factors in front

of (R · d1)(R · d2) for phosphorene and MoS2 are shown in
Fig. 2. These ratios are smaller than Vcd/V C

cd and demonstrate
the same features as that are listed above for Vcd/V C

cd. However,
the ratios fall more smoothly than Vcd/V C

cd. As is seen from
Fig. 2 V /V C > Vcd/V C

cd > Vdd/V C
dd and all ratios converging to

the dielectric constant of bulk materials. At short distances
V /V C increases more rapidly than Vcd/V C

cd and Vcd/V C
cd in-

creases faster than the second term of Vdd/V C
dd. Interestingly

enough, the ratio,

[Vcd/V C
cd]/[V/V C] = x

H−1(x) − Y−1(x)

H0(x) − Y0(x)
where x = R

ρ0
(23)

shows the universality in its dependence on R
ρ0

that is the same
for any monolayer material. This ratio we named as a scaled
ratio that is the ratio of Vcd(R) scaled to the corresponding
V C

cd(R) and V (R) scaled to the Coulomb potential. The depen-
dence of this ratio on R/ρ0 is shown in the right panel in Fig. 2.

Concluding remarks. In this Letter we study the influ-
ence of the reduction of dimensionality on the charge-dipole
and dipole-dipole interactions in 2D configuration space. We
demonstrate that the screened nature of Coulomb interaction
imposes peculiarities in the 2D charge-dipole and dipole-
dipole interactions behavior. The analytical expression for the
charge-dipole and dipole-dipole interactions in 2D configura-
tion space is derived. These charge-dipole and dipole-dipole
interactions will find wide application in studies of 2D mate-
rials and contribute to the advancement of research on novel
two-dimensional materials. Recently, a new potential form
for the electron-hole interaction, which takes into account the
three atomic sheets that compose a monolayer of transition-
metal dichalcogenides was derived [16]. Without losing any
generality our approach can be extended for this form of the
potential.
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