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Modeling of second sound in carbon nanostructures
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The study of thermal transport in low-dimensional materials has attracted a lot of attention recently after
discovery of high thermal conductivity of graphene. Here we study numerically phonon transport in low-
dimensional carbon structures being interested in the hydrodynamic regime revealed through the observation
of second sound. We demonstrate that correct numerical modeling of such graphene systems (such as nanotubes
and nanoribbons) requires semiquantum molecular dynamics simulations of temperature waves that, using
classical molecular dynamics, allows us to take into account quantum statistics of thermalized phonons. We
reveal that second sound can be attributed to the maximum group velocity of bending optical oscillations of
carbon structures, and the hydrodynamic effects disappear for T > 200 K, being replaced by diffusive dynamics
of thermal waves. Our numerical results suggest that the velocity of second sound in such low-dimensional
structures is about 6 km/s, and the hydrodynamic effects are manifested stronger in carbon nanotubes rather
than in carbon nanoribbons.
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I. INTRODUCTION

Quasi-one-dimensional molecular systems such as car-
bon nanotubes and two-dimensional atomic layers are known
to possess many unusual physical properties. In particular,
thermal conductivity in such systems can be unexpectedly
high exhibiting unusual phenomena which are important for
both fundamental physics and technological applications of
graphene and other two-dimensional materials [1–5]. One
such phenomena is associated with second sound, heat waves
or hydrodynamic phonon transfer observed at temperatures
above 100 K.

In three-dimensional materials, second sound was previ-
ously observed experimentally only at cryogenic temperatures
[6–10], as a reaction of a material to an applied temperature
pulse. Discovered later, exceptionally high thermal conductiv-
ities of low-dimensional materials (such as carbon nanotubes
and nanoribbons, graphene, and boron nitride) occur due to
a ballistic flow of long-wave acoustic phonons supported
by such systems [2,11–15]. Second sound, or hydrodynamic
phonon transfer, is observed between ballistic and diffusion
regimes of heat transfer. In two-dimensional (2D) materials,
second sound can be observed at temperatures above 100 K
[16–18], and for rapidly changing temperature high-frequency
second sound can also be observed in three-dimensional (3D)
materials at higher temperatures [19].

To describe the hydrodynamic regime of phonon transfer
in low-dimensional materials, several theoretical models were
proposed [11,15,18,20–25]. In particular, a 3D model of a
periodically modulated graphene structure that behaves like

*asavin@center.chph.ras.ru
†yuri.kivshar@anu.edu.au

a crystal for temperature waves was proposed in Ref. [26].
Hydrodynamic features of the phonon transfer in a single-wall
carbon nanotube with chirality indices (20,20) were discussed
in Ref. [27], where the authors suggested a formula for the
contribution of phonon drift motion into the total heat flow,
and the second sound velocity in the nanotube was estimated
as vs = 4 km/s. The second sound velocity in the graphene
was estimated in Refs. [15,24] as vs = 3.2 km/s (for temper-
ature 100 K).

Direct numerical simulation of second sound in solids is a
difficult task because one needs to study polyatomic molec-
ular systems also taking into account quantum statistics of
phonons. Propagation of temperature pulses was simulated
for single-wall [28–31] and double-wall carbon nanotubes
(CNTs) [32] and carbon nanoribbons (CNRs) [33], by em-
ploying the classical method of molecular dynamics. This
approach predicts thermalization of all phonons regardless
of their frequency and temperature. The thermal pulse was
generated by connecting a short edge section of a nanotube
(or a nanoribbon) with a thermostat at temperature Th = 800
or 1000 K for a short time (∼1 ps). Either a zero value [28,30–
32] or T = 50 K [29,33] was used as a background tem-
perature. The motion of a thermal pulse along the nanotube
was analyzed through the study of spatiotemporal temperature
profiles. It was shown that the initial thermal pulse causes the
formation of several wave packets, the leading one moving at
the speed of long-wave acoustic phonons.

In this paper we study the propagation of thermal
pulses along carbon nanotubes and carbon nanoribbons (see
Fig. 1) by using semiquantum molecular dynamic simu-
lations [34]. This approach allows us to simulate partial
thermalization of phonons taking into account their quantum
statistics using classical molecular dynamics. We take into ac-
count the full thermalization of low-frequency phonons with
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FIG. 1. Motion of a heat pulse along a carbon nanotube with
chirality index (6,6). Case (a) is the initial condition at t = 0. Cases
(b) and (c) show schematically the temperature distribution along the
nanotube for two different scenarios of heat transfer: (b) spreading,
for high temperature T = 300 K, and (c) propagation of a heat wave,
for low temperature T = 50, where vs is the speed of second sound.

frequencies ω < kBT/h̄ and partial thermalization of phonons
with frequencies ω > kBT/h̄, where kB is the Boltzmann con-
stant and h̄ is the Planck constant. As we demonstrate below,
our approach allows to simulate second sound in graphene
at T ≈ 100 K only taking into account quantum statistics of
phonons. In that way we can study not only the propagation
of a short thermal pulse but also the dynamics of periodic
sinusoidal temperature profiles, as relaxation of the periodic
temperature lattices.

The paper is organized as follows. Section II describes
our full-atomic model of carbon nanoribbons and carbon nan-
otubes, which is further employed to simulate numerically the
heat transport. In Sec. III we construct the dispersion curves of
nanoribbons and nanotubes, and analyze their characteristics
and the propagation velocities of low-frequency phonons (this
analysis should contribute to the explanation of the second
sound). Section IV describes our method of semiquantum
molecular dynamics simulations. Then in Sec. V we simulate
numerically different regime of the propagation of a thermal
pulse, and in Sec. VI we study relaxation of temperature peri-
odic lattices. More specifically, we demonstrate the existence
of second sound for temperatures 50–150 K. In Sec. VII, for
a direct comparison, we study the dynamics of thermal pulses
and relaxation of periodic temperature lattices by employing
the classical molecular dynamics. Section VIII concludes our
paper. Thus, we reveal that the quantum statistics of phonons
should be taken into account for the study of second sound in
low-dimensional systems.

II. MODEL

We consider a planar carbon nanoribbon (CNR) and a
nanotube (CNT) with a zigzag structure consisting of N × K
atoms, see Fig. 2 (N is the number of transverse unit cells and
K is the number of atoms in the unit cell). The nanoribbon is
assumed to be flat in the ground state. Initially we assume that
the nanoribbon lies in the xy plane, and its symmetry center
is directed along the x axis. Then its length can be calculated
as Lx = (N − 0.5)a, width Ly = 3Kr0/4 − r0, where the lon-
gitudinal step of the nanoribbon is a = r0

√
3, r0 = 1.418 Å –

C–C valence bond length.
In realistic cases, the edges of the nanoribbon are always

chemically modified. For simplicity, we assume that the hy-
drogen atoms are attached to each edge carbon atom forming

(a)
(b)a

n n+1n-1
x

FIG. 2. Atomic model of (a) carbon zigzag nanoribbon and
(b) nanotube with chirality index (6,6). Nanoribbon and nanotube are
placed along the x axis, a is the longitudinal step, n is the number of
transverse unit cells (dashed lines separate unit cells), and the number
atoms in the unit cell K = 24.

the edge line of CH groups. In our numerical simulations
we take this into account by a change of the mass of the
edge atoms. We assume that the edge carbon atoms have the
mass M1 = 13mp, while all other internal carbon atoms have
the mass M0 = 12mp, where mp = 1.6601 × 10−27 kg is the
proton mass.

Hamiltonian of the nanoribbon and nanotube can be pre-
sented in the form

H =
N∑

n=1

K∑
k=1

[
1

2
Mn,k (u̇n,k, u̇n,k ) + Pn,k

]
, (1)

where each carbon atom has a two-component index α =
(n, k), n is the number of transversal elementary cells of
zigzag nanoribbon (nanotube), and k is the number of atoms
in the cell. Here Mα is the mass of the carbon atom with the
index α (for internal atoms of nanoribbon and for all atoms
of nanotube, Mα = M0, for the edge atoms of nanoribbon,
Mα = M1), uα = (xα (t ), yα (t ), zα (t )) is the three-dimensional
vector that describes the position of an atom with the index α

at the time moment t . The term Pα describes the interaction of
the carbon atom with the index α with the neighboring atoms.
The potential depends on variations in bond length, in bond
angles, and in dihedral angles between the planes formed by
three neighboring carbon atoms. It can be written in the form

P =
∑
�1

U1 +
∑
�2

U2 +
∑
�3

U3 +
∑
�4

U4 +
∑
�5

U5, (2)

where �i, with i = 1, 2, 3, 4, 5, are the sets of configurations
including all interactions of neighbors. These sets only need to
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FIG. 3. Configurations containing up to ith type of nearest-
neighbor interactions for (a) i = 1, (b) i = 2, (c) i = 3, (d) i = 4,
and (e) i = 5.

contain configurations of the atoms shown in Fig. 3, including
their rotated and mirrored versions.

Potential U1(uα, uβ ) describes the deformation energy due
to a direct interaction between pairs of atoms with the indexes
α and β, as shown in Fig. 3(a). The potential U2(uα, uβ, uγ )
describes the deformation energy of the angle between the
valence bonds uαuβ and uβuγ , see Fig. 3(b). Potentials
Ui(uα, uβ, uγ , uδ ), i = 3, 4, and 5, describe the deformation
energy associated with a change in the angle between the
planes uαuβuγ and uβuγ uδ , as shown in Figs. 3(c)–3(e).

We use the potentials employed in the modeling of the
dynamics of large polymer macromolecules [35,36] for the
valence bond coupling,

U1(u1, u2)=ε1{exp[−α0(ρ − ρ0)] − 1}2, ρ =|u2 − u1|,
(3)

where ε1 = 4.9632 eV is the energy of the valence bond
and ρ0 = 1.418 Å is the equilibrium length of the bond; the
potential of the valence angle

U2(u1, u2, u3) = ε2(cos ϕ − cos ϕ0)2,

cos ϕ = (u3 − u2, u1 − u2)/(|u3 − u2| · |u2 − u1|),
(4)

so that the equilibrium value of the angle is defined as
cos ϕ0 = cos(2π/3) = −1/2; the potential of the torsion
angle

Ui(u1, u2, u3, u4) = εi(1 + zi cos φ),

cos φ = (v1, v2)/(|v1| · |v2|),
v1 = (u2 − u1) × (u3 − u2),

v2 = (u3 − u2) × (u3 − u4), (5)

where the sign zi = 1 for the indices i = 3, 4 (equilibrium
value of the torsional angle φ0 = π ) and zi = −1 for the index
i = 5 (φ0 = 0).

The specific values of the parameters are α0 = 1.7889 Å−1,
ε2 = 1.3143 eV, and ε3 = 0.499 eV, they are found from the
frequency spectrum of small-amplitude oscillations of a sheet
of graphite [37]. According to previous study [38], the en-
ergy ε4 is close to the energy ε3, whereas ε5 � ε4 (|ε5/ε4| <

1/20). Therefore, in what follows we use the values ε4 = ε3 =
0.499 eV and assume ε5 = 0, the latter means that we omit
the last term in the sum (2). More detailed discussion and
motivation of our choice of the interaction potentials (3), (4),
and (5) can be found in an earlier publication [39].

Similar effective fields were derived in Refs. [40,41] by
employing the first-principles density functional theory (DFT)
calculations. The best match with the results of the DFT
calculations is achieved with the parameters ε1 = 5.7 eV,

ρ0 = 1.42 Å, α0 = 1.96 Å−1, ε2 = 4.67 eV, ε3 = 0.23 eV.
Our set of parameters allows us to obtain a better match of
the frequency spectrum of graphene phonons compared to
experimental values of Refs. [42–45].

III. DISPERSION CURVES

Let us consider carbon nanoribbon (nanotube) in the
equilibrium state {u0

n,k}+∞,K
n=−∞,k=1 which is characterized by

longitudinal shift a and by the positions of K atoms in the ele-
mentary cell: u0

n,k = u0
0,k + anex, where vector ex = (1, 0, 0),

see Fig. 2.
Then we introduce 3K-dimensional vector vn = {un,k −

u0
n,k}K

k=1 that describes a shift of the atoms of the nth cell
from its equilibrium positions. The nanoribbon (nanotube)
Hamiltonian can be written in the following form:

H =
∑

n

{
1

2
(Mv̇n, v̇n) + P(vn−1, vn, vn+1)

}
, (6)

where M is the diagonal matrix of masses of all atoms of the
elementary cell.

Hamiltonian (6) generates the following set of the equa-
tion of motion:

−Mv̈n = P1(vn, vn+1, vn+2) + P2(vn−1, vn, vn+1)

+ P3(vn−2, vn−1, vn), (7)

where function

Pi(v1, v2, v3) = ∂

∂vi
P(v1, v2, v3), i = 1, 2, 3.

In the linear approximation this system takes the form

−Mv̈n = B1vn + B2vn+1 + B∗
2vn−1 + B3vn+2 + B∗

3vn−2,

(8)

where the matrix elements are defined as

B1 = P1,1 + P2,2 + P3,3, B2 = P1,2 + P2,3, B3 = P1,3,

and the matrix of the partial derivatives takes the form

Pi, j = ∂2P

∂vi, ∂v j
(0, 0, 0), i, j,= 1, 2, 3.

Solution of the system linear equations (8) can be written in
the standard form of the wave

vn = Aw exp(iqn − iωt ), (9)

where A is amplitude, w is eigenvector, and ω is phonon
frequency with the dimensionless wave number q ∈ [0, π ].
Substituting Eq. (9) into Eq. (8), we obtain the eigenvalue
problem

ω2Mw = C(q)w, (10)

where Hermitian matrix

C(q) = B1 + B2eiq + B∗
2e−iq + B3e2iq + B3e−2iq.

Using the substitution w = M−1/2e, problem (10) can be
rewritten in the form

ω2e = M−1/2C(q)M−1/2e, (11)

where e is the normalized eigenvector, (e, e) = 1.
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FIG. 4. (a) Structure of dispersion curves {ωi(q)}3K
i=1 of the zigzag

nanoribbon (the number of atoms in the transverse unit cell K = 24).
The blue curves correspond to the in-plane vibrations, whereas the
red curves correspond to out-to-plane vibrations. Horizontal point
lines show the values of the thermalization frequency of nonzero
fluctuations �(T ) at temperatures T = 50, 100, 150, 200, 300, and
400 K. (b) The degree of thermalization of nonzero oscillations
p(ω, T ) at temperature T = 100 K is shown through the intensity
of the line color (full saturation for p ≈ 1, low saturation for p ≈ 0).
Dashed straight lines 1, 2, 3 set tangents to the first four dispersion
curves, which correspond to wave velocities vo = 5.88, vt = 7.79,
vl = 13.36 km/s.

Therefore, in order to find the dispersion relations charac-
terizing the modes of the nanoribbon (nanotube) for each fixed
value of the dimensionless wave number 0 � q � π we need
to find numerically the eigenvalues of the Hermitian matrix
[Eq. (11)] of the order 3K × 3K . As a result, we obtain 3K
branches of the dispersion curve {ω j (q)}3K

j=1.
The plain structure of the nanoribbon allows us to divide

its vibrations into two classes: into in-plane vibrations, when
the atoms always stay in the plane of the nanoribbon, and into
out-of-plane vibrations, when the atoms are shifted orthogonal
to the plane. Two thirds of the branches correspond to the atom
vibrations in the xy plane of the nanoribbon (in-plane vibra-
tions), whereas only one third corresponds to the vibrations
orthogonal to the plane (out-of-plane vibrations), when the
atoms are shifted along the axes z. The maximal frequency
of in-plane vibrations is ωm = 1598 cm−1, the maximum
frequency of out-of-plane vibrations is ω = 898 cm−1. This
values goes in accord with the experimental data for planar
graphite [42–45].

The form of nanoribbon dispersions curves in the low fre-
quency region is shown in Fig. 4. Four branches of the curves
start from the zero point (q = 0, ω = 0). Two first branches
ωi(q), i = 1, 2 correspond to the orthogonal (out-of-plane)
bending vibrations of the nanoribbon; the third branch ω3(q)
describes the bending planar (in-plane) vibrations in the plane.
These branches approach smoothly the axis q: ωi(q)/q → 0,
when q → 0, so that the corresponding long-wave phonon
possess zero dispersion. However, we can determine for them
the maximum values of group velocities

si = a max
0�q�π

dωi(q)/dq, i = 1, 2, 3.
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FIG. 5. (a) Structure of dispersion curves {ωi(q)}3K
i=1 of nanotube

with chirality index (6,6). Horizontal point lines show the values
of the thermalization frequency of nonzero fluctuations �(T ) at
temperatures T = 50, 100, 150, 200, 300, and 400 K. (b) The degree
of thermalization of nonzero oscillations p(ω, T ) at temperature T =
100 K is shown through the intensity of the line color (full saturation
for p ≈ 1, low saturation for p ≈ 0). Dashed straight lines 1, 2, 3 set
tangents to the first four dispersion curves, which correspond to wave
velocities vo = 6.54, vt = 8.41, vl = 13.84 km/s.

The fourth branch ω4(q) correspond to in-plane longitudi-
nal vibrations. The corresponding long-wave mode posses
nonzero dispersion so that we can define limiting value

vl = a lim
q→0

ω4(q)/q = 13.36 km/s,

which define the sound speed of longitudinal acoustic waves
(phonons) of the nanoribbon. The speeds of optical (bending)
phonons will determine the values vo = s1, s2 = 5.88 km/s
for out-of-plane and vt = s3 = 7.79 km/s for in-plane vibra-
tions, see Fig. 4(b).

The maximal frequency of nanotube vibrations ωm =
1630 cm−1. The form of dispersion curve in the low fre-
quency region is shown in Fig. 5. For nanotube four branches
of the curve also start from zero point. Two first branches
ωi(q), i = 1, 2 correspond to the bending vibrations. These
branches approach smoothly the axis q: ωi(q)/q → 0, when
q → 0 (corresponding long-wave binding phonon posses zero
dispersion). For them we can determine the maximum values
of group velocities

vo = a max
q∈[0,π],i=1,2

dωi(q)/dq = 6.54 km/s.

Third and forth branches correspond to torsional and longi-
tudinal acoustic phonon of the nanotube. The corresponding
long-wave modes posses nonzero dispersion so that we can
define limiting values

si = a lim
q→0

ωi(q)/q, i = 3, 4,

which define the sound speed of acoustic torsional vt = s3 =
8.41 km/s and longitudinal waves vl = s4 = 13.84 km/s, see
Fig. 5(b).

Let us note that when taking into account the quantum
statistics of thermal phonons, only nonzero phonons with the
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average energy of kBT p(ω, T ) can participate in heat transfer,
where the degree of thermalization

p(ω, T ) = h̄ω/kBT

exp(h̄ω/kBT ) − 1
(12)

depends on temperature T and phonon frequency ω (func-
tion 0 < p(ω, T ) < 1, kB and h̄ are the Boltzmann and Plank
constants) [46]. Here it is taken into account that zero-point
oscillations are not involved in the heat phonon transport.

As the temperature increases, T ↗ ∞, density p ↗ 1. At
high temperatures, all phonons become equally thermalized,
each has the average energy equal to kBT (classical approx-
imation). When the temperature decreases, high-frequency
nonzero phonons freeze-out (p(ω, T ) ↘ 0 when T ↘ 0),
only phonons with frequencies ω < �(T ) where thermaliza-
tion frequency

�(T ) = kBT/h̄

remain thermalized [function p(�(T ), T ) = 1/(e − 1) =
0.582]. Therefore, at low temperatures, only low-frequency
phonons will participate in heat transfer. Thus, at T < 400 K,
phonons with frequencies ω < 300 cm−1 will participate in
heat transfer, and at T < 50 K it will be only low-frequency
long-wave phonons (see Figs. 4 and 5). The degree of partic-
ipation of a phonon with a frequency of ω in heat transfer is
characterized by the function (12).

IV. INTERACTION WITH A THERMOSTAT

In the classical approach interaction of nanoribbons (nan-
otubes) with a thermostat is described by the Langevin system
of equations

Mẍn = − ∂H

∂xn
− γ Mẋn + �n, 1 � n � N, (13)

where M is a 3K × 3K-dimensional diagonal mass matrix,
3K-dimensional vector xn = {un,k}K

k=1 gives the coordinates
of carbon atoms from nth transverse unit cell, damping coeffi-
cient γ = 1/t0 (t0 is relaxation time) and �n = {ξn,k,i}K, 3

k=1,i=1
is 3K-dimensional vector of normally distributed random
forces (white noise) normalized by conditions

〈ξα,i(t1)ξβ, j (t2)〉 = 2Mαγ kBT δαβδi jδ(t1 − t2). (14)

In the semiquantum approach the random forces do not
represent in general white noise. The power spectral density
of the random forces in that description should be given by
the quantum fluctuation-dissipation theorem [46,47]:

〈ξα,iξβ, j〉ω = 2Mαγ kBT δαβδi j p(ω, T ). (15)

To model the nanoribbon (nanotube) stochastic dynam-
ics in the semiquantum approach [34], we will use the
Langevin equations of motions (13) with random forces
�n = {ζn,k,i}K, 3

k=1,i=1 with the power spectral density, given
by p(ω, Tn), where Tn is temperature of the nth trans-
verse unit cell. This dimension color noise ζnα is con-
veniently derived from the dimensionless noise Snα (τ ):
ζnα (t ) = kBTn

√
2Mnαγ /h̄Snα (τ ), where dimensionless time

τ = kBTnt/h̄, spectral density

p1(ω̄) = ω̄/[exp(ω̄) − 1], (16)

TABLE I. Value of the coefficients ci, �̄i, �̄i.

c1 c2 �̄1 �̄2 �̄1 �̄2

1.8315 0.3429 2.7189 1.2223 5.0142 3.2974

dimensionless frequency ω̄ = h̄ω/kBTn.
The random function Snα (τ ), which will generate the

power spectral density p1(ω̄), can be approximated by a sum
of two random functions with narrow frequency spectra:

Snα (τ ) = c1ς1,nα (τ ) + c2ς2,nα (τ ). (17)

In this sum the dimensionless random functions ςi,nα (τ ), i =
1, 2, satisfy the equations of motion as

ς ′′
i,nα (τ ) = ηi,nα (τ ) − �̄2

i ςi,nα (τ ) − �̄iς
′
i,nα (τ ), (18)

where ηi,nα (τ ) are δ-correlated white-noise functions:

〈ηi,nα (τ )η j,kβ (0)〉 = 2�̄iδi jδnkδαβδ(τ ).

The power spectral density of the sum of two random func-
tions (17) 〈SnαSkβ〉ω̄ = δnkδαβ p2(ω̄), where function

p2(ω̄) =
2∑

i=1

2c2
i �̄i(

�̄2
i − ω̄2

)2 + ω̄2�̄2
i

. (19)

The function p2(ω̄) approximate with high accuracy the func-
tion p1(ω̄) for the values of dimensionless parameters ci, �̄i,
�̄i, i = 1, 2 represented in Table I.

Thus, in order to obtain the thermalized state of the
nanoribbon (nanotube), it is necessary to solve numerically
the system of equation of motion with color noise:

Mẍn = − ∂H

∂xn
− γ Mẋn + c1�1,n + c2�2,n, 1 � n � N,

(20)

where 3K-dimensional vector of random forces �i,n =
{ζi,n,k, j}K, 3

k=1, j=1, i = 1, 2, is a solution of system of linear
equations

ζ̈i,n,α =ηi,n,α −
(

�̄i
kBTn

h̄

)2

ζi,n,α − �̄i
kBTn

h̄
ζ̇i,n,α, i = 1, 2,

(21)

where ηi,n,α are normally distributed random forces (white
noise) normalized by conditions

〈ηi,n,α (t )η j,k,β (0)〉=4�̄i

(
kBTn

h̄

)5

h̄γ Mαδi jδnkδ(t ). (22)

The system of equations (20) and (21) was integrated nu-
merically with the initial conditions

xn(0) = x0
n, ẋn(0) = 0, �i,n = 0, �̇i,n = 0,

n = 1, 2, . . . , N, i = 1, 2, (23)

where x0
n is the coordinate of carbon atoms in a ground

stationary state of nanoribbon (nanotube). The value of the
relaxation time t0 characterizes the intensity of the exchange
of the molecular system with the thermostat. To achieve the
equilibrium of the system with the thermostat, it is enough to
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integrated the system of equations of motion during the time
t = 10t0. The thermalized state itself does not depend on the
specific value of t0 (when modeling the dynamics of molecular
systems, we can take any value of t0 � 0.1 ps). Therefore,
the results of further integration of system equation of motion
without interaction with Langevin thermostat will not depend
on a specific time value t0.

The main idea of this semiquantum approach is to use
the classical Newtonian equations of motion in which ef-
fects of phonon quantum statistics are introduced through
random Langevin-like forces with a specific power spec-
tral density—with low frequency color noise c1�1,n + c2�2,n

which spectral density (16) depends on temperature. Two ad-
ditional Eqs. (21) act as a linear low-pass filter that allows us
to get color noise with desired spectral density from an initial
white noise.

In our simulation, the value t0 = 0.4 ps was used. The
system equations (20) and (21) were integrated numerically
during the time t1 = 5 ps. Furthermore, the interaction with
the thermostat was turned off, i.e., the system of equations of
motion without friction and random forces

Mẍn = − ∂H

∂xn
, n = 1, 2, . . . , N (24)

was numerically integrated.
Without taking into account zero-point oscillations, the

normalized kinetic energy of thermal phonons

e(T ) = 1

3NK − 6

3NK∑
n=7

h̄�n

exp(h̄�n/kBT ) − 1
, (25)

where {�n}3NK
n=7 are the nonzero natural oscillations frequen-

cies of the nanoribbon (nanotube). The average value of
kinetic energy can also be obtained from the integration of
a thermalized system of equations of motion (24)

ekin = 1

3NK

〈
N∑

n=1

(Mẋn, ẋn)

〉

= 1

3NKt

∫ t

0

N∑
n=1

(Mẋn(s), ẋn(s))ds. (26)

For a uniformly thermalized molecular system, these energies
must coincide:

e(T ) = ekin. (27)

Since function e(T ) monotonically increases with T , Eq. (27)
has a unique solution for the temperature. For inhomogeneous
thermalization, the solution of the equation

e(Tn) = 1

3K
〈(Mẋn, ẋn)〉 (28)

allows us to find the distribution of temperature along the
nanoribbon (nanotube) {Tn}N

n=1.
In the classical approach, i.e., by using a system

of Langevin equations (13) with white noise (14), the

temperature distribution can be obtained from the formula

Tn = 1

3KkB
〈(Mẋn, ẋn)〉. (29)

V. DYNAMICS OF A THERMAL PULSE

Let us simulate the propagations of a thermal impulse
along carbon nanoribbon (CNR) and nanotube (CNT) at dif-
ferent values of background temperature. For this purpose we
take the finite CNR and CNT presented in Fig. 2 consisting of
N = 10 000 transversal cells with fixed ends: ẋ1 ≡ 0, ẋN ≡ 0.

Then we take CNR (CNT) in the ground stationary state
and thermalize it so that the first Nt = 40 unit cells have
a higher temperature than the remaining cells. For this pur-
pose we integrate Langevin’s system of equations of motion
with color noise (20) and (21) with the initial temperature
distribution:

{Tn = Th}Nt
n=1, {Tn = T }N

n=Nt +1, (30)

where the temperature of the left edge is higher than the
temperature of the main part of CNR (CNT) (Th > T ).

After integrating the system of equations of motion (20)
and (21) during the time t1 = 5 ns, we will have the thermal-
ized state of the system

{xn(t1), ẋn(t1)}N
n=1, (31)

in which all phonons of the nanoribbon (nanotube) will be
thermalized according to their quantum statistics (12) (with
almost complete thermalization of low-frequency and partial
thermalization of high-frequency phonons). Next, we disable
the interaction of the molecular system with the thermostat,
i.e., we already integrate the system of Hamilton equa-
tions (24) with the initial condition (31). Using the formula
(28), we will monitor the change of temperature profile along
CNR (CNT) {Tn(t )}N

n=1. To increase the accuracy, the temper-
ature profile is determined by 104 independent realizations of
the initial thermalized state of the molecular system.

Modeling the propagation of an initial narrow temperature
pulse (Nt = 40, Th = 3T ) along the nanoribbon has shown
that at low temperatures 50 � T � 100 K, the thermal vibra-
tions propagate along the nanoribbon as a clearly visible wide
wave the maximum of which moves at a speed of v = vo, see
Figs. 6(a) and 6(b). The value of the wave motion velocity
suggests that the main role in its formation is played by
bending thermal phonons. Therefore, here the velocity of the
second sound corresponds to the maximum group velocity of
the optical bending phonons of the nanoribbon. At a higher
temperature T > 100 K, no temperature waves are formed,
we see only a slow expansion of the initial temperature im-
pulse, see Fig. 6(c). Such dynamics is typical for the diffusion
regime of heat transfer.

In the nanotube, the motion of heat waves is more pro-
nounced, see Figs. 7(a) and 7(b). For 50 � T � 150 K, two
waves are clearly distinguished: a stable localized wave mov-
ing at the speed of acoustic long-wave torsional phonons vt

and a wider wave moving at the maximum speed of opti-
cal bending phonons vo. The first wave corresponds to the
ballistic regime of heat transfer, and the second wave to the
second sound (to hydrodynamic regime of heat transfer). As
the temperature increases, the heat waves become subtle. At
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FIG. 6. Dynamics of the temperature impulse along nanoribbon
(width Ly = 2.41 nm) at its initial temperature Th = 3T , length Nt =
40, and background temperature (a) T = 50, (b) 100, and (c) 300 K.
The dependence of the temperature distribution along the CNR Tn

on the time t is shown. The dashed (red) lines show trajectories for
moving with constant speed v = vo, vt , and vl .

T = 300 K, the first (ballistic) wave becomes barely notice-
able, and the second quickly disappears. Here the temperature
propagates along the nanotube in the form of a diffusive ex-
pansion of the initial impulse, see Fig. 7(c). Let us note that an
increase in the amplitude of the initial temperature impulse Th

does not lead to an increase in the proportion of energy carried
by heat waves. On the contrary, an increase in Th leads to the
propagation of energy in the form of a diffusive expansion
of the initial temperature pulse even at a small value of the
background temperature T , see Figs. 8 and 7(b).

VI. RELAXATION OF A PERIODIC THERMAL LATTICE

The second sound can also be determined from the relax-
ation scenario of the initial periodic sinusoidal temperature
profile (from the relaxation of the temperature lattice). Note
that in the experimental works [16,17] the second sound in
graphite was determined from the analysis of relaxation of the
temperature lattice.

Consider the finite nanoribbon (nanotube) of the length
2012 nm (number of unit cells N = 213 = 8192) with

FIG. 7. Dynamics of the temperature impulse along CNT with
chirality index (6,6) at its initial temperature Th = 3T , length Nt =
40, and background temperature (a) T = 50, (b) 100, and (c) 300 K.
The dependence of the temperature distribution along the CNT Tn

on the time t is shown. The dashed (red) lines show trajectories for
moving with constant speed v = vo, vt , and vl .

periodic boundary conditions. In order to study the relaxation
of the initial periodic temperature distribution let us consider
dynamic of CNR (CNT) with sinusoidal temperature profile

{Tn = T + �T cos[2π (n − 1)/Z]}N
n=1, (32)

where T is the average temperature, �T is the profile ampli-
tude, and Z = 24+l , l = 0, . . . , 7 is dimensionless period of
the profile.

To obtain the initial thermalized state, we numerically in-
tegrate the Langevin system of equations with color noise
(20) and (21) with temperature distribution (32) during the
time t1 = 5 ps. Then we use the resulting normalized state
CNR (CNT) (31) as the starting point for the Hamiltonian
system equations of motion (24). As a result of numeri-
cal integration of this system, using the formula (28), we
have the time dependence of the temperature distribution
along the nanoribbon (nanotube) {Tn(t )}N

n=1. To increase
accuracy, the results were averaged over 104 independent
realizations of the initial thermalized state of the molecular
system.
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FIG. 8. Dynamics of the temperature impulse along CNT (6,6)
at its initial temperature (a) Th = 200, (b) 500, and (c) 900 K (T =
100 K, Nt = 40). The dependence of the temperature distribution
along the CNT Tn on the time t is shown. The dashed (red) lines
show trajectories for moving with constant speed v = vo, vt , and vl .

Let us take two values of the average temperature T = 100
and 300 K and the lattice amplitude �T = 0.5T . The results
of numerical simulation of the relaxation of the temperature
lattice in the nanoribbon are shown in Figs. 9 and 10, and in
the nanotube in Figs. 11 and 12.

As can be seen from Fig. 9, at the profile period Z = 211,
damped periodic fluctuations of the temperature profile occur
in the nanoribbon at low temperature T = 100 K. Such behav-
ior corresponds to the hydrodynamic regime of heat transfer.
The speed of the temperature wave can be determined from
the oscillation period tp: v(Z ) = aZ/tp. Damped profile fluctu-
ations occur for all its considered periods Z = 24, 25, . . . , 211,
see Fig. 10. At T = 300 K there are no periodic fluctuations.
We only see a smooth spreading of the initial temperature
profile. This behavior is typical for the diffusion regime of
heat transfer.

The typical behavior of the temperature profile in a nan-
otube is shown in Fig. 11. As can be seen from the figure,
when the profile period is Z = 211 and the temperature is
T = 100 K, slowly attenuating periodic profile oscillations
occur in the nanotube. This behavior corresponds to the
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FIG. 9. Relaxation of initial periodic thermal profile (temper-
ature lattice) in the nanoribbon with width Ly = 2.41 nm for
temperature (a) T = 100 K (�T = 50 K) and (b) T = 300 K (�T =
150 K). Dimensionless period of the profile Z = 211, nanoribbon
length N = 213. The temperature change on three periods of the pro-
file is shown. The initial temperature distribution in CNR is shown at
the top of each figure.

hydrodynamic regime of heat transfer. Profile fluctuations oc-
cur at all considered values of its period Z = 24, 25, . . . , 211,
see Fig. 12. At T = 300 K low-amplitude profile fluctuations
are noticeable only for Z � 29. Here, an increase in the profile
period leads to a rapid transition of the profile dynamics to
the diffusion regime. We can say that at T = 300 K, the sec-
ond sound can manifest itself only at the lengths L � 29a =
125.7 nm.

The dispersion of temperature waves at a temperature of
T = 100 K is shown in Fig. 13. With the increase of wave-
length L = aZ , its velocity v(Z ) monotonically decreases and
in the limit tends to the maximum group velocity of optical
bending phonons vo. Therefore, in carbon nanoribbons and
nanotubes, the velocity of the second sound coincides with vo,
which allows us to conclude that a high-temperature second
sound occurs primarily due to heat transfer by optical bending
phonons. For a graphene sheet, the main contribution of op-
tical bending phonons (ZA modes) to the second sound was
also observed in experimental work [17].
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FIG. 10. Evolution of the relaxation temperature profile in the
zigzag nanoribbon with width Ly = 2.41 nm (length N = 213) for
period Z = 24+l (l = 0, 1, . . . , 7) for (a) temperature T = 100 K
(�T = 50 K) and (b) T = 300 K (�T = 150 K). Time depen-
dencies of the mode maximum T (1) (blue lines) and of minimum
T (1 + Z/2) (red lines) are depicted. Timescales differ for each curve
in order to fit them into one figure, time t0 = 0.04 ps.

VII. COMPARISON WITH CLASSICAL
MOLECULAR DYNAMICS

Our simulation of the dynamics of temperature impulses
and relaxation of periodic temperature lattices has shown that
by using semiquantum molecular dynamic, i.e., by taking
into account the quantum statistics of thermal phonons, at a
temperature of T = 100 K and below, a hydrodynamic heat
transfer regime, the indicator of which is the second sound, is
observed in carbon nanotubes and nanoribbons. The increase
in temperature leads to a transition from the hydrodynamic
to the diffusion regime of heat transfer. At room temperature
T = 300 K, there is no second sound. This conclusion is in
agreement with the results of the experimental work [16],
in which fast, transient measurements of the thermal lattices
showed the existence of a second sound in graphite at tem-
peratures of 85 < T < 125 K. To assess the importance of
taking into account the quantum statistics of thermal phonons,
we will check the existence of a second sound using the clas-
sical method of molecular dynamics, in which all phonons,
regardless of temperature and their frequency, are equally
thermalized.

In the classical method of molecular dynamics, to ob-
tain a thermalized initial state of CNT (CNR) (31), it is
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FIG. 11. Relaxation of initial periodic thermal profile (temper-
ature lattice) in the CNT (6,6) for temperature (a) T = 100 K
(�T = 50 K) and (b) T = 300 K (�T = 150 K). The period of the
profile Z = 211, nanoribbon length N = 213. The temperature change
on three periods of the profile is shown. The initial temperature
distribution in CNT is shown at the top of each figure.

necessary to integrate a system of Langevin equations with
white noise (13) and (14) with a temperature distribution (30)
to simulate the motion of the temperature impulse, and with a
distribution (32) to simulate the relaxation of the temperature
lattice.

The simulation of the motion of the temperature impulse
has shown that with the same thermalization of all phonons,
the wavelike motion of temperature in CNT and CNR does
not occur even at low temperatures, see Fig. 14. For example,
at T = 50 and 100 K, the transfer of the temperature impulse
along the nanotube occurs in the form of its slow diffusion
expansion, which is sharply different from the scenario ob-
tained using the semiquantum method, see Fig. 7. Modeling
of the relaxation of the temperature lattice also shows that
when using the classical method of molecular dynamics (with
full thermalization of all phonons), temperature waves are
not formed even at low temperatures, there is only a slow
diffusion spreading of the temperature lattice, see Fig. 15.
Thus, the classical molecular dynamics does not allow us
to simulate temperature waves experimentally observed in
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FIG. 12. Evolution of the relaxation temperature profile in the
CNT (6,6) (length N = 213) for period Z = 24+l (l = 0, 1, . . . , 7) for
(a) temperature T = 100 K (�T = 50 K) and (b) T = 300 K (�T =
150 K). Time dependence of the mode maximum T (1) (blue lines)
and minimum T (1 + Z/2) (red lines) are depicted. Timescales differ
for each curve in order to fit them into one figure, time t0 = 0.04 ps.

graphite [16,17]. Therefore, it is fundamentally important to
take into account the quantum statistics of thermal phonons
for modeling the second sound in quasi-one-dimensional and
two-dimensional molecular systems.

Note that graphene has a very high Debye temperature
TD = h̄ωm/kB = 2300 K, where ωm = 1600 cm−1 is the max-
imum frequency of the phonon spectrum. Therefore, without
taking into account the quantum statistics of phonons, it is
impossible to obtain reliable results for graphene nanoribbons
and nanotubes.

VIII. CONCLUDING REMARKS

Our numerical studies of heat transport in low-dimensional
carbon structures has revealed that, in order to explain the
observation of high-temperature second sound in crystalline
graphite, it is critically important to take into account quantum
statistics of thermal phonons. In contrast, the classical method
of molecular dynamics with full thermalization of all phonons
does not allow simulating correctly second sound at tem-
peratures 85–125 K observed in experiment [16]. When the
quantum statistics is taken into account, only nonzero phonons
with the average energy kBT p(ω, T ), where the density dis-
tribution of energy phonons p depends on the temperature
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FIG. 13. Dispersion of thermal periodic waves for T = 100 K.
Dependence of the wave velocity v on its length L = aZ for both
CNT and CNR (curves 1 and 2). Dashed lines mark the maximum
values of the group velocities of the optical bending phonons of CNT
(vo = 6.54 km/s) and CNR (vo = 5.87 km/s), respectively.

according to the formula (12), can participate in heat transport.
By decreasing the temperature, only low-frequency phonons
with frequencies ω < kBT/h̄ remain fully thermalized.

From the form of the dispersion curves for nanoribbons
and nanotubes (see Figs. 4 and 5), it follows that at T =
300 K, almost all phonons with frequencies ω < 300 cm−1

remain thermalized and participate in heat transfer. For

FIG. 14. Dynamics of the temperature pulse along CNT (6,6)
at its initial temperature Th = 3T , length Nt = 40, and background
temperature (a) T = 50 K and (b) T = 100 K. The dependence of the
temperature distribution along CNT Tn on the time t is shown. The
initial state of the temperature lattice is obtained using the classical
approximation (with full thermalization of all phonons). The dashed
(red) lines show trajectories for moving at a constant speed v = vo,
vt , and vl .
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FIG. 15. Evolution of the relaxation temperature profile in the
CNT (6,6) (length N = 213) for period Z = 24+l (l = 0, 1, . . . , 5)
for (a) temperature T = 50 K (b) T = 100 K, and (c) T = 300 K
(profile amplitude �T = T/2). Initial state of the temperature lattice
is obtained using the classical approximation (with full thermal-
ization of all phonons). Time dependence of the mode maximum
T (1) (blue lines) and minimum T (1 + Z/2) (red lines) are depicted.
Timescales differ for each curve in order to fit them into one figure,
time t0 = 0.04 ps.

low temperatures T < 50 K, only low-frequency long-wave
phonons participate in heat transfer. For a nanotube, these
are two acoustic branches (longitudinal and torsional acoustic
phonons having velocity vl and vt ) and two optical branches
leaving the zero point (with wave number q ↘ 0, their phase
velocity tends to zero). Therefore, for very low temperatures,
acoustic long-wave phonons make the main contribution to
heat transfer, thus defining the ballistic regime of heat transfer.
For high temperatures, the participation of all phonons in heat
transfer leads to a diffusion regime. For intermediate temper-
atures 50–150 K, only low-frequency phonons participate in
heat transfer, a large part of them will be accounted for by
bending phonons, see Fig. 4(b).

For a nanotube, optical bending waves have a maximum
group velocity vo = 6.54 km/s—the velocity of bending
phonons with dimensionless wave numbers q ∈ [0.05, 0.5]
(see Fig. 5). For a nanoribbon, this velocity is vo = 5.87 km/s.

For temperatures 50–150 K, bending phonons with these
wave numbers make the main contribution to heat transfer.
In the simulations, the motion of these phonons appears
as the motion of a temperature maximum at velocity v =
v0, see Figs. 6 and 7. Therefore, we can conclude that
second sound observed in graphite at liquid nitrogen temper-
atures corresponds primarily to the motion of optical bending
vibrations.

Second sound will be absent for very low temperatures
T < 20 K, since in this case bending phonons with veloc-
ities close to vo will no longer participate in heat transfer.
For high temperatures T > 200 K, second sound becomes
faintly noticeable, since many phonons here already partic-
ipate in heat transfer, and the contribution from the motion
of low-frequency bending phonons will remain relatively
small.

Thus, we come to the conclusion that, for carbon nanorib-
bons and nanotubes, high-temperature second sound is caused
by low-frequency bending phonons. The existence of such
phonons follows from the one dimensionality or two dimen-
sionality of the molecular systems. Therefore, we should
expect second sound in such two-dimensional systems as
graphene (graphite) [16,17], hexagonal boron nitride (h-BN),
and in quasi-one-dimensional systems such as graphene and
h-BN nanotubes, linear cumulene macromolecule (LCM)
[48], and planar zigzag polyethylene (PE). In quasi-one-
dimensional systems, second sound manifests itself more
strongly than in quasi-two-dimensional systems, since bend-
ing vibrations of the former make a greater contribution to
heat transfer. Thus, modeling of heat transfer along LCM
shows the existence of a second sound at room temper-
ature [48]. Therefore, the most promising for detecting
high-temperature second sound are quasi-one-dimensional
molecular systems whose crystals are formed by parallel
one-dimensional chains and nanotubes, i.e., ideal crystals of
linear macromolecules LCM, PE, etc. and arrays of parallel
nanotubes. The speed of second sound in such molecular
structures can be estimated as the maximum group velocity
of bending optical phonons whose dispersion curve split off
the zero point. Our results suggest that the velocity of second
sound in graphene (in graphite) is about 6 km/s.

Note that the obtained results do not depend on the type of
force field used, if the field leads to the correct shape of the
dispersion curves (it is necessary that it correctly describes
the acoustical LA, TA, and ZA modes of graphene sheet).
The commonly used force fields Tersoff, RABO, AIREBO,
LCBOP, and ReaxFF were created to describe high-amplitude
deformations in which valence bonds are strongly deformed
or torn. They can poorly describe the frequency spectrum
of low-amplitude (thermal) oscillations. The analysis of the
behavior of graphene dispersion curves when using these
force fields was carried out in the articles [41,49–51]. From
the type of dispersion curves, it can be concluded that the
frequency spectrum of low-amplitude (thermal) oscillations is
well described only by LCBOP [52] and optimized Tersoff
[53] potentials. Therefore, these force fields can also be used
in numerical simulation of the second sound in graphene
nanoribbons and nanotubes.

Finally, we notice that, because bending vibrations
have nonzero dispersion [54,55], there are no optical
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bending phonons in two-dimensional layers of MoS2, MoSe2,
WS2, and WSe2 where the molecular layers have a finite
thickness (such as flat corrugated structures). Therefore, high-
temperature second sound should not be observed in all such
structures. Instead, only a ballistic regime should be expected,
with a transition to a diffusive heat transfer regime with a
growth of temperature.
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