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We present a unified theory of quantum phase transitions for half-filled quantum dots (QDs) coupled to gapped
host bands. We augment the bands by an additional weakly coupled metallic lead, which allows us to analyze
the system by using standard numerical renormalization-group techniques. The ground-state properties of the
systems without the additional metallic lead are then extrapolated in a controlled way from the broadened
subgap spectral functions. We show that a broad class of narrow-gap-semiconductor tunneling densities of states
(TDOSs) support the existence of two distinct phases known from their superconducting counterpart: the 0 phase,
which is marked by the singlet ground state, and the π phase regime with the doublet ground state. To keep a
close analogy with the superconducting case, we focus on the influence of particle-hole asymmetry of the TDOS
on the subgap spectral features. Nevertheless, we also discuss the possibility of inducing singlet-doublet quantum
phase transitions in experimental setups by varying the filling of the QD. In addition, for gapped TDOS functions
with smoothed gap edges, we demonstrate that all subgap peaks may leak out of the gap into the continuous part
of the spectrum, an effect that has no counterpart in the superconducting Anderson model.
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I. INTRODUCTION

Low-temperature nanostructures, e.g., single molecules or
various types of semiconducting quantum dots (QDs) coupled
to a large system, represent a highly controllable testbed for
various concepts of heavy fermion physics. For example, by
using metallic host bands one can recreate the Kondo effect
[1–6], while opening a superconducting gap � induces 0-π
quantum phase transitions (QPTs) with two phases of different
ground-state parities [7–23].

Microscopic theories for impurities in host bands often
rely on the prolific Anderson impurity model (AIM) [24],
originally introduced for metallic hosts. For the supercon-
ducting case, a BCS mean-field theory is employed and the
resulting model is known as the superconducting AIM (SC-
AIM). Although the Kondo screening can be suppressed by
the spectral gap, the SC-AIM has a similarly complicated
hierarchy of coupled energy scales to that of the AIM, which
represents a major obstacle for its exact solutions. Analyti-
cally, nonperturbative renormalization group (RG) [25–27] or
effective renormalization techniques [28–31] are able to cap-
ture qualitative behavior, while numerically, quantum Monte
Carlo (QMC) techniques provide the most flexible methods
but are limited to finite temperatures [32,33]. In contrast,
applying RG transformation numerically, i.e., via numerical
renormalization group (NRG), offers unbiased access to wide
parameter ranges [5,6,13,15,17,34–43].
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A significant amount of experimental and theoretical
progress has been achieved for various setups of metallic
and superconducting leads. However, gapped hosts without
pairing correlations, e.g., narrow-gap semiconductors, have
attracted much less attention. For half-filled QDs, there is a
growing consensus that a particle-hole (ph) symmetric gapped
host allows only a doublet ground state, while away from half-
filling of the QD a critical size of spectral gap �c exists below
which a singlet is formed. These results have been established
perturbatively [44,45] as well as nonperturbatively by QMC
[46] and NRG [47–49]. However, the logarithmic discretiza-
tion of the band, upon which NRG relies, fails [47–49] for
energies within the finite spectral gap �, and nonstandard
approaches beyond such limitations have been employed.

Given different physical origins of the semiconducting and
superconducting spectral gaps, a direct analogy between the
AIM with a semiconductor host and SC-AIM seemed to be
unlikely. Nevertheless, in Ref. [50] a half-filled (HF) SC-AIM
has been exactly mapped onto a QD coupled to a scalar semi-
conducting band of Bogoliubov quasiparticle (bogoliubon).
The tunneling density of states (TDOS) of this band at the
phase-bias ϕ = π exactly matches the electronic TDOS of a
QD coupled to the armchair graphene nanoribbon (AGNR)
with a semiconductor gap [51].

In addition, for SC-AIM the phase-bias ϕ �= π introduces a
ph-asymmetry into the band of Bogoliubons, which can drive
0-π QPTs in the system. The same behavior can then be re-
produced with the AGNR host by introducing ph-asymmetric
TDOS functions that match those of SC-AIM for Bogoliubons
[52]. These singlet-doublet QPTs are of an electronic nature,
but they still might rely on specific TDOS features that involve
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FIG. 1. (a)–(d) TDOS functions of four distinct semiconductor models with various properties. BCS-like divergences on the gap edges
appear in (a) and are typical for SC-AIM and AGNR-AIM cases given in Eq. (10). The gapped Anderson model (G-AIM) possesses only
finite discontinuities on the gap edges as shown in (b), and it is given in Eq. (12). Continuous TDOS functions appear when root functions
are considered (R-AIM case) as given in Eq. (14), and they are shown in (c). Smoothed-out gap edges of the gapped Anderson model are
considered in Eq. (13) and are shown in (d). In SC-AIM and AGNR-AIM, ph-asymmetry is incorporated via parameter ϕ that modulates the
TDOS in the vicinity of the gap edges. In the remaining models, ph-asymmetry is incorporated via the parameter A.

BCS-like divergences; see Fig. 1(a). It is thus unclear how cru-
cial such specific properties are to allow the existence of QPTs
in QDs with semiconductor hosts. To resolve this question, we
investigate several classes of semiconductor TDOS functions.
These are chosen to represent some typical physical scenar-
ios, e.g., hosts of different dimensionality, and simultaneously
they allow us to probe the influence of the spectral gap shape
on the QPTs.

In addition to AGNR, we consider a finite steplike dis-
continuity, representing the DOS of a trivial two-dimensional
semiconductor [blue line in Fig. 1(b)]. This type of DOS was
addressed before in the studies of the gapped AIM (G-AIM)
[47–49], nevertheless only ph-symmetric TDOSs have been
analyzed. Yet, the ph-asymmetry can be significant in real
materials. Therefore, we define the parameter A to measure the
weight difference between the electronic and hole components
of TDOS as shown in Fig. 1. Motivated by the noninteracting
cases, where bound states appear only when a critical depth or
width of the gap is present [53], we additionally construct con-
tinuous TDOS functions. For R-AIM, a root behavior on the
gap edges, like the one expected for a three-dimensional host,
is considered [Fig. 1(c)]. SG-AIM is constructed from G-AIM
by smoothing its discontinuity. Once again, ph-asymmetry is
incorporated via A analogously to G-AIM.

To circumvent the difficulties arising from truncation
strategies for systems with gapped TDOS [47–49], we add
metallic leads with constant broadening �M to the models,

which are then indicated as SC-AIM+M, AGNR-AIM+M,
G-AIM+M, S-AIM+M, and R-AIM+M, respectively. Stan-
dard NRG techniques may then be applied [50–52], since the
TDOS becomes nonzero in the gap. This comes at the expense
of inducing a singlet ground state, which obscures a possible
doublet state and related singlet-doublet QPTs expected at
�M = 0.

Nevertheless, by lowering �M to the smallest possible
value guaranteeing numerical stability of NRG, we can still
obtain spectral functions and perform subgap spectroscopy of
broadened in-gap features [50–52]. In analogy to the QPTs
in SC-AIM, which can be driven by phase-bias induced ph-
asymmetry of w Bogoliubons, we investigate the evolution of
the in-gap features by varying A in semiconductor hosts. In
particular, we focus on crossings of the in-gap features with
the Fermi energy, which signals an underlying singlet-doublet
QPT for �M → 0.

The outline of this paper is as follows. We first review the
subgap spectroscopy of SC-AIM+M in Sec. II A and AGNR-
AIM+M in Sec. II B. In Sec. II C, three other classes of
semiconductor TDOS function are defined. An approximative
atomic limit theory is formulated in Sec. II D. Temperature-
dependent effective models of G-AIM are discussed in
Sec. III A, with remaining cases analyzed in Sec. III B. The
nature of the underlying QPTs is analyzed for G-AIM in
Sec. IV A. In Sec. IV B we confirm that singlet-doublet tran-
sitions can be supported by all TDOS functions considered
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here. Finally, we argue in Sec. V that a possible experimental
realization of a singlet-doublet transition with semiconductor
host bands might be simpler with electrostatic gating of the
QD. The main conclusions are then summarized in Sec. VI.
Some technical aspects are postponed to Appendixes. Namely,
the details of the NRG method and resulting RG flows are
given in Appendixes A 1–A 4, and the escape of in-gap peaks
into the continuum is discussed in Appendix A 5.

II. THEORY

A. QPTs in SC-AIM

A single-level QD (impurity) coupled to superconducting
host bands can be modeled by the SC-AIM [3,16–18,23]
where the impurity is treated as a spin-1/2 Anderson orbital
populated by the electrons dσ of spin projections σ ∈ {↑,↓}.
The corresponding Hamiltonian reads

Hdot =
∑

σ

εdotd
†
σ dσ + Ud†

↑d↑d†
↓d↓, (1)

where d†
σ creates an electron of spin σ on the QD while dσ

annihilates it. The first term describes the energy level εdot

and the second one the local Coulomb repulsion characterized
by U . The half-filled point of the QD is therefore set by δ = 0,
where δ = εdot + U/2.

The interaction of a QD with BCS and/or metallic lead(s)
can analogously be expressed via the corresponding Hamil-
tonians. Alternatively, as preferred here, one can employ
the Nambu spinor D† = (d†

↑, d↓) and integrate out all of
the remaining degrees of freedom, which then enter the
corresponding Nambu Green’s function of D† only via the
tunneling self-energy

ΣD(ω+) = 
D
n (ω+)1 + 
D

a (ω+)σx, (2)

whose imaginary part is the corresponding TDOS. Here, 1 is
a two-by-two unit matrix, σx is the Pauli matrix x, and the
self-energy components read


D
n (ω+) = −i�M + �SωF (ω+), (3)


D
a (ω+) = �S� cos

(
ϕ

2

)
F (ω+), (4)

where � is the superconducting gap, �S = �L + �R, and ϕ

is the phase drop across the BCS leads with the gauge set so
that the left BCS lead phase is ϕL = ϕ/2 while the right one
is −ϕR = −ϕ/2. The function F (ω+) reads

F (ω+) =

⎧⎪⎨
⎪⎩

− 2
π

√
�2−ω2 arctan

(
B√

�2−ω2

)
for |ω| < �,

− i sgn(ω)√
ω2−�2 +

ln
(

B+
√

ω2−�2

B−
√

ω2−�2

)

π
√

ω2−�2 for � < |ω| < B,

(5)
where 2B is the width of the host band. For �M = 0, the
model is known as SC-AIM and can be treated by standard
superconducting NRG [12,54]. The �M �= 0 case is referred
to here as SC-AIM+M; for a detailed analysis, see Ref. [50].

Examples of the evolution of normal spectral functions
A(ω) on �M are shown in Figs. 2(a) and 2(c). In the 0-like

regime [Fig. 2(a)], A exhibits a single pair of broadened ABS
peaks at ω = ±EABS ≈ 0.2� but no Kondo-like features. On
the contrary, in the π -like regime [Fig. 2(c)], two pairs of
broadened ABS peaks are accompanied by a zero-frequency
Kondo-like feature. The ϕ-evolution of the maxima of all
subgap features is shown in Fig. 2(e) for �M/� = 0.01. Solid
blue lines mark the center position of the broadened ABS
peaks, while the dashed blue line traces the center of the
Kondo-like resonance.

Note that all normal spectral functions are presented here
as normalized according to the Friedel sum rule. Therefore,
as �M → 0, the broadened ABS peaks quickly lose height
when compared to the Kondo-like feature, allowing thus their
precise distinction. The spectral weight W of the ABS peaks,
however, remains finite with decreasing �M as illustrated in
Fig. 2(g). While the weights are relatively stable within the 0-
and π -phase, they exhibit a rather sharp decrease at ϕ ≈ π/2
where the ABS peaks cross the Fermi energy, but the determi-
nation of W becomes complicated in this regime as the ABS
peaks merge with the Kondo-like feature. So inferring upon
the nature of the subgap features is more reliable from their
�M and/or ϕ dependences.

We emphasize that in addition to the subgap Kondo feature
in π -like regimes, there is also an emergent supragap (|ω| >

�) Kondo effect, which is primarily induced by the supercon-
ducting lead. It appears upon closer inspection of the supragap
portion of the spectral function as its width is proportional
to �S/U and typically exceeds the spectral gap. At subgap
frequencies it is suppressed and the screening instead induces
ABS states in the subgap region. With a metallic lead present,
a cascade of two reentrant Kondo peaks is thus possible, as
discussed at length in Refs. [51,52]. We stress that supragap
Kondo resonances appear also for other gapped models stud-
ied here. However, unlike the parameter-dependent positions
of subgap features, they are not relevant for the investigation
of the possible QPTs in the systems.

B. QPTs in AGNR-AIM

Coupling a QD characterized by Hamiltonian (1) to an
AGNR semiconductor band can be modeled using the TDOS,

�AGNR+M(ω) = �M + �S|ω|�(ω2 − �2)√
ω2 − �2

, (6)

with �S (�M) being the hybridization to the QD to the semi-
conductor (metallic) host and � is the semiconductor gap
[51]. Here, the overall number of states is ≈2(�M + �S )B
in the wide band limit. Such AGNR-AIM+M is in terms
of many-body eigenstates equivalent to the SC-AIM+M at
ϕ = π [50]. This can be shown by rotating the dσ electrons
of (1) via a unitary transformation T:

w
†
↑ =

√
1

2
(−d†

↑ + d↓), (7)

w
†
↓ =

√
1

2
(d↑ + d†

↓). (8)
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FIG. 2. (a) The normal spectral function A(ω) of SC-AIM+M in the 0-like regime (ϕ = 0) shows one pair of broadened ABS states.
(b) The same as in (a) for AGNR-AIM+M with just one subgap peak at the position matching the right ABS of (a). (c) Increasing ϕ to 0.75π

places the SC-AIM+M into the π -like regime. Two pairs of symmetrically placed broadened ABS states and a central Kondo peak emerge.
(d) The same as in (c) for AGNR-AIM+M. Two asymmetrically placed subgap peaks and one Kondo-like resonance appear. Symmetrizing
(b) and (d), the solution for SC-AIM+M in (a) and (c) is obtained. (e),(f) ϕ-evolution of subgap peaks. The solid blue line represents the
broadened in-gap states, while the dashed line corresponds to the Kondo peak in the π -like regime. The circle marks the 0-π QPT. (g),(h) The
spectral weights W of the in-gap features show a drop around the QPT. The fitting procedure is estimated to have an uncertainty of ≈10%.
Calculations using NRG Ljubljana with discretization parameter � = 2 were performed for U = 3�, �S = �, and � = 5 × 10−4B with 2B.

The resulting quasiparticles w are Bogoliubons and allow us
to reformulate the QD Hamiltonian to

Hdot =
∑

σ

εw
dotw

†
σwσ + Uw

†
↑w↑w

†
↓w↓ + δ(w†

↑w
†
↓ + w↓w↑),

(9)
where εw

dot = −U/2 and the last term represents pairing for
w quasiparticles, which is proportional to δ and therefore
vanishes in the half-filled dot regime considered here. After
the rotation, the corresponding TDOS of w quasiparticles (see
Fig. 1) becomes

�w
BCS+M(ω; ϕ) = �M + �S|ω|�(ω2 − �2)√

ω2 − �2

(
1 − �

ω
cos

ϕ

2

)
.

(10)

At ϕ = π , the SC-AIM+M TDOS of w quasiparticles is
the same as for AGNR-AIM+M, and consequently both sys-
tems have the same many-body spectra. Following Ref. [52],
we can then further generalize AGNR-AIM+M and include
ph-asymmetry as

�AGNR-AIM+M(ω; ϕ) ≡ �w
BCS(ω; ϕ), (11)

where ϕ is not a Josephson phase difference as in the case
of SC-AIM but rather a measure of electronic band ph-
asymmetry in AGNR-AIM+M which drives the underlying
QPTs at �M = 0.

The main difference between AGNR-AIM+M and SC-
AIM+M appears on the level of one-particle excitations. For
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AGNR-AIM+M, the electronic ph-asymmetry of the host
results in the ph-asymmetric spectral functions A(ω) with
two off-center subgap peaks as shown in Figs. 2(b) and
2(d). These are equivalent to normal spectral functions of
rotated SC-AIM+M generated by w quasiparticle excitations.
Such spectra can be transformed by symmetrization [see
Eq. (34) of Ref. [50]] into standard normal spectral functions
of SC-AIM+M so both cases are directly related. Due to
the symmetrization, normal spectral functions of SC-AIM+M
have always twice as many off-center subgap peaks.

In detail, the electronic ph-asymmetry of the AGNR-
AIM+M results in ph-asymmetric electronic spectral func-
tions A(ω). At ϕ = 0.75π in Fig. 2(d), the ph-asymmetry
distorts the central Kondo-like peak, which is slightly shifted
from Fermi energy and its height no longer fulfills the Friedel
sum rule. The two in-gap peaks emerge in the gap at po-
sitions ω+ ≈ 0.6� and ω− ≈ −0.2�. Increasing further the
ph-asymmetry, we arrive at ϕ = 0 where the former Kondo-
like feature disappears due to the ph-asymmetry. The in-gap
peaks have shifted towards higher frequencies, so that ω+ →
� and its weight decreased beyond possible reliable detection.
The in-gap peak formerly at ω− then shifted past the Fermi
energy up to ≈0.2�. The ϕ-dependent position of in-gap
features is summarized in Fig. 2(f) and makes clear that the
ϕ-evolution of SC-AIM+M is in principle its symmetrized
version. Consequently, also the spectral weights of in-gap
peaks of AGNR-AIM [Fig. 2(h)] contain the combined spec-
tral weight of the in-gap peaks of SC-AIM. This roughly
doubles the weights of AGNR-AIM+M in-gap peaks com-
pared to SC-AIM+M.

C. General semiconducting reservoirs augmented by
a normal metallic lead

In general, ab initio methods reliably deliver densities
of states in the bulk of realistic semiconductor materials
[55–57]. However, their interaction with a given nanosystem
of interest gives, in principle, realization-dependent TDOS
functions [57]. Therefore, instead of investigating specific
TDOS functions resembling the bulk properties, we construct

some prototypical TDOS cases where the focus is given to
the general features of the ph-asymmetry and the shape of the
spectral gap. Realistic configurations are discussed briefly in
Sec. V.

We first consider TDOS where the BCS-like divergences
of AGNR-AIM are replaced by a finite discontinuity as known
from the G-AIM [47,48]. We incorporate ph-asymmetry of the
band via the parameter A as

�G-AIM+M(ω) =
{
�M for |ω| < �,

�M + (1 − sgn[ω]A)�S for |ω| � �.

(12)
Parameter A thus compares the hole and electronic weights
of the TDOS and is bound by 0 � |A| < 1 to ensure positive
TDOS. A = 0 represents the symmetric choice. It is sufficient
to restrict the investigation to the positive case A > 0 since the
negative scenario follows from the symmetry. Note that the
integral over all frequencies of the TDOS is fixed to 2�M +
2(B − �) �S for arbitrary A. In the wide band limit (� 
 B),
the integral is ≈2(�M + �S )B as for AGNR-AIM+M.

Next, we soften the discontinuity at the gap edge as

�SG-AIM+M(ω) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�M for |ω| < �,

�M + (1 − sgn[ω]A)�S×[
1 − cos

(
π (|ω|−�)
2(b−1)�

)]
for b� � |ω| � �,

�M + (1 − sgn[ω]A)�S

for |ω| > b�.

(13)
In the resulting SG-AIM+M, b > 1 defines the width over
which an otherwise finite discontinuity of (12) is smoothed
out. Due to the smoothening, some states are removed in
the region � < |ω| � b�, but in the wide band limit with
moderate values of b the integral over all frequencies of the
TDOS is once again ≈2(�M + �S )B. We stress that strictly
speaking, only the region |ω| < � exhibits a full gap, how-
ever the depletion of the TDOS for � < |ω| � b� effectively
makes the gap region wider.

So far, the depopulation of TDOS due to the semiconductor
gap was limited to the gap-proximity. We therefore construct
a continuous TDOS with rootlike behavior at the gap edges as

�R-AIM+M(ω) =
{
�M for |ω| < |�|,
�M + (1 − sgn[ω]A)�S (|ω| − �)1/r for ω > �,

(14)

where parameter r > 1 governs the shape of the TDOS in the
whole band. Note that, for a two-dimensional semiconductor,
one expects r → ∞ and the G-AIM model considered pre-
viously is recovered, while r = 2 would reflect a DOS of a
simple three-dimensional bulk system. Moreover, at A = 0
TDOS (14) resembles the bulk DOS of granular metallic
systems at the onset of the Coulomb blockade regime in two
and three dimensions [58,59]. In general, as we discuss in
Appendix A 5, small values of r may release the in-gap states
into the supragap region. This sets some limits to a possi-
ble correspondence between R-AIM and SC-AIM behavior.
Therefore, in the following, a typical value of r is set to
r = 8. In addition, compared to other TDOS functions, the

integral over all frequencies is in the wide band limit given as
2�MB + 2r�S/(1 + r). Therefore, to make quantitative com-
parisons with other TDOS, we use a scaled �̃S = (1 + r)�S/r
to match the integral properties.

D. Atomic limit approximation

While a numerical solution of the models introduced in
Secs. II A–II C is possible using NRG, an important insight
can be obtained investigating the analytically solvable atomic
limit theory [38]. We show later that this interacting, i.e.,
U �= 0, limit clearly underpins the unified nature of phase
transition for systems with various hosts studied in this paper.
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For SC-AIM, an effective local Hamiltonian in the atomic
limit is known to take the form

H eff
BCS,d =

∑
σ

εdotd
†
σ dσ + Ud†

↑d↑d†
↓d↓ − �ϕ (d†

↑d†
↓ + d↓d↑),

(15)

where �ϕ = (�S/π ) arctan(B/�) cos(ϕ/2) [38]. This effec-
tive model follows from the low-frequency limit of the
real part of the tunneling self-energy. Hamiltonian (15)
can be solved analytically. Its energy eigenvalues are δ ±
�ϕ

√
1 + (δ/�ϕ )2 for the singlet states and εdot for the doublet

state.
Applying the transformation (8), we obtain the atomic limit

in terms of Bogoliubons w. It reads

H eff
BCS,w =

∑
σ

(
εw

dot + �ϕ

)
w†

σwσ + Uw
†
↑w↑w

†
↓w↓

+ δ
(
w

†
↑w

†
↓ + w↓w↑

) + δ, (16)

where a constant term −�ϕ has been omitted. Note that this
term is essential for correct determination of Josephson cur-
rent via the first derivation of the ground-state energy with
respect to ϕ [17], but it does not play a role in the forthcoming
analysis. The energy eigenvalues without this term read (δ +
�ϕ ) ±

√
δ2 + �2

ϕ for the singlet states and −U/2 + (δ + �ϕ )
for the doublet state. Thus it is evident that δ and �ϕ exert
essentially the same influence on the energy eigenstates.

For AGNR-AIM, G-AIM, SG-AIM, and R-AIM, the
atomic limit leads to

H eff
semi =

∑
σ

(εdot + �A)d†
σ dσ + Ud†

↑d↑d†
↓d↓, (17)

where �A is a host-specific monotonous function of A that
vanishes at A = 0 for all ph-symmetric host bands. We do
not state an explicit functional dependencies of �A for each
semiconductor model discussed here as for all our purposes
we can simply treat it as a model parameter. The eigenstates
of the atomic limit model (17) consist of two singlets with
energies (δ + �A) ± (δ + �A), and one doublet with energy
−U

2 + (δ + �A).
The energy eigenvalues of (16) and (17) depend thus anal-

ogously upon δ and �ϕ or �A, respectively. At half-filling

(δ = 0), both models lead to identical expressions no matter
the details of the host TDOS. Then, �ϕ and �A fulfill identical
roles. Introducing a finite value of δ or �ϕ (�A) and varying
the other parameter, as shown in Fig. 3, reveals some impor-
tant differences between both cases. Denoting by x the fixed
parameter, the singlets clearly avoid crossing in the supercon-
ducting case and an overall left-right symmetry around x = 0
is present. In contrast, for semiconductor hosts, the singlets do
not avoid crossings and the left-right symmetry around x = 0
is broken. Nevertheless, in both cases the doublet energy is the
same. As a result, two singlet-doublet QPTs occur as marked
by circles in Fig. 3.

Consequently, in the atomic limit we observe that the host
band ph-asymmetry plays exactly the same role as the ph-
asymmetry of the QD. In the superconductor case, the sign
of the ph-asymmetries does not play a role. On the contrary,
in the semiconductor host one of the singlet-doublet crossings,
i.e., the right one in Fig. 3, is independent of δ or �A while the
other may be correspondingly shifted to any desired position
by either δ or �A. Thus, while Fig. 3 shows an analogous
behavior for both models, semiconductors have an additional
regime at very large negative values of δ or �A, where the
singlet becomes always the ground state of the system at
arbitrary choices of the remaining model parameters. In such
regimes, no QPTs would be observed at all.

The atomic limit approximation thus clearly shows a uni-
fied nature of both problems at δ = 0 or �ϕ = �A = 0 while
differences arise only at very large negative values of δ or �A

which are attributed to the missing avoided crossing of the
singlets in the semiconductor case.

III. TEMPERATURE-DEPENDENT EFFECTIVE MODELS
AND THERMODYNAMIC PROPERTIES

A. Reentrant effective behavior of G-AIM

In addition to the unbiased treatment of interactions, a
huge advantage of NRG lies in a rigorous identification of
effective impurity models at different energy scales by ob-
taining the RG flows of eigenenergies, which constitute the
basic tool of NRG. As an introduction to this method, the
seminal papers by Wilson et al. [34–36] as well as the more
recent review of NRG for impurity problems [37] can be used.
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For convenience, we review the most relevant results for the
ph-asymmetric AIM and its fixed points in Appendix A 2. The
reason is that qualitatively the same flow dependence appears
also for the ph-asymmetric semiconductor hosts investigated
herein. The five relevant fixed points, appearing in both sys-
tems, correspond to effective models and are known as the free
orbital (FO), valence fluctuation (VF), local moment (LO),
frozen impurity (FI), and strongly coupled (SC) fixed point.
Their emergence for G-AIM at A = 0 is explained in detail in
Appendix A 3 and for A �= 0 in Appendix A 4.

Two main results follow from such a detailed analysis.
First, at arbitrary A we observe a sequence of two RG flows: a
high-temperature flow for T > �/B and the low-temperature
T < �/B flow. Their properties hinge on the size of the gap
and ph-asymmetry of the TDOS. Second, they both corre-
spond to a cascade of effective models well known from the
AIM with a ph-symmetric band and out-of-half-filling QD.
At A = 0 the cascade of FO-LM-SC effective models is at the
center of both RG flows, while at A �= 0 it takes the form of
an FO-LM-FI cascade.

However, high and low T cascades do not appear unim-
paired. Instead, the semiconductor gap governs which RG
fixed points are reached in the actual parameter setup. In
detail, when the gap � is large enough, the T > �/B cas-
cade might be interrupted even before it reaches the FO
fixed point. In such a case, the T < �/B cascade might start
in the FO regime. However, at typical values of the gap
� the high-T cascade is interrupted around the LM regime
and the low-temperature cascade starts then consequently not
in the FO regime but close to the LM regime. In any case,
the RG flow is attractive for all parameter model values.
Dependent on the ph-asymmetry, at lowest temperature scales
one either reaches the SC (A = 0) or FI (A �= 0) fixed point.
Interestingly, ph-asymmetry introduced into the TDOS is pro-
nounced in the high-temperature RG flow only relatively close
to the threshold of T ≈ �/B.

The RG flows are thus clearly pointing toward the fol-
lowing effective picture. At supragap NRG temperature an
ordinary Kondo-like screening happens initially, so a local
moment may develop eventually. The SC (FI) regimes are
typically reached only for a system with experimentally small
gaps. A more realistic semiconductor gap alters the structure
of the lowest many-body states. At the crossover of T ≈ �/B,
a few in-gap states (presumably bound-state-like features sim-
ilar to ABS states of SC-AIM) and a continuum of supragap
states emerge in the flow. This newly formed effective system
is then screened by the metallic lead solely at T < �/B.
Dependent on the ph-asymmetry of the band, we reach ei-
ther a completely screened (A = 0) or a partially screened
scenario (A �= 0). The assertion regarding the formation of
bound-state-like features is later confirmed by the analysis of
the spectral functions.

B. Comparison of effective behavior for gapped hosts

Since thermodynamic properties are a direct consequence
of the underlying effective models, they also allow a
streamlined comparison by discussing just the temperature-
dependent values of thermodynamic quantities. For this we
select S2

z , the square of the z-component of impurity spin,

and Simp, the impurity entropy. The latter is obtained as a
difference of entropy between the system with and without the
QD. The results are presented in Figs. 4 and 5 for U/� = 3,
�S/� = 1, �M = 0.1�, and � = 5 × 10−4B at varying A.

In Figs. 4(a) and 5(a) the thermodynamic properties of the
SC-AIM+M and the AGNR-AIM+M model (10) are shown.
Although the underlying physics of these models is essentially
different, their effective behavior is exactly the same and
follows the reentrant pattern of Sec. III A. The ph-asymmetry
factor ϕ, however, governs only a quite narrow region around
the gap. Thus, even at the highest induced ph-asymmetry (ϕ =
0), the ratio of the negative frequency portion of the TDOS to
its positive frequency counterpart is only ≈1.008 while the
respective ratios for A in Figs. 4(b)–4(d) or Figs. 5(b)–5(d)
are (1 + A)/(1 − A) and thus much larger.

Comparing first the ph-symmetric results of SC-AIM+M
and AGNR-AIM+M to the remaining three models, we see
that the Kondo temperature in Fig. 4 might be read off ap-
proximately as T at which Simp reaches ln(2)/2, which is
sufficient for our purposes [60]. We notice that the Kondo
temperature in Fig. 4 is roughly 10 times larger than that in
Figs. 4(b)–4(d). This clearly shows the importance of states
close to the gap edges for screening processes. These findings
are also confirmed by analogous comparison made for S2

z from
Fig. 5.

As already pointed out, the overall asymmetry of the host
band in Fig. 4(a) is relatively small compared to Figs. 4(b)–
4(d) and yet at ϕ = 0 it still increased the temperature of the
transition to the strongly correlated regime by five orders of
magnitude in comparison to ϕ = π . Comparable effects in the
remaining three models are only possible at factors A which
induce very large ph-asymmetry into the TDOS. Although
this does not impair the theoretical tools for understanding
the unified nature of QPTs, the necessary large imbalance
challenges possible experimental realizations, as discussed in
Sec. V.

Comparison of panels (b) and (d) in Figs. 4 and 5, respec-
tively, shows that smoothening of finite discontinuities at the
gap edges has overall only a small impact on the resulting
effective behavior. Nevertheless, we observe that the reentrant
behavior is actually weakened at T ≈ � (dashed-dotted line).
Similar findings apply to the R-AIM+M in Figs. 4(c) and
5(c), where the effect is even stronger due to the redistri-
butions of TDOS in more extended regions. Consequently,
much larger ph-asymmetry in the TDOS is required to obtain
comparable effects on the thermodynamic behavior. On the
contrary, in AGNR-AIM+M the BCS-like singularities at the
gap edges do not just modify the regions very close to the
gap edges. We can thus conclude that modifications close
to the gap edges play a more essential role in affecting the
screening processes at T 
 �/B than the extended modifica-
tions present in SG-AIM and, especially, R-AIM. Moreover,
we stress that decreasing �M → 0 impacts mainly the sub-
gap temperature part of the reentrant behavior as discussed
also in [52], where decreasing �M was shown to decrease
the width of subgap Kondo-like features. In thermodynamic
properties, this would mainly push the subgap RG fixed points
and corresponding values of thermodynamic properties to-
wards small temperatures, but the reentrancy would remain
preserved.
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FIG. 4. (a) Impurity entropy Simp for SC-AIM+M and AGNR-AM+M (6) calculated at U/� = 3, �S/� = 1, �M/� = 0.1, and � =
5 × 10−4B at indicated ph-asymmetry factors ϕ. Notice that ϕ = π corresponds to the fully symmetric case while ϕ = 0 represents the largest
possible asymmetry. (b) Simp for G-AIM with parameters according to (a). ph-asymmetry incorporated via factor A with A = 0 being the
fully symmetric case while A = 1 represents the largest possible asymmetry. (c) Simp for R-AIM with A defined as in (b) and the same model
parameters except of �S = 6.25 × 10−4 to adjust the overall TDOS integral. Note that large asymmetry factors A are required to obtain
comparable shifts in thermodynamic behavior since TDOS (14) essentially depopulates large regions around the gap edges. It thus implies that
an excess TDOS close to the gap edges, like in (a), is essential for modifying the behavior of the QD system at low T . (d) Simp for SG-AIM.
Notice that quantitative differences to (b) are almost negligible, thus ruling out the importance of finite discontinuities for qualitative behavior.
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z at parameter values corresponding to the same panels of Fig. 4.
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FIG. 6. (a),(b),(d),(e) The in-gap part of the spectral functions A(ω) shows broadened in-gap states plotted against the Friedel sum rule for
G-AIM+M at selected values of A as parametric plots of �M . (c) Weight W of the in-gap peaks approaches a nonzero value as �M → 0. (f)
A-dependent position of broadened in-gap states of G-AIM+M at �M = 0.01�. All panels have been calculated using NRG Ljubljana with
� = 2 for U = 3�, �S = �, � = 10−3B, with 2B being the width of the band.

At this point, we would like to stress that reentrancy,
which was already reported for ph-symmetric AGNR-AIM
in Ref. [51] and for SC-AIM in Ref. [52], is at the heart of
all physical phenomena discussed here. It is deeply rooted in
the presence of the gap and offers another example of behav-
ior which seemingly contradicts the g-theorem [61,62]. The
formation of two cascades of effective models means that suc-
cessive NRG iterations lead to the supragap screening. This
corresponds to the supragap Kondo-like feature discussed in
[51,52], which is then, however, released to allow subgap
screening processes. Such surprising behavior is, however,
easily explained once we recognize that initially, the screening
processes dress the original QD by inducing subgap states to
the system. We explicitly confirm this in Secs. IV A and IV B.
Subsequently, further screening applies to such a dressed QD
with four subgap many-body states and a supragap contin-
uum. Calculating subgap Simp in the standard way, i.e., as
the difference between the entropy of the full system and
a system without the QD, leads to contributions that stem
predominantly from the four lowest-lying many-body states.
Initially, their screening might be insufficient, and subgap
Simp might transiently increase. Thermodynamic laws are not
violated since the QD is strongly interacting and the entropy
Simp is thus not representing the entropy of a weakly perturbed
system.

IV. UNDERLYING QPTS

A. Subgap spectroscopy of G-AIM

We have so far showed that thermodynamics properties of
the gapped TDOS functions defined in Sec. II C follow the
same reentrant scenario. Since the metallic electrode added
to the gapped TDOS dominates the low T characteristics, the
ground-state properties for �M = 0 can only be assessed indi-

rectly. As already discussed above, this problem is redeemed
by allowing standard NRG calculations for G-AIM+M. In
Figs. 6(a)–6(f), the resulting evolution of the subgap spectral
functions with ph-asymmetry is shown for various values of
�M . The panels of Fig. 6 are ordered in a decreasing order
in A to match the corresponding ϕ-evolution for SC-AIM or
AGNR-AIM systems. The spectral weight W of the in-gap
peaks slightly increases as �M → 0 and is finite even at the
point of crossing the Fermi energy. The observed dip in W at
this point seems to be a numeric artifact caused by the overlap
of ABS peaks with Kondo-like features.

In detail, in the ph-symmetric case, i.e., A = 0, shown
in Fig. 6(e), a symmetric subgap spectral function A(ω) is
observed. The Kondo anomaly at ω = 0 is accompanied by
two subgap peaks at ω/� ≈ ±0.5 when �M � 0.1�. These
cannot be understood as Hubbard peaks due to the mismatch
in the position and traces of Hubbard-like satellites in the
supragap region [63]. Increasing ph-asymmetry forces an ex-
cess TDOS in its negative (particle) domain, which deforms
the spectral function. For A � 0.2 the position of the Kondo
peak stays at ω ≈ 0, while subgap peaks shift towards positive
frequencies. At critical ph-asymmetry, i.e., Ac ≈ 0.2, the elec-
tronlike side peak is pushed against the gap edge at ω = �

and its holelike counterpart crosses the Fermi energy; see
Fig. 6(c). At this point, the central Kondo peak disappears
due to the increased charge fluctuations. In terms of fixed
points and effective models, this scenario is linked to reaching
the effective FI regime by skipping VF and LM regimes.
Increasing A beyond Ac results in a further shift of the in-
gap peak toward the ω = � position without any Kondo-like
maxima being present. The second in-gap peak vanishes soon,
and it is impossible to distinguish whether it traverses into
the continuous part or merges with the gap edge at ω = �

as determination of the spectral weight becomes extremely
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biased. The regime observed at A < Ac is thus in full analogy
to the π -like regime of AGNR-AIM+M, while for A > Ac

characteristic signs of the 0-like regime are evident [50].
Overall, we obtain subgap spectral behavior that is in com-

plete analogy to the AGNR-AIM+M of Fig. 2, where the
properties of the ground state at �M = 0 may be inferred
from the SC-AIM solution. Consequently, at A = 0 we can
infer for G-AIM a doublet ground state which is in accor-
dance with results of various perturbative and nonperturbative
results [44,45,47–49]. The crossing of the broadened in-gap
peak with Fermi energy at Ac = 0.2 indicates an underlying
QPT for �M = 0. Again, the nature of the ground state cannot
be read off directly, but comparison of Fig. 6 with Fig. 2
clearly points to a doublet-singlet ground-state transition
at Ac.

Note that the number of subgap peaks and their asymmetric
position with respect to Fermi level, as shown in Fig. 6(f), con-
trasts the SC-AIM case. However, the reason for the presence
of symmetric pairs of ABS states in SC-AIM is the underlying
formation of Cooper pairs ensuring that the energy eigenstates
have half-to-half particle and hole character. Consequently,
pairs of ABS states in spectral functions represent one-particle
excitations of the ground state—and this is reflected in the
characteristic picture showing pairs of ABSs in the normal
spectral function. Apart from this symmetry, which is directly
linked to the superconducting nature of the host band, the
QPT of G-AIM obtained by varying A is the same as that of
AGNR-AIM or SC-AIM with QD at half-filling.

Let us conclude this section by noting that the above
discussed critical A is U -dependent. The relevant SC-AIM
as well as SC-AIM+M studies [50,52] imply that there is
actually a threshold U above which the 0-like phase is not
realized at all. The whole phase space is then dominated by the
π -like regime, and at �M = 0 a distinct π phase is observed.
Similarly, while qualitatively all systems behave essentially
the same, variations of the TDOS functions can significantly
influence particular details, e.g., the evolution of the subgap
states. We briefly discuss this in the following section.

B. Subgap spectroscopy for gapped host bands

While not explicitly presented here, the TDOS functions
(14) and (13) show a similar parametric dependence of spec-
tral functions to that for G-AIM discussed above. Thus, only
two distinct phases at �M = 0, namely the 0 and the π ,
are present. When a metallic electrode is added, the distinct
properties of the two phases are blurred out and instead two
regimes, termed 0-like and π -like regimes, appear [50]. In
detail, the π -like regime is for finite but small �M signaled by
the appearance of a central Kondo-like peak and two in-gap
peaks. These are asymmetrically placed within the gap for
any A �= 0, i.e., they do not form a symmetrized pairs known
from the SC-AIM due to the reasons discussed above. When
a critical value of ph-asymmetry is reached, the charge-
fluctuations take over and suppress the central peak. For
models with a weakly hybridized metallic electrode, one
reaches the 0-like regime, which is marked by one in-gap peak
being present in the positive frequency region of the gap while
none is present in the negative frequency gap region. A second
peak is pushed toward the gap edge at ω = �, and although it

does not completely vanish for �M �= 0, it is highly suppressed
and practically invisible in the background features. We also
stress that for 0 > A > −1 we would observe the same mo-
tion of subgap peaks in a reversed direction toward negative
frequencies.

Instead of showing the whole spectral functions, we extract
the subgap peak positions and plot these in Fig. 7. In all
cases, the same qualitative dependence with ph-asymmetry,
including the crossings of in-gap states with Fermi energy,
is observed. Arguably, the crossing accompanied by the cor-
responding QPT might not happen always at experimentally
meaningful values of ϕ for AGNR-AIM and of A for G-AIM,
R-AIM, and SG-AIM. Nevertheless, they still point toward the
same singlet-doublet properties of the studied TDOS systems.
In Sec. V, we also discuss other experimentally and physically
more straightforward ways to induce QPTs.

In this respect, we note that from all TDOS cases stud-
ied here, the R-AIM case requires the highest amount of
ph-asymmetry to drive the system into the 0-like regime, as
Fig. 7 clearly demonstrates. Above a certain threshold value
of U there is not enough ph-asymmetry to induce a QPT as
|A| is strictly smaller than 1. We note that a similar situation
is also observed without metallic leads for SC-AIM, where
the ϕ-dependent ph-asymmetry of quasiparticles w is bound
by ϕ = 0. For U above a certain threshold, SC-AIM remains
always in the π phase. Nevertheless, we would like to stress
that such scenarios are not generic and depend clearly in a
multiparametric way on the exact realization. This applies to
both superconducting and semiconducting host bands.

Let us now inspect the possibility of naive interpretation of
the observed broadened in-gap peaks as Hubbard satellites.
For U/2 > � this can be ruled out by observing traces of
Hubbard peaks at ±U/2 of the supragap spectral functions
and their A-dependent positions. Additionally, also the RG
flow and the resulting thermodynamic effective behavior es-
tablished that in all four general cases, reentrant behavior
appears. The low-T behavior leads then to the formation of
broadened in-gap peaks that can be formally understood as
effective Hubbard peaks, but as shown in Ref. [52] they do not
follow from the bare values of �M and U , and they are heavily
influenced by supragap properties that govern their position.

However, for U/2 < � our current approach is insuffi-
cient and a dedicated NRG solution for �M = 0 is required.
The reason lies in the fact that Hubbard peaks present in
the supragap portion of the spectral function weaken the
reentrant character of the flow, and charge oscillations influ-
ence directly the subgap spectral function with in-gap peaks
becoming indistinguishable from ph-asymmetry-dependent
Hubbard peaks. They might therefore be just an artifact of
augmenting the gapped TDOS functions by metallic leads,
and true in-gap peaks might remain hidden behind the strong
Kondo-like signal as they are expected to lie close to the Fermi
energy.

Related restrictions are also observed for R-AIM and SG-
AIM in certain parameter regimes as discussed thoroughly in
Appendix A 5. Here, Fig. 12 clearly shows that by decreasing
r of R-AIM or increasing b of SQ-AIM, we may effectively
push some of the in-gap peaks outside of the gap region. While
in R-AIM they seem to simply merge with the continuous part,
in SG-AIM they remain noticeable, albeit determining their
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FIG. 7. ϕ-dependent subgap spectroscopy for AGNR-AIM+M (a) and A-dependent subgap spectroscopy for G-AIM+M in (b), R-
AIM+M in (c), and GS-AIM+M in (d). All models calculated at U/� = 3, �S/� = 1, � = 5 × 10−4B, and �M = 0.1�. Except for
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while A = 1 induces the largest possible asymmetry.

weights is difficult because of the continuous background (the
corresponding spectral weights are thus not shown). Such an
escape is then bound from above by U/2 corresponding to
the position of Hubbard satellites. In such regimes, it is not
only difficult to reliably extrapolate for possible QPTs, but
even the nature of the in-gap peaks is hard to stipulate about.
Taken together, the subgap spectroscopy of R-AIM and SG-
AIM may point toward breaking of the equivalence to SC-
AIM in certain parameter regimes.

V. POSSIBLE EXPERIMENTAL REALIZATION OF THE
SINGLET-DOUBLET TRANSITION IN SEMICONDUCTING

HOST BANDS

In this paper, we have postulated several shapes of TDOS
functions and verified that all can support the singlet-doublet
QPTs. The existence of QPTs thus hinges more on the pres-
ence of the spectral gap than on the exact details of the
TDOS. Consequently, we expect that quite a large class of
setups (some already under investigation) might be promising
candidates for experimental scrutiny of the results presented
herein.

In this respect, nanostructure, e.g., a single molecule or a
carbon nanotube, absorbed on (or connected to) a semicon-
ducting surface represents a generic layout [64]. In principle,
the subgap states should be directly detectable by high-
resolution energy spectroscopy using tunneling probes. These
techniques, in addition to their high precision, allow for some
control of the heterostructure parameters, such as the hy-

bridization or level energy [5,65,66]. In practice, intra-atomic
interactions between the nanosystem and the substrate(s)
might interfere with the simple single spin-orbital picture
used in the present paper. As an example, one can mention
the experiment in Ref. [64] where a layer of semiconducting
graphene on a metallic substrate was studied. This seems
to be an ideal realization of the systems presented herein.
However, the electronic transparency of graphene caused the
nanosystem to develop strong spin interactions with the metal-
lic substrate. Consequently, it did not inherit many of the
semiconducting properties of graphene, and any traces of pos-
sible in-gap features as discussed in the present paper have
been lost. Nevertheless, such effects are not fundamentally
hindering electron spectroscopy in semiconductor devices. As
already proven for the ABS states in various types of Joseph-
son junctions, high-resolution scanning tunneling images can
be acquired [7–9,11].

Let us therefore focus on the fundamental constraint given
by the ratio of U/�. As discussed above, a moderate value is
required. In the case of strong interaction, U � �, the subgap
states are pushed to the gap edge where they become indistin-
guishable from the continuum. In the other limit, U → 0, they
move to the close vicinity of the Fermi level, where they over-
lap and might even be mistaken for, or can merge with, other
types of resonances, e.g., the Kondo anomaly (or Majorana
states). This would again complicate the observation of the
Fermi-level crossing.

However, semiconductors typically have larger values of
the gap parameter. Thus, larger absolute values of U are
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needed. In the case of superconducting quantum dot real-
izations, for which singlet-doublet QPTs have already been
studied experimentally, the typical charging energy, made, for
example, from the carbon nanotube, is on the order of meV,
and the gap is on the order of hundreds of μeV (e.g., 0.17 meV
for aluminum leads) [10,11,67].

Nevertheless, in principle even semiconductors with very
narrow gaps can be synthesized. For example, mercury-
cadmium telluride, used in infrared detectors, allows us to
tune the band gap from zero up to a few electronvolts [68].
Heterostructures consisting of organic molecules absorbed on
the semiconducting surface might also represent good alterna-
tives. For example, the recent realization of porphyrin-based
magnetic molecule TBrPP-Co on AGNR substrate [64] has
U on the order of a few eV, while the AGNR band gap
was 1–2 eV in size depending on the width of the absorbed
molecule.

To our knowledge, no fundamental obstacles are present
for detecting subgap states on top of semiconductor surfaces.
However, unlike in superconductors where the phase bias con-
trols the underlying ph-asymmetry of the w Bogoliubons, one
cannot exert such tuning in semiconductors. Some materials,
like AGNR, allow us to adjust the gap by external electric
fields but not the ph-asymmetry of the band. We therefore
stress that the parameter A was used in the present paper
solely to model theoretically the singlet-doublet QPTs in close
analogy with superconducting realizations. Experimentally,
for semiconducting substrates, the more viable concept is that
of gate voltage on the QD. Driving it out of half-filling is
an analogous process to the inclusion of ph-asymmetry into
the TDOS. Other alternatives include changing the size of
the gap by tuning the substrate or varying hybridization by
lifting the molecule via the STM tip. Experiments with carbon
nanotubes seem to offer another pathway for detection of
singlet-doublet QPTs in semiconductor host bands. To this
end, one may electrostatically control the coupling of the
carbon nanotube to the leads. Increasing the hybridization of
the nanotube to the semiconductor would bring the system
out of the doublet into the singlet ground state as already
performed in superconductor QD devices [69].

VI. CONCLUSIONS

In this paper, we have analyzed half-filled QDs coupled
to four general classes of semiconductor TDOS functions
(see Fig. 1) in regard to the existence of eventual singlet-
doublet QPTs. To allow for an unbiased and standard NRG
approach without temperature truncations, as employed in
Refs. [47,48], we have augmented the gapped host bands by
a weakly hybridized metallic electrode. The thermodynamic
behavior conformed to the underlying cascade of reentrant
effective models that develop in two sequences. One is present
at high and the other at low temperatures. Each sequence
of effective models was established to follow those of AIM
with out-of-half-filling QD, albeit we explicitly demanded
half-filled QDs.

Since metallic electrons enforce a singlet ground state into
the system, we have observed only broadened in-gap features
at �M �= 0, and the nature of QPTs could only be deduced
indirectly. However, we stress that all of these limitations have

FIG. 8. The main conclusion regarding the presence of singlet-
doublet QPT in QDs coupled to gapped host bands of various
properties is summarized as overlaps between the colored boxes rep-
resenting a given model, i.e., AGNR-AIM with half-filled (HF) QD
(brown), G-AIM with HF QD (red), SG-AIM with HF QD (orange),
and R-AIM with HF QD (green), and the large box representing
SC-AIM (black). AIM with out-of-half-filling (NHF) QD (blue box)
provides an effective description. For R-AIM and SG-AIM we have
shown in Appendix A 5 that our present approach with augmenting
the host band with a metallic electrode to perform standard NRG
cannot lead to a reliable conclusion in some parameter regimes.

been compensated by obtaining unbiased and numerically
exact quantities.

In general, all four investigated classes may support the
singlet-doublet QPTs. Their physical origin lies in the pres-
ence of a gap and the ph-asymmetry in the TDOS. Our main
conclusion can thus be summarized by Fig. 8 in the following
way. A prototypical SC-AIM case and all four general classes
of semiconductor support the presence of singlet-doublet be-
havior. The spectral equivalence is strong for the G-AIM and
AGNR-AIM systems since these possess discontinuities at the
gap edges. However, once the discontinuities are smoothed
out, as in the R-AIM or SG-AIM cases, the equivalence
becomes weaker. In-gap peaks known from SC-AIM may
escape into the continuum as shown in Appendix A 5, and
their properties become increasingly similar to the ordinary
Hubbard peaks. In such cases, we cannot confirm or exclude
the presence of QPTs as the nature of the ground states cannot
be reliably extrapolated from models augmented by metallic
electrodes. Further investigation, therefore, requires a genuine
RG approach to gapped host bands, which is currently being
developed. In Fig. 8 we indicate this by stating only a partial
equivalence.

Crucially, the presence of in-gap states in any of the gapped
systems in their realization with weakly hybridized leads is
always signaled by reentrant effective-temperature behavior.
This is governed by AIM with a flat density of states but an
out-of-half-filling QD. As explained in Sec. III A, this is ex-
pected in the high-temperature part of the reentrant behavior,
which is indeed marked by the presence of ph-asymmetry in
the supragap part of the TDOS. In the low-temperature part,
a sequential nature of the flow can be interpreted as adding
a flat metallic TDOS to the effective model of AIM with
QD out-of-half-filling. Reentrant effective behavior follows,
therefore, a cascade of effective models known from AIM
with QD out-of-half-filling. This is a precursor for the recently
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introduced concept of reentrant Kondo behavior [50–52] but
also for the appearance of singlet-doublet QPTs.

We stress that in the present paper, ph-asymmetry was
introduced to serve a theoretical purpose of showing that
doublet-singlet QPTs exist in general classes of gapped host
bands and are analogous to the well understood effects in
superconducting realizations. The ph-asymmetry was thus
introduced into the TDOS to match its generation in the
SC-AIM case via tuning of the phase drop between two
superconducting leads, which, as shown in Ref. [50], con-
trols the ph-asymmetry of the underlying Bogoliubons w. In
semiconducting bands, an analogous method requires that we
tune ph-asymmetry in host bands, which is hard to achieve
in practice. Furthermore, the ph-asymmetry required to force
the resulting system out of the doublet ground state might be
too large for experimental realizations. Instead, as proposed in
Sec. V, an experimental observation should rely on taking the
QDs out of their half-filled point, which can be done by using
appropriate gating, which is a scenario with a much larger
phase space that shall be analyzed separately. In addition, the
obtained data are of importance for benchmarking the NRG
algorithm for gapped host bands, which we are currently being
developed.
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APPENDIX

1. NRG

All models considered in the main text are tractable within
the standard one-channel NRG with host band interactions
expressed via the corresponding TDOS, which at �M �= 0
provide all necessary coefficients to construct the Wilson
chains of the corresponding NRG calculations [37,70]. For
SC-AIM (�M = 0), conventional NRG solutions are available
for subgap properties [12,54], however even here artificial
truncations are required to reconstruct the supragap spectral
functions [41]. For the �M �= 0 cases, the NRG Ljubljana
code [71] with the intertwined z-discretization according
to the scheme introduced by Žitko and Pruschke [72] was
thus employed with the discretization parameter � = 2 and
z = n/10 with n ∈ {1, . . . , 10} with subsequent application of
the so-called self-energy trick to the spectral functions [73].

While dynamic properties, like spectral functions, might
nowadays be obtained with great accuracy [37], the origi-
nal NRG idea of obtaining a temperature-dependent effective
description from the underlying microscopic model, as pre-
sented in the seminal papers of Refs. [35,36], is to a great
extent marginalized. Yet, all thermodynamic and spectral

properties are relatively straightforward consequences of spe-
cific subspaces of the QD being effectively projected out in the
given fixed points of NRG transformations. These can be di-
rectly read off from the corresponding flow diagrams. Because
the effective behavior constitutes a major unifying feature for
the gapped TDOS functions studied here, we briefly review
this topic. Further details, including the definitions of the
effective Hamiltonians and calculation of linear corrections to
these, can be found in Refs. [35,36].

2. The effective behavior of AIM

While half-filling of the QD was kept during all presented
calculations and only the ph-asymmetry of the host bands
was varied, the presence of the gap in the host bands actually
forces a previously not understood effective behavior which
relates to the out-of-half-filling AIM with a flat TDOS—a case
already treated by Wilson et al. [36]. We thus briefly review
the standard NRG results obtained in the seminal papers of
Refs. [35,36]

In accordance with Ref. [36], the RG flow of the en-
ergy eigenstates En for even NRG iterations is inspected.
The corresponding RG flow in Fig. 9(a) shows the system
approaching four fixed points. For T/B ≈ 1, the free-orbital
(FO) fixed point appears first. Lowering T/B, a sequence of
valence-fluctuation (VF), local-moment (LM), and finally the
frozen-impurity (FI) fixed point (out of half-filling) emerges.
At half-filling, the strong-coupling (SC) fixed point appears
instead of FI. They all can be read off from the flow via char-
acteristic values of quantum numbers and En of the low-lying
levels [74].

The numerical positions of En in the FO, VF, LM, and
SC regimes depend only on � and are thus independent of
the model parameters [35,36]. The FI fixed point is the only
regime in which model parameters play a role. Nevertheless,
for δ ≈ 0 it is marked by splitting of rescaled En around
their SC positions as shown in Fig. 9. Taking δ → ∞, the
splitting becomes extremely strong. The lowest doublet state
approaches the singlet ground state. Note that the VF and LM
fixed points can be skipped at certain values of εdot, but the
FI or SC fixed points are always present for δ > 0 and δ = 0,
respectively. It is important to stress that systems close to RG
fixed points show universalities, as shown in Refs. [35,36],
which thus offers a simple yet precise characterization.

Let us now briefly review the effective behavior in the FO,
VF, LM, FI, and SC regimes. The FO fixed point belongs to
the most trivial ones because the system behaves as a free
Anderson impurity that is disconnected from the host band.
It can be obtained by setting � = U = εdot = 0. The VF fixed
point that might follow after the FO fixed point appears only
at certain values of εdot and corresponds to the situation where
doubly occupied states on the QD are effectively projected
out, and as such it corresponds to � = εdot = 0 and U → ∞.
The LM fixed point connects AIM to the Kondo model where
the doubly and zero occupied states of the QD are projected
out. The antiferromagnetic coupling J of the effective Kondo
model can be read out from the corresponding NRG calcula-
tions. In the final stages of NRG flow of the half-filled case,
we always observe the SC fixed point while out-of-half-filling
the FI emerges. In FI, all states except of the unoccupied QD
are projected out when δ > 0 [75]. In the SC fixed point,
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(a)

(b)

FIG. 9. (a) Flow of rescaled eigenenergies En during the even
NRG iterations neven of the asymmetric AIM with U/B = 10−3,
�M/B = π/2 × 10−6, εdot/B = −2 × 10−4, and � = 2. Free or-
bital (FO) fixed point for nNRG < 10, valence-fluctuation (VF) fixed
point for 20 < nNRG < 26, local-moment (LM) fixed point for 40 <

nNRG < 64, and frozen-impurity (FI) fixed point for nNRG > 100.
(b) Temperature dependence of the impurity entropy Simp (red line)
and S2

z expectation value (blue line). In the FO regime, the impurity
behaves as four fluctuating levels, i.e., Simp = ln(4), while in the
VF regime the doubly occupied state is effectively projected out
and the impurity behaves as a three-level system with Simp = ln(3).
Proceeding further in the flow, zero occupied states are effectively
projected out leaving only two levels left, i.e., Simp = ln(2). Finally,
at very low T , FI fixed point means that the impurity is effectively
frozen, thus leaving Simp = 0.

the QD freezes down to a single state, and this state is a
specific linear combination of singly occupied QD states.
The resulting effective model resembles then the free-electron
Hamiltonian. The impurity in the different regimes behaves
thus effectively as an ensemble of four (FO), three (VF), two
(LM), and one (FI,SC) fluctuating state with the resulting en-
tropy values ln(4), ln(3), ln(2), and 0, respectively. In between
the various regimes, smooth crossovers are observed as shown
in Fig. 9(b) (red line). Fluctuations of the Sz projection of spin
onto the z axis follow correspondingly as shown in Fig. 9(b)
(blue line).

3. RG flow of ph-symmetric G-AIM

In Fig. 10 we present the RG flow of rescaled En for
G-AIM with A = 0 (ph-symmetric TDOS) at three selected

values of �. In all cases, the flow consists of two sectors
that connect approximately at n� = −2 ln �/ ln �, where the
energy resolution of NRG iterations reaches approximately
�/B. In Fig. 10, this is marked by vertical dash-dotted lines.
For NRG iterations nNRG < n� we observe the high-T portion
of the flow that abruptly changes the character at nNRG = n�

where it transits into the low-temperature behavior observed
for nNRG > n�.

The T > �/B portion of the RG flow is in one-to-one
correspondence with that of the ordinary AIM with flat TDOS
and QD at half-filling. Let us note that here, only the FO effec-
tive regime is clearly present (marked as FO1 in Fig. 10) for all
selected values of �, while only at � = 5 × 10−6B do the first
traces of the high-temperature strongly coupled regime (SC1)
show up [see, for example, the local minimum at T/B ≈ 10−5

in Fig. 10(f)]. Due to the selected values of U/� = 3 and
�S/� = 1, the LM fixed points are completely skipped. The
numerical calculations for even smaller � as presented here
are challenging. Nevertheless, from the evolution of En flow
with decreasing � one can extrapolate that at very small
values of � the system can reach the high-T strongly coupled
regime SC1. This is in compliance with predictions based on
the results presented in Ref. [51] for the AGNR-AIM+M case
and in Ref. [52] for the SC-AIM+M case.

However, regardless of the existence of the high-
temperature SC regime, we observe at nNRG ≈ n� an abrupt
change into a different effective mode that is caused by the
reentrancy in analogy to the AGNR-AIM+M [51] and SC-
AIM+M [52]. At very small � values the low-temperature
portion of RG flow initially develops traces of the free orbital
regime (FO2). At values � ≈ 10−7B the complete chain of
effective behavior is expected. In detail, at high T the initial
FO1 regime goes over into the SC1 regime, which is then
abruptly turned back into a low-temperature FO2 regime.
Consequently, a cascade of the low-temperature local mo-
ment (LM2) regime followed by the final low-temperature
strongly coupled (SC2) behavior can be observed. This can be
attributed to a fully developed reentrant Kondo behavior, and
it indicates a possible appearance of two Kondo effects at two
temperature regimes [51,52] T1 > �/B (high temperature)
and T2 < �/B (low temperature). However, the experimental
observation for the semiconducting TDOS function is chal-
lenged by stringent conditions similar to the ones discussed in
Ref. [52] for SC-AIM as shown in Sec. III B.

Let us now demonstrate the temperature-dependent effec-
tive behavior using the thermodynamic properties shown in
Figs. 10(b), 10(d) and 10(f). As explained in Appendix A 1,
particular degrees of freedom of the QD are effectively pro-
jected out close to the RG fixed points. For example, by
comparing the FO1 regime of Figs. 10(e) and 10(f) with
the onset of the FO2 regime at T/B � � we see that Simp

reaches the value of ln(4) at two very distinct temperatures.
The QD can then be understood as an effective system of
four states. Similarly, in LM2 the QD behaves effectively
as a two-state system with single electronic occupation. In
the end, QD may be effectively quenched to a single level
at T/B � � and then once again at T/B 
 � when suf-
ficiently low � values are set as indicated in Fig. 10(f).
This is in line with the effective behavior deduced from the
flow of the rescaled En. Spin fluctuations S2

z , presented in
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FIG. 10. (a) Flow of rescaled En during the iterative NRG calculation of G-AIM+M with U/� = 3, �S/� = 1, �M� = 0.1, � = 5 ×
10−4B, and A = 0 and � = 2. (b) Temperature dependence of the impurity entropy Simp and S2

z for the same parameters as in panel (a).
(c) Flow of rescaled eigenenergies En during the iterative NRG calculation of model (12) with parameters as in panel (a), only � = 5 × 10−5B.
(d) Temperature dependence of the impurity entropy Simp and S2

z for the same parameters as in panel (c). (e) Flow of rescaled eigenenergies En

during the iterative NRG calculation of model (12) with parameters as in panel (a), only � = 5 × 10−6B. (f) Temperature dependence of the
impurity entropy Simp and S2

z for the same parameters as in panel (e). The reentrant nature of the flow is apparently visible, the flow of En at
high T is initially in the free orbital regime (FO1), and only in panel (e) are traces of the strongly coupled high-T regime (SC1) visible. The
dash-dotted line separates the beginning of the low-T flow, which might experience the low-T free orbital (FO2) regime as in panel (e) that
continues into the local-moment (LM2) regime and finally flows into the strongly coupled regime (SC2) for all � values. The thermodynamic
properties have the corresponding behavior of the fixed-point regimes.

Figs. 10(b), 10(d) and 10(f) by a blue line, support the same
conclusions.

4. RG flow of ph-asymmetric G-AIM

Above, we have established an equivalence of G-AIM
at A = 0 to the half-filled AIM with a flat TDOS in terms
of RG flow. Here, we investigate the case with finite ph-
asymmetry by selecting A = 0.1. The resulting RG flow of
rescaled eigenenergies En is shown in Fig. 11. Once again,
at n� ≈ −2 ln �/ ln � the flow separates into high- and low-

temperature portions, which, however, differ qualitatively
from the A = 0 case due to the presence of ph-asymmetry in
the TDOS. Most importantly, valence-fluctuation and frozen
impurity regimes of AIM with out-of-half-filling QD appear
that are accompanied by the corresponding values of Simp

and S2
z .

The resulting reentrant temperature behavior is thus
marked by a cascade of effective models known from the AIM
with out-of-half-filling QD. In the high-temperature part, the
free orbital regime FO1 emerges but the valence-fluctuation
regime is skipped as before (due to the choice of U ), and
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FIG. 11. Panels (a)–(f) correspond to their counterparts in Fig. 10 with only the ph-asymmetry factor set to A = 0.1. Reentrant nature
of the flow is preserved also for G-AIM with ph-asymmetry, but the resulting effective regimes correspond to AIM with flat TDOS and
QD out-of-half-filling. Thus, the flow of rescaled En at high T is initially in the free orbital regime (FO1); only in panel (e) are traces of
the frozen-impurity high T regime (FI1) visible. The dash-dotted line separates the beginning of the low-T flow, which might experience the
local-moment (LM2) regime and finally flows into the frozen-impurity regime (FI2) for all � values. The thermodynamic properties correspond
to their effective models as discussed in Fig. 9.

only at very small � values [see Fig. 11(e)] are traces of
the frozen impurity regime FI1 visible. The effective pro-
jection of several levels of the QD is then abruptly lifted
at T ≈ �/B, where the system can go either directly to the
low-temperature local-moment regime LM2 for large � as
observed in Fig. 11(a) or at moderate � values to the low-
temperature free orbital regime FO2. However, at sufficiently
small � values, the low-temperature frozen impurity regime
FI2 is reached immediately; see Fig. 11(e). The correspond-
ing thermodynamic properties [Figs. 11(b), 11(d) and 11(f)]
are then in accord with the temperature-dependent effective
behavior that follows from the En flow analysis.

The deviation from the A = 0 scenario is clearly depen-
dent on the size of �. In Figs. 11(a) and 11(b), at � = 5 ×
10−4B, we see negligible differences compared to the results
in Figs. 10(a) and 11(b). Nevertheless, the flow of rescaled

En clearly shows energy splittings around the corresponding
ph-symmetric values—a behavior that persists even to the
smallest temperature scales. This requires a thorough explana-
tion given the fact that the low-temperature flow is intuitively
expected to depend primarily on the gap region, where the
metallic electrode induces constant and ph-symmetric TDOS.
The same behavior was already observed in Ref. [50] for the
SC-AIM+M case and was clearly linked to the underlying
�M = 0 version of the problem (SC-AIM). A detailed analysis
of this issue is given at the end of this section.

The splittings induced by ph-asymmetry result in a dimin-
ishing difference between the ground-state singlet and the
first excited doublet in the high-temperature flow, as shown
in Fig. 11(e). Such behavior is a typical precursor for the
singlet-doublet QPTs for �M = 0. Note that such En splittings
had been noticed already for SC-AIM; see Fig. 2 in Ref. [76].
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However, the choice of parameters in the cited work obscured
this observation. Yet, this is actually a consequence of fixing
ϕ = 0 and selecting only the extreme cases with � � TK and
� 
 TK , where TK is the Kondo temperature. For � ≈ TK ,
which was not addressed in the cited work, the splitting of En

values, which points towards the correspondence to AIM with
QD out-of-half-filling, would be clearly visible.

5. Escape of broadened in-gap peaks into the continuum

SG-AIM and R-AIM have a continuous TDOS profile, and
leakage of in-gap peaks into the continuous supragap spec-
trum might be expected. However, broadened in-gap peaks
observed outside of the gap region cannot be strictly bound
for the �M = 0 counterpart of SG-AIM+M or R-AIM+M.
On the other hand, G-AIM is defined to possess a finite
discontinuity that is expected to provide a sufficient barrier
toward the leakage. In this respect, the AGNR-AIM and the
SC-AIM case after the transformation T both possess contin-
uous TDOS features requiring a brief analysis. We stress that
for any ϕ �= 0, BCS-like divergences appear at the gap edges
ω = ±�. However, at ϕ = 0 the divergence at ω = � van-
ishes and the profile becomes proportional to |ω|√ω − � for
ω > �, which is similar to the R-AIM profile. Nevertheless,
no leakage of the inner in-gap state was reported here. This
is probably a consequence of having yet another BCS-like
divergence at ω = −�. We therefore focus on continuous
TDOS cases of R-AIM and SG-AIM here.

First, let us analyze the A = 0 R-AIM case with its in-
gap peak positions shown in Fig. 12(a). Here, the shaded
region shows the supragap portion of the spectra, while be-
low E/� < 1 the broadened in-gap peaks are observed (the
Kondo anomaly at ω = 0 is omitted). Negative frequency
regions are symmetric to the region shown in Fig. 12(a).
Two values of U/� are used in order to demonstrate the
expelling of broadened in-gap peaks (if present in the gap)
to the gap edges with enhanced U . For R-AIM+M with
r = 10 we observe a well-separated broadened in-gap state
at ω/� ≈ 0.8 for U/� = 3. However, already at U/� = 5 it
becomes hardly distinguishable with the supragap part of the
spectral function as it is expelled onto the gap edge ω/� = 1.

For R-AIM with 4 � r � 10 it appears that an in-gap peak
might be present for U/� = 3 and lie in the vicinity of the
gap edge. For r � 4 no features could be reliably identified

in supra- as well as subgap parts of the spectral functions
for U/� = 3. For U/� = 5 the situation is analogous but is
observed already at r ≈ 4, and there are two reasonable ways
to interpret such findings. The first is that the in-gap states
for R-AIM do exist for a given threshold value of r∗ until
they reach the gap edges. The excited states with exactly the
same quantum states as before might exist also for r > r∗ but
obtain resonant character as they move into the continuum.
The second possibility is that they are not present at all, which
would break the analogy to the SC-AIM here. Our present
approach cannot give a conclusive answer as to which inter-
pretation is correct. Nevertheless, we stress that even if it is
the latter one, all remaining analogies with AGNR-AIM+M
and SC-AIM+M still hold true. These include the presence
of subgap Kondo peaks and traces of Kondo peaks in the
supragap spectral function.

In SG-AIM+M systems the behavior becomes even more
complex, as shown in Fig. 12(b). Setting first b = 1 at a
given U we completely recover the G-AIM+M case and its
corresponding broadened in-gap peaks. Increasing then U
at fixed remaining model parameters shifts the in-gap peak
against the gap edge ω/� = 1, which is a behavior analogous
to that of AGNR-AIM or SC-AIM (where additional sym-
metrizations need to be considered). Additionally increasing
b makes the discontinuity of G-AIM+M smoother, which can
also be understood as effective broadening of the gap region.
Shifting of the in-gap states toward the gap edges is then an
expected result. However, unlike in R-AIM+M systems, once
the broadened in-gap peaks reach the smooth gap edge they
do not vanish, and we may observe their transition into the
supragap region. Since at �M = 0 there is nonzero TDOS, in
this region they cannot have bound character and are thus part
of the continuous spectrum. Nevertheless, this behavior can
still be attributed to the effective expansion of the gap region
due to b.

The positions of the peaks approach approximately ±U/2,
which correspond to the positions of Hubbard peaks. It is
thus obvious that by increasing the smoothness of the gap,
their properties trivialize to those of ordinary Hubbard peaks.
Incorporating ph-asymmetry into the TDOS will then force
their movement towards Fermi energy. In such a case, it is
difficult to make any conclusions about the correspondence
to AGNR-AIM or SC-AIM cases. Consequently, it would
be highly speculative to confirm or exclude the presence of
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singlet-doublet transitions or any other QPTs. We stress that
the escape into the continuum is also accompanied by weak-

ening of reentrant behavior described in Sec. III, which only
underlines the importance of careful RG analysis.
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