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Landau levels and magneto-optical transport properties of a semi-Dirac system
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We study magneto-optical (MO) properties of a semi-Dirac system in presence of a perpendicular magnetic
field using kernel polynomial method (KPM) based on the Keldysh formalism in few hundreds of the terahertz
(THz) frequency regime. For the semi-Dirac case, the band structure demonstrates a linear (Dirac-like) dispersion
along the y direction, while it has a quadratic (nonrelativistic) behavior along the x direction in the Brillouin zone.
For comparison, we have also included results for the Dirac systems as well, so that the interplay of the band
structure deformation and MO conductivities can be studied. We have found that the MO conductivity shows
features in the semi-Dirac system that are quite distinct from the Dirac case in the above mentioned frequency
regime. The real parts of the longitudinal MO conductivities, namely Re(σxx) and Re(σyy) (which are different in
the semi-Dirac case, as opposed to a Dirac one), present a series of resonance peaks as a function of the incident
photon energy. We have also found that the absorption peaks corresponding to the y direction are larger (roughly
one order of magnitude) than those corresponding to the x direction for the semi-Dirac case. In the case of the
MO Hall conductivity, that is, Re(σxy), there are extra peaks in the spectra compared to the Dirac case, which
originate from the distinct optical transitions of the carriers from one Landau level to another. These peaks are
otherwise absent in a Dirac system, where some of these peaks result from transitions between pairs of Landau
levels that differ by the same energy and hence those peaks can not be resolved. We have also explored how
the carrier concentration influences the MO conductivities. In the semi-Dirac case, there is the emergence of
additional peaks yet again in the absorption spectrum underscoring the presence of an asymmetric dispersion
compared to the Dirac case. Further, we have explored the interplay between the polarization of the incident
beam and the features of the absorption spectra, which can be probed in experiments. Finally, we evaluate the
MO activity of the medium by computing the Faraday rotation angle θF . The semi-Dirac case shows two maxima
and two minima of θF at different photon energies, which can be captured in experiments.
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I. INTRODUCTION

Over the past few years, the discovery of graphene [1,2] as
well as other two-dimensional (2D) materials, such as silicene
[3], phosphorene [4,5], MoS2 [6–8], 8-pmmn borophene [9]
etc., have enriched our knowledge on many of the exper-
imental and theoretical aspects [10–12] of these materials
owing to their low-energy physics being governed by massless
Dirac particles. The spectrum of a massless Dirac particle
has two cones, the so-called “Dirac cones” in the vicinity
of two nonequivalent points K1 and K2 in the Brillouin zone
(BZ). Recently, a close variant of the 2D Dirac materials
termed as the semi-Dirac materials have been discovered. In a
tight-binding model for a 2D Dirac system, such as graphene,
consider that one of the three nearest-neighbor (nn) hopping
energies is tuned (say, t2) with respect to the other two (say, t),
the two Dirac points with opposite chiralities move in the BZ.
Eventually, when t2 becomes equal to 2t , the two cones merge
into one at the so-called semi-Dirac point. Such evidences of
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merging of the Dirac points has been observed in fermionic
cold atomic gases loaded into an optical lattice [13]. Such ma-
terials possess unique band dispersion, which simultaneously
shows massless Dirac (linear) along one direction and massive
fermionic (quadratic) features in other directions, leading to
an anisotropic electronic dispersion [14,15]. Such dispersion
is found in phosphorene under pressure and doping [16,17],
electric fields [18,19], TiO2/VO2 superlattices [15,20,21],
graphene under deformation [22], and BEDT-TTF2I3 salt un-
der pressure [23,24]. Several properties of the semi-Dirac
system have been discussed in literature [15,25] including
the effect of the merging Dirac points on the emergence of
a Chern insulating state [26], the presence of Chern insulating
state including spin-orbit coupling [27], the topological phase
transition driven by disorder [28], the Floquet topological
transition in graphene by an ac electric field [29], and the
orbital susceptibility in dice lattice [30] etc.

The behavior of free electrons in presence of an external
magnetic field has been explored extensively, where a fractal
spectra known as the Hofstadter butterfly [31] is shown via
solving Harper’s equation. Further, the quantization and the
properties of the Landau levels for different lattice geometries
have been studied [32,33]. For example, the behavior of the
Dirac fermions in graphene has been studied in the presence of
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an external magnetic field, which facilitated the realization of
half-integer quantum Hall effect at room temperature [34,35].
When an external magnetic field B is applied perpendicularly
to the plane of the sample, the energy spectrum transforms
into discrete Landau levels and the level energies, En takes
the form, En ∝ √|n|B, where B is the magnetic field and
n denotes Landau level indices [36,37]. The dependence of
the Landau level energy deviates from

√
B for semi-Dirac

systems [15] and it varies as ((|n + 1
2 |)B)

2/3
. Very recently,

the study of Landau levels has been done extensively where
the quantization of the conductance plateaus shows the integer
quantum Hall effect for semi-Dirac system [38].

Usage of optical probe for the Dirac materials has gathered
momentum on a parallel ground in recent years. The vector
potential of the incident photons couple to the band electrons
via Peierls’ coupling. The situation becomes more compli-
cated in the presence of an external magnetic field where the
kinetic energy of the carriers transforms into macroscopically
degenerate Landau levels. The MO transport properties of
these materials are gradually studied in the linear regime
using the Kubo formula. However, evaluating the effects of
deformation of the band structure on the transitions induced
by optical means for the carriers from one Landau level to an-
other is a harder task. In the following, we present a systematic
exploration of the MO transport for a semi-Dirac system.

In the context of MO transitions, a few hundreds of THz
(100–300 THz) frequencies are extensively used in emerg-
ing fields such as spectroscopy, communication, and imaging
[39,40]. Many interesting MO phenomena, such as giant
Faraday rotation [41], gate-tunable magneto-plasmons [42],
nonlinear transport driven by the light radiation [43] have been
discovered with graphene exposed to radiation at such fre-
quencies. At these particular frequencies, graphene supports
the propagation of plasmon-polaritons [44–46] that can be
tuned by the external gate voltage. Parallelly, it helps for the
basic studies of the interaction of radiation with the matter at
nanoscale dimensions [47]. Here, we show the emergence of
strong magneto-absorption in this frequency regime where the
absorption peaks are well-observed. Also, optical conductivity
has always yielded very useful information on the electronic
transitions in presence of a time-varying driving field. This
facilitates observing frequency-dependent (ac) conductivity.
The real part of the longitudinal MO conductivity gives infor-
mation on the absorption properties as a function of photon
energy, while the imaginary part contains the information
about the transmission. In the case of the optical conductivity,
a photon can induce a transition between these Landau lev-
els, and the optical frequency matches with the energy level
difference of the Landau levels [48] resulting in the absorp-
tion peaks. The characteristics of the band dispersion and the
energy gap can be found from these absorption lines in the ex-
periments [36,49,50]. In the presence of an external magnetic
field, similar information emerges for the system, except that
now the energy spectrum comprises Landau levels, as opposed
to single-particle energies. MO properties of graphene have
been studied both theoretically and experimentally and the
result shows good agreement between the theoretical findings
and the experiments [51,52]. Also, MO properties of topo-
logical insulators [53] and other two-dimensional materials,
such as MoS2 [54] and silicene [55], phosphorene [56] have

been studied. A recent study on the MO conductivity in three-
dimensional materials has provided valuable information on
quasicrystals, as well as on Dirac [57] and Weyl semimetals
[58–60]. It is well known that the Landau level spacings are
proportional to the magnetic field B when a quadratic term
in Hamiltonian is alone there (for example, a 2D electron
gas), while the linear term alone yields spacings as the square
root of B (for example, graphene), which are quite different.
This has important implications for the optical absorption in
a situation when both terms are present. Very few studies on
optical conductivity in semi-Dirac materials have been done
and hence the anisotropy in the spectra corresponding to the
different planar direction (x and y) remain largely unexplored
[61–63]. Very recently, the MO properties of a semi-Dirac
system have been studied [64]. A detailed and systematic
study is indeed needed on the MO transport properties of the
semi-Dirac materials to enhance our understanding of these
systems.

In this paper, we study the MO conductivity in a per-
pendicular magnetic field of a semi-Dirac system using a
tight-binding Hamiltonian on a honeycomb lattice. We use a
numerical tool based on the Keldysh formalism for large-scale
calculations for any realistic system [65]. First, we study the
optical conductivity in presence of a magnetic field of a semi-
Dirac system. Hence, by applying a perpendicular magnetic
field, we look for the possible optical transitions that occur
between the Landau levels by absorption of photons. We
further calculate the longitudinal MO as well as the (MO)
Hall conductivities as a function of the photon energy for
moderate as well as very high values of the magnetic field
in few hundreds of THz frequency regime. We also explore
the effects of the carrier concentration of the Landau levels on
the optical spectra by varying the chemical potential. Further,
we report the MO conductivity for a different polarization
of the incident light, such as circularly polarized radiation.
Moreover, we study the effects of Faraday rotation for the
semi-Dirac as well as the Dirac systems. The Faraday rotation
occurs in an active MO medium where the plane of polar-
ization of the transmitted radiation is rotated with respect to
that of the incident radiation. The effect is characterized by
the angle by which the plane of polarization is rotated and is
called the Faraday angle [41,66,67], which we compute for
the semi-Dirac and the Dirac cases.

The paper is organized as follows. The Keldysh formalism
is described in Sec. II. In Sec. III, we provide numerical results
for the optical conductivity in presence of a perpendicular
magnetic field (B �= 0). To illustrate the MO conductivity, we
show the Landau level spectra and the optical transitions in
Sec. III A. The transport properties are investigated by com-
puting the MO Hall and the longitudinal MO conductivities
in Sec. III A. In Sec. III B, we observe the impact of chemical
potential on the real part of the longitudinal MO conductivities
(σxx and σyy). We see the effects of using a circularly polarized
light in Sec. III C. Section III D includes a brief discussion on
the Faraday effect. Finally, we conclude our results in Sec. IV.

II. KELDYSH FORMALISM

To obtain the MO conductivity we use a general per-
turbation method, known as the Keldysh formalism [68],
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which describes the quantum mechanical time evolution of
non-equilibrium and even interacting systems at finite tem-
peratures. A few relevant quantities that we needed are the
time-ordered (T ), anti-time-ordered (T̃ ), lesser (G<) and
greater (G>) Green’s functions, which are defined as

iGT
ab(t, t ′) = 〈T [ca(t )c†

b(t ′)]〉,
iG<

ab(t, t ′) = −〈c†
b(t ′)ca(t )〉,

iG>
ab(t, t ′) = 〈ca(t )c†

b(t ′)〉,
iGT̃

ab(t, t ′) = 〈T̃ [ca(t )c†
b(t ′)]〉. (1)

The time-ordering operator and the anti-time-ordering opera-
tor are denoted by T and T̃ . The creation and the annihilation
operators are in the Heisenberg picture and the labels a and b
denote the indices for the single-particle states. The retarded
and the advanced Green’s functions can be written with the
combination of the Green’s functions in Eq. (1) as

GR = GT − G<, (2)

GA = −GT̃ + G<. (3)

The tight-binding Hamiltonian can be expressed as

H0 =
∑
Ri,R j

∑
σ1,σ2

tσ1σ2 (Ri, R j )c
†
σ1

(Ri )cσ2 (R j ), (4)

where the operator c†
σ1

(Ri) creates an electron in the car-
bon atoms at lattice site Ri, whereas cσ2 (R j) annihilates an
electron at lattice site R j with t as connecting the nearest
neighbors. We have performed all our numerical calculations
by using t = 2.8 eV, which corresponds to electron hopping
in graphene. In a 2D Dirac system, this value may be differ-
ent. The σ1 and σ2 are the orbitals degrees of freedom. The
electromagnetic field can be introduced via

tσ1σ2 (Ri, R j ) → e
−ie

h̄

∫ Ri
R j

A(r′,t ).dr′
tσ1σ2 (Ri, R j ). (5)

The following vector potential can be used to introduce both
a static magnetic field and a uniform electric field:

A(r, t ) = A1(r) + A2(t ). (6)

The electric and magnetic fields are obtained via E(t ) =
−∂t A2(t ) and B(r) = ∇ × A1(r). Accordingly, tσ1σ2 (Ri, R j )
gets modified by the introduction of the magnetic field only.
The many-particle time-dependent Hamiltonian can be de-
scribed by

H (t ) = H0 + Hext (t ), (7)

where H0 is an unperturbed Hamiltonian and Hext (t ) is
the time-dependent external perturbation. The exponential in
Eq. (5) can be expanded, which results in an infinite series of
operators for the full Hamiltonian, H (t ) as

H (t ) = H0 + eAα (t )ĥα + 1

2!
e2Aα (t )Aβ (t )ĥαβ + · · · . (8)

From the above equation, we can write the Hext (t ) as

Hext (t ) = eAα (t )ĥα + 1

2!
e2Aα (t )Aβ ĥαβ + · · · . (9)

Now, we are defining V (t ) = (ih̄)−1Hext and A(t ) =∫ ∞
−∞

dω
2π

Ã(ω)e−iωt . After a Fourier transform we get (dropping
the spatial dependence)

Ṽ (ω) = e

ih̄
ĥαÃα (ω) + e2

ih̄

ĥαβ

2!

∫
dω′

2π

∫
dω′′

2π

× Ãα (ω′)Ãβ (ω′′)2πδ(ω′ + ω′′ − ω) + · · · , (10)

where ĥα = 1
ih̄ [rα, H] and ĥαβ = 1

(ih̄)2 [rα, [rβ, H]]. Now we
define in a general sense,

ĥα1···αn = 1

(ih̄)n
[r̂α1 , · · · [r̂αn , H]], (11)

where ĥα is the single-particle velocity operator at the first-
order and r̂ is the position operator. In the presence of periodic
boundary conditions, the position operator is ill defined, but
its commutator with the Hamiltonian continues to be a well-
defined quantity. In the real space, this commutator yields the
matrix element of the Hamiltonian connecting the two sites i
and j multiplied by the distance vector d i j between them. d i j

will be a well defined quantity in case of a periodic boundary
condition if we define this quantity as the distance between the
neighbors, instead of the difference between the two positions.
Hence, ĥ operators can be defined in position space by mul-
tiplying the Hamiltonian matrix elements with the required
product of the difference vectors. The current operator can be

calculated from the Hamiltonian, via Ĵα = − 1



( ∂H
∂Aα ) (where


 denotes the volume of the sample). Ĵα also follows a series
expansion due to the presence of an infinite number of A(t )
terms in presence of an external perturbation, namely,

Ĵα (t ) = − e




(
ĥα + eĥαβAβ (t ) + e2

2!
ĥαβγ Aβ (t )Aγ (t ) + · · ·

)
(12)

and the first-order optical conductivity is found to be [65]

σαβ (ω) = ie2


ω

∫ ∞

−∞
dε f (ε)Tr

[
ĥαβδ(ε − H0) + 1

h̄
ĥα

× gR(ε/h̄ + ω)ĥβδ(ε − H0)

+ 1

h̄
ĥαδ(ε − H0)ĥβgA(ε/h̄ − ω)

]
. (13)

The retarded and advanced Green’s functions, Dirac deltas
and the generalized velocity operators are written in the
position basis, which is expanded in a truncated series of
Chebyshev polynomials [69]. The details are given in the
Appendix.

III. RESULTS

To clearly explain our system, a schematic honey-
comb lattice geometry of a semi-Dirac system is shown
in Fig. 1(a), where one of the three nearest-neighbor
hoppings is modified by t2 and is shown by a pink
line. We have considered primitive vectors between the
unit cells as, a1 = a(

√
3, 0) and a2 = a(

√
3

2 , 3
2 ), a being

the distance between two consecutive carbon atoms. Also
the nearest-neighbor vectors in real space are defined by
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δ1 = (0, a); 
δ2 = (
√

3a
2 ,− a

2 ) and 
δ3 = ( −
√

3a
2 ,− a

2 ) as shown

in Fig. 1(a). Hence, the area of the unit cell is 
c = 3
√

3
2 a2.

The tight-binding Hamiltonian considering three nearest-
neighbor hopping,

H = −
∑
〈i j〉

(ti jc
†
i c j + H.c.), (14)

where c†
i (c j) creates(annihilates) an electron on sublattice A(B). ti j is the nearest-neighbor hopping amplitude.

The tight-binding dispersion for a semi-Dirac system can be written as

E (k) = ±
√

2t2 + t2
2 + 2t2 cos

√
3kxa + 4t2t cos(3kya/2) cos(

√
3kxa/2). (15)

In Eq. (15) when t2 = 2t , the band structure shows an
anisotropic dispersion being quadratic (non-relativistic) along
the kx direction and linear (relativistic) along the ky direction
as shown in Figs. 1(b) and 1(c) respectively, justifying the

FIG. 1. (a) A schematic sketch of the lattice geometry of a semi-
Dirac system is shown with different hopping parameters t (denoted
by blue line) and t2 (denoted by pink line). The planar directions
are indicated by the x-y axis. The nearest-neighbor vectors 
δi (i =
1, 2, 3) are mentioned in the text. Carbon atoms belonging to the
two sublattices are denoted by red and green colors. The anisotropic
band dispersion of a tight-binding semi-Dirac system is shown along
(b) the kx and (c) the ky direction.

special feature of the semi-Dirac dispersion. Also, the single-
particle low-energy Hamiltonian based on the tight-binding
model of a semi-Dirac system can be written as

H = vF pyσy + p2
xσx

2m∗ , (16)

where the momenta along the x and the y directions are de-
noted by px and py, respectively. The Fermi velocity along the
py direction is expressed as vF = 3ta/h̄. The effective mass
m∗ that corresponds to the parabolic dispersion along px is
m∗ = 2h̄/3ta2. Here we set a = 1. The Pauli spin matrices
are σx and σy in the pseudospin space. The dispersion rela-
tion corresponding to Eq. (16) can be obtained as (without a
constant shift in energy)

E = ±
√

(h̄vF ky)2 +
(

h̄2k2
x

2m∗

)2

, (17)

where ± stands for the conduction and valence band respec-
tively. It can be noted from Eq. (17) that the dispersion is
linear along y direction, whereas the dispersion along the x
direction is quadratic.

We have taken a system of size 6144 × 6144, that is,
the number of unit cells in each of the x and y directions
is 6144. We further use periodic boundary conditions in our
calculations. The modified hopping parameter t2 may take
values t and 2t . The convergence of the peaks depends on the
number of Chebyshev moments, M. For reasonable accuracy,
we choose a large number of Chebyshev moments, M = 4096
[70]. The value of the magnetic field B is taken 400 T for
all the purposes. It may be noted that the value of B chosen
here is very high, however, computations with a lower B
demands a larger size of the system. Thus a compromise is
made between the system size and value of B for keeping
our computations numerically feasible. Nevertheless, in some
situations, we have used more moderate values of B, namely
B = 100 T. We have also checked that the value of M used
by us serves our purpose. However, the system size and the
number of the Chebyshev moments can further be enhanced
in order to minimize the fluctuations and to achieve greater
accuracy.

A. Magnetotransport

To study the optical transport properties in the presence
of a perpendicular magnetic field, we consider a semi-Dirac
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system that consists of approximately 106 number of atoms.
In presence of a magnetic field, the off-diagonal terms in the
xy and yx directions (σxy and σyx) and the diagonal terms in xx
and yy directions (σxx and σyy) both contribute to the optical
transport as seen from Eq. (13).

In the following, we wish to discuss the effect of magnetic
field on a semi-Dirac system. Results for a Dirac system are
included for comparison all the while. In Figs. 2(a) and 2(b)
we have shown the Landau levels En (both above and below
the zero energy) for different Landau level indices n (n = 0, 1,
2, 3, 4 · · · ) as a function of the magnetic field B (in Tesla) for
t2 = 2t (semi-Dirac) and t2 = t (Dirac) cases. It is known that
the Landau levels for a semi-Dirac system [15] depend on the
index n and the magnetic field B via ((|n + 1

2 |)B)
2/3

, while the
corresponding dependence for a Dirac system [37] are more
well known, namely, (|n|B)1/2. Thus these analytic forms can
be used to compare with the numerical values obtained by us.
In the upper panel of Fig. 2, we show these analytic forms via
solid lines, while the numerical results are demonstrated via
dotted lines. It is seen that the agreement is fairly good in both
the cases, which essentially becomes perfect for large values
of n for the semi-Dirac case (for the Dirac case, we have a
fairly good agreement for all values of n).

Let us look at the plots more closely. For the semi-Dirac
case, the solid-pink curve and the dashed black curve that
correspond to the lowest Landau level (n = 0), are slightly
shifted from E = 0 for all values of the magnetic field as
seen from Fig. 2(a). This is in contrast to the Dirac case,
where the energy scales as

√
B and the solid lines coincide

with the dotted ones for positive as well as negative energy
levels, with the n = 0 Landau level occurring exactly at zero
energy as shown in Fig. 2(b). A particle-hole symmetry with
respect to E = 0 is preserved for both the Dirac (t2 = t) and
the semi-Dirac cases (t2 = 2t). In Figs. 2(c) and 2(d), we
show possible optical transitions at a particular value of the
magnetic field, namely, B = 400 T for two different systems
at a fixed value of the chemical potential, μ = 0.4 eV. The
solid lines denote the positive branches, whereas the negative
branches are denoted by dotted lines. Apart from that, the
arrows in the middle panel depict the transition from the
occupied to the unoccupied levels through the absorption of
a photon. The value of the chemical potential used in our
computations is shown by a horizontal black dashed line,
which falls between the two consecutive Landau levels. The
effects of varying the chemical potential will be discussed
later.

In Fig. 3 we have shown the real parts of the longitudinal
MO conductivities Re(σxx) and Re(σyy) as well as the MO
Hall conductivity, Re(σxy) as a function of photon energy
(h̄ω) for the semi-Dirac (t2 = 2t ) and the Dirac (t2 = t) sys-
tems corresponding to a fixed chemical potential μ = 0.4 eV
at B = 400 T (shown by the red curve) in the main frame.
Plots with a more moderate value of the magnetic field (say,
100 T) are shown in the inset of Fig. 3 (shown by the blue
curve). The real parts are related to the optical absorption
of the system and hence characterize the MO properties. It
is to be noted that the band energy scale associated with
the semi-Dirac dispersion is 2t (≈ 5.6 eV). However, when
magnetic field is applied, the band energies are replaced by
the macroscopically degenerate Landau levels, for which the

energy difference between the successive levels (which is the
relevant energy scale for the problem) is far lesser and is
of the order of fraction of an eV. The electromagnetic wave
in about a hundred THz frequency range will thus cause
transitions.

The nonequidistant Landau levels in the semi-Dirac case
mentioned above has a consequence on the transport proper-
ties presented below. Particularly, the peaks for the real as well
as the imaginary parts of the MO conductivity are modified
compared to the Dirac case. This is depicted in Figs. 3 and
4. For the real parts of σxx and σyy, a series of asymmetric
absorption resonance peaks are observed for both the semi-
Dirac (t2 = 2t) and the Dirac (t2 = t) cases, which result from
the optical transitions between different Landau levels. Since
in optical transitions, the selection rules (δ|n|′=|n|±1) allow the
value of n to change only by 1, the transition from n = 0
to n = 1, indicated by the shortest green arrow in Figs. 2(c)
and 2(d) gives the first peak (denoted by dark-violet arrow) in
Re(σxx) for both t2 = 2t and t2 = t as shown in Figs. 3(a) and
3(b). The only difference that can be seen is that the peak has
shifted slightly to lower energy with reduced intensity for the
semi-Dirac case (t2 = 2t).

Next, we observe that the two arrows, that is, from n = 1
(negative energy) to n = 2 (positive energy) and from n = 2
(negative energy) to n = 1 (positive energy) contribute to the
formation of the second peak (denoted by a black arrow).
For the Dirac case (t2 = t), these two arrows have exactly
the same length and consequently, there is only one peak
in the MO conductivity spectrum. In contrast to the Dirac
case, these two arrows have slightly different lengths for the
semi-Dirac case (t2 = 2t), since the symmetry between the
positive and the negative spectra ceases to exist. Still we have
observed a single peak (denoted by black arrow) in Re(σxx)
because the energy difference between a transition from n = 1
(negative energy) to n = 2 (positive energy) and that from
n = 2 (negative energy) to n = 1 (positive energy) is small,
and hence not resolved in our studies. The rest of the peaks
(third, fourth, and so on) are similar to the second peak; they
come from a pair of transitions from −n to n + 1 and −(n + 1)
to n as shown in Fig. 2. For example, the fourth peak (denoted
by yellow arrow) observed in upper panel of Fig. 3(a) is due
to the combined transitions from n = 4 (negative energy) to
n = 3 (positive energy) and n = 3 (negative energy) to n = 4
(positive energy). For the Dirac case (t2 = t), the real part of
σyy gives the same result as that of σxx due to the isotropic
nature of the system. Nevertheless, we show that both σxx

and σyy in the same plot [as shown in the upper panel of
Fig. 3(b)]. Whereas for the semi-Dirac case (t2 = 2t), we have
σxx �= σyy owing to the anisotropic band dispersion along the
kx and the ky directions [see the middle panel of Fig. 3(a)].
In this case, the intensity of the absorption peak for Re(σyy)
is much larger (roughly one order of magnitude) than those
of Re(σxx). Also, the height of the second peak (indicated by
black arrow) in the Re(σyy) is too small compared to other
peaks as shown in the inset plot, whereas the third one (de-
noted by green arrow) splits due to the energy difference as
mentioned earlier. The peak positions and the intensities of
the transport phenomena are functions of both the velocities
of the electrons in the Landau levels and electron filling. For
a given Landau level, the carriers in the semi-Dirac case have
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FIG. 2. The two upper panels give the Landau level energies, E (in units of eV) as a function of the magnetic field, B (in units of Tesla)
for various values of Landau level indices n (labelled as 0, 1, 2, 3, 4, · · · ) for (a) t2 = 2t (semi-Dirac) and (b) t2 = t (Dirac). The solid and the
dotted lines are obtained from theoretical scaling (E goes as B2/3 for semi-Dirac case and

√
B for Dirac case) and simulation respectively. In

the two middle panels [(c),(d)], a few allowed optical transitions are indicated by the vertical (dark-green) arrows and the chemical potential
(μ = 0.4 eV) is shown by the horizontal-black-dashed line. The left and right panels correspond to t2 = 2t and t2 = t at B = 400 T respectively.
In the two lower panels energy levels, E (in units of eV) vs density of states (DOS) (in units of 1/eV) are shown for (e) t2 = 2t (semi-Dirac)
and (f) t2 = t (Dirac) at B = 400 T.
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FIG. 3. The real parts of the longitudinal MO conductivities σxx and σyy and the MO Hall conductivity σxy (in units of e2/h) are shown as
a function of photon energy h̄ω (in units of eV) for (a) t2 = 2t (semi-Dirac) and (b) t2 = t (Dirac) at B = 400 T in the main frame (denoted
by red curve). The inset plots show the same for more moderate values of magnetic field, say 100 T (denoted by blue curve) for t2 = 2t and
t2 = t . μ is set to be 0.4 eV.

lesser velocity. This causes a lower peak height than the Dirac
case. As mentioned earlier, the electron density plays a role as
well in shaping the peaks observed in the real parts of σxx

and σyy for both the semi-Dirac and Dirac cases. This can
be seen via the density of states (DOS) plotted in Figs. 2(e)
and 2(f). The magnitude of the DOS plotted along the x axis
corresponding to the semi-Dirac case is at least small by a
factor of two than those for the Dirac case. So far, we have
discussed the MO conductivity considering the diagonal term,
namely σxx and σyy. It is also of interest to see the effects of the
off-diagonal component, namely σxy, which we shall discuss
here. In the bottom panel of Fig. 3 we have plotted the real
part of the MO Hall conductivity, Re(σxy) as a function of
the photon energy for both the semi-Dirac (t2 = 2t) and the

Dirac (t2 = t) cases at B = 400 T (shown by the red curve) as
shown in the main frame. The main features of the real part
of the Hall response are its antisymmetric behavior about its
zero value and the presence of a single peak on either side
of zero intensity. The peak in the spectrum results from a
single transition (that is, n = 0 to n = 1) that contributes to
the MO Hall conductivity σxy. In the lower panel of Fig. 3(a)
for the semi-Dirac case (t2 = 2t), the first peak (in the positive
direction) with maximum intensity occurs at 0.29 eV and the
first peak (in the negative direction) with a minimum intensity
occurs at 0.35 eV, both of which are shifted to lower energies
as compared to the Dirac case. Also, two pairs of positive
and negative peaks are observed in the vicinity of 0.72 eV
(denoted by black arrow) and 0.95 eV for the semi-Dirac case

205407-7



SINHA, MURAKAMI, AND BASU PHYSICAL REVIEW B 105, 205407 (2022)

FIG. 4. The imaginary parts of the MO Hall conductivity σxy (in units of e2/h) are shown as a function of photon energy h̄ω (in units of
eV) for (a) t2 = 2t (semi-Dirac) and (b) t2 = t (Dirac) at B = 400 T in the main frame (shown by the red curve). The inset plots show the same
for moderate values of magnetic field, (for example, B = 100 T) for t2 = 2t and t2 = t . μ is set to be 0.4 eV.

respectively. For the Dirac case (t2 = t), Re(σxy) first shows
a positive peak with maximum intensity occurring at 0.63 eV
and hence a negative peak with minimum intensity occurring
at 0.67 eV as shown in the lower panel of Fig. 3(b). The
similarity that exists between the semi-Dirac and the Dirac
cases is that the MO Hall conductivity remains flat for low
energies and tends to vanish for higher energies in both the
cases.

Next, we have shown the imaginary part of the MO Hall
conductivity, namely Im(σxy) as a function of the photon
energy, h̄ω in Fig. 4. For the semi-Dirac case (t2 = 2t), the
imaginary part of σxy only shows positive peaks [see Fig. 4(a)]
exactly where the real part of the MO Hall conductivity, that
is, Re(σxy) shows the absorption peaks as seen from lower
panel of Fig. 3(a). In the case of the Dirac system (t2 = t ),
Im(σxy) shows a sharp single positive peak at the same en-
ergy that corresponds to the peak of the Re(σxy) as shown in
Fig. 3(b). The peak positions for the real and the imaginary
parts of the MO Hall conductivity σxy have a correspondence
with the absorption peaks of the longitudinal MO conductiv-
ities for both the semi-Dirac and the Dirac cases as shown
in Figs. 3 and 4. For example, the second peak of the real
and imaginary part of the MO Hall conductivity, Re(σxy)
and Im(σxy) occurs at an energy very close to 0.72 eV that
correspond to the second peak (denoted by black arrow) for
the Re(σxx) for the semi-Dirac case as shown in Fig. 3(a).
This is expected as the absorption and the transmission both
correspond to the transition of the carriers from one Landau
level to another.

In the following, we observe the effects of a few key
quantities that characterize the MO phenomena and also
aid in distinguishing the semi-Dirac and the Dirac cases.
Specifically, we explore effects of the electron filling via
tuning the chemical potential μ and the polarization of
the incident light. Further, we study another quantity that
characterizes the MO property, namely the Faraday rotation
angle.

B. Electron Filling

In this section, we shall see how the electron concentration
affects the MO conductivities. The electron densities can be
controlled by varying the chemical potential μ, which can
further be tuned using external means, for example, a gate
voltage. The values of μ considered here are different for
the Dirac and the semi-Dirac cases. However, care is taken
so that the corresponding values lie between same pairs of
the Landau level in both cases. As μ is varied, it moves
through the successive Landau levels. In Figs. 5(a) and 5(b),
we have shown the allowed transitions for different values
of the chemical potentials by arrows of different colors at
B = 400 T for the semi-Dirac (t2 = 2t) and the Dirac (t2 = t)
cases respectively. According to the transition rules, when μ

falls between the nth and (n + 1)th Landau levels, the transi-
tions from values lower n are blocked. So only the transitions
passing through the μ value are allowed. For example, when μ

lies between the Landau levels n = 1 and n = 2, the transition
shown by the shortest dark-red arrow in Fig. 5(b) is allowed,
whereas the transitions originating from Landau levels lower
than n = 1 is blocked. For example, transition from n = 0 to
n = 1 is forbidden. These values of the chemical potential are
demonstrated in the upper panel of the Fig. 5 via black dashed
lines. In our case, we have chosen three different values of
μ = 0.4 eV, 0.6 eV, and 0.8 eV, which fall between the zeroth
and the first (where the transitions are shown by dark-green
arrow), the first and the second (where the transitions are
shown by dark-red arrow), and the second and the third (where
the transitions are shown by dark-blue arrow) Landau levels
respectively. For example, in Fig. 5(c), we have shown the
Re(σxx) for the three different values of μ = 0.4 eV (falls
between the zeroth and the first Landau level), 0.6 eV (falls
between the first and the second Landau level) and 0.8 eV
(falls between the second and the third Landau level) for the
semi-Dirac case (t2 = 2t). When μ = 0.4 eV, the transition
from n = 0 to n = 1 [shortest dark-green arrow in Fig. 5(a)]
yields the first peak (denoted by dark-violet arrow) at lower
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FIG. 5. In the upper two panels, a few allowed optical transitions are shown indicated by arrows for various values of the chemical potential
for (a) t2 = 2t (semi-Dirac) and (b) t2 = t (Dirac) at B = 400 T. Those μ values are marked with the horizontal black dashed lines. In the lower
two panels, the real parts of the longitudinal MO conductivity σxx in units of e2/h are shown as a function of photon energy h̄ω in units of eV
for various values of chemical potential μ for (c) t2 = 2t (semi-Dirac) and (d) t2 = t (Dirac) at B = 400 T.

energies. As we increase μ to 0.6 eV (shown by the green
dotted curve), only the first (denoted by grey arrow) and the
second (denoted by blue arrow) peaks shift to lower ener-
gies, which occur at 0.22 eV and 0.56 eV. Whereas the third
(denoted by black arrow) and the fourth (denoted by red
arrow) peaks coincide with the second and the third peaks
that correspond to those for μ = 0.4 eV (solid-red curve).
When μ is increased further, that is, to 0.8 eV, though the first
peak (dashed blue curve denoted by orange arrow) shifts to
lower frequencies, the second peak (denoted by pink arrow)
splits, in addition to getting shifted towards lower frequencies.
Further, the third peak at an energy value 0.72 eV remains
intact, whereas the fourth one (at an energy value 0.96 eV)
vanishes.

It is of worth mentioning that some of the transitions are
strong, whereas others are weak. The relative strengths are de-
termined by the height of the absorption peaks [see Fig. 5(c)].
The transition probabilities are proportional to the height of
these absorption peaks. The larger the transition probability,
the absorption peaks are larger.

To compare with the Dirac case [51] (t2 = t), we show that
Re(σxx) as a function of the photon energy, h̄ω for increasing
values of the chemical potential μ = 0.4 eV (falls between the
zeroth and the first Landau level), 0.8 eV (falls between the
first and the second Landau level) and 1 eV (falls between
the second and the third Landau level) in Fig. 5(d). Here, the
effects of μ shown by the solid red curve for μ = 0.4 eV
(which falls between the zeroth and the first Landau level)
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FIG. 6. In the upper two panels, the real parts of the right-handed polarized MO conductivity σ+ and that of the left-handed polarized one
σ− (in units of e2/h) are shown as a function of photon energy h̄ω (in units of eV) for a fixed value of chemical potential μ = 0.4 eV for
(a) t2 = 2t (semi-Dirac) and (b) t2 = t (Dirac) at B = 400 T. The lower two panels [(c),(d)] depict the same scenario by varying the chemical
potential, which falls between the n = 1 and n = 2 Landau levels.

and the corresponding results are already discussed in the
previous section. If we increase μ from 0.4 eV to 0.8 eV,
the first peak (dotted green curve denoted by grey arrow)
that results from transition between the n = 1 to n = 2 levels
[shown by the shortest dark-red arrow in Fig. 5(a)] shifts to
lower frequencies. Compared to the first peak, the second one
(denoted by red arrow) does not shift, however the intensity
becomes half for the peak at an energy 1.57 eV. The reason is
obvious since the transition from n = 1 (negative energy) to
n = 2 (positive energy) is allowed, whereas n = 2 (negative
energy) to n = 1 (positive energy) (n = 1 level falls below
the Landau level) is Pauli blocked. When μ is further in-
creased to 1 eV (which falls between the second and the third
Landau levels), the peak disappears since both the transitions
[n = 1 (negative energy) to n = 2 (positive energy) and n = 2
(negative energy) to n = 1 (positive energy)] are forbidden.
Further, there is a reduction in the height of the peak at about
1.57 eV.

C. Circular Polarization

Here, we probe the effects of changing the polarization of
the incident light as usually done in experiments. Instead of
a linearly polarized light, we can take a circularly polarized
one, whose effects can be simply incorporated by superpos-
ing the quantities obtained in our MO transport studies. For
example, we can define σ± = σxx ± iσxy, where σ+ denotes
light with right-handed polarization and σ− denotes that with
left-handed polarization. The real (absorptive) part of σ± can
be written as

Re(σ±(ω)) = Re(σxx(ω)) ∓ Im(σxy(ω)), (18)

where the upper (lower) sign corresponds to MO conductiv-
ities with the right (left) circular polarization. In Fig. 6, we
show the Re(σ ) as a function of the photon energy, h̄ω for
t2 = 2t and t2 = t at B = 400 T. The dotted green curve is
for σ− and the solid red curve is for σ+. In the upper panels,
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FIG. 7. The Faraday rotation angle θF (in units of deg) is plotted as a function of photon energy h̄ω (in units of eV) for different values
of magnetic field and chemical potential for (a) t2 = 2t (semi-Dirac) and (b) t2 = t (Dirac). The insets show the maximum (θmax) and the
minimum (θmin) Faraday angle θF (in units of deg) vs magnetic field B (in units of Tesla).

μ is taken to be 0.4 eV, which lies between the zeroth and
the first Landau levels. For the semi-Dirac case (t2 = 2t), the
lowest frequency peaks in Re(σ−) differ significantly than in
Re(σ+). It can be noted from Fig. 6(a) that only the peaks with
the first (denoted by orange arrow), second (denoted by red
arrow), and third (denoted by black arrow) lowest frequencies
become positive for σ−, whereas they are negative for σ+.
Moreover, the magnitude of those three peaks is lesser for σ+
than those for σ−. The rest of the peaks have almost the same
magnitude. However, when t2 = t , Re(σ−) has only one peak
at a low frequency, which is absent in Re(σ+) due to the can-
cellation between the longitudinal MO and the transverse MO
conductivities with each other [55,58,71]. For the semi-Dirac
case (t2 = 2t), the anisotropy of the Dirac cone in the band
structure leads to noncancellation between the longitudinal
MO and the MO Hall conductivities. This low-frequency peak
in Re(σ−) is followed by a series of interband peaks that are
identical to those in Re(σ+) as shown in Fig. 6(b). When
the chemical potential is increased such that it lies between
the first and the second Landau levels, the fourth (denoted
by pink arrow) and fifth (denoted by yellow arrow) peak for
σ+ becomes negative with increased intensity for t2 = 2t as
shown in Fig. 6(c). For the Dirac case (t2 = t), the first peak at
an energy value 1.57 eV in σ+ vanishes as seen from Fig. 6(d).
Thus our studies imply that the polarization of the incident
light brings in significant changes to the MO transport that
can be easily probed in experiments. Other polarizations, such
as elliptical polarization, etc. may have similar observable
changes.

D. Faraday Rotation

Finally, we shall discuss Faraday rotation in a semi-
Dirac system and compare it to the Dirac case. It is
interesting to mention that the real part of MO Hall con-
ductivity (that is, σxy) calculated here can be directly used
in Faraday rotation experiments [41]. The Faraday-rotation
angle θF , which is proportional to σxy can be written

as

θF = 2π

c
Re(σxy(ω)), (19)

where c is the velocity of light in vacuum and Re(σxy) is the
real part of MO Hall conductivity. Figures 7(a) and 7(b) show
the Faraday angle, θF as a function of the photon energy, h̄ω

for different values of the magnetic field at a particular value
of the chemical potential, which falls between the zeroth and
the first Landau level for the semi-Dirac (t2 = 2t) and the
Dirac (t2 = t) cases respectively. The corresponding values of
μ at given values of B are quoted in the plots. The spectra
show an edge-like structure with a positive rotation at low
energies and a negative rotation at higher energies for both the
semi-Dirac and the Dirac cases. For the semi-Dirac case, the
maximum peak of the Faraday rotation shifts towards lower
energies, and the value of the maximum Faraday rotation is
1.8◦ (≈ 0.03 rad) at B = 400 T, which is small compared to
the Dirac case as shown in Fig. 7(a). It is to be noted that a
discernible Faraday rotation is also observed at 0.93 eV with
a maximum value of 0.17◦ (≈ 0.003 rad) at B = 400 T, which
is absent for the Dirac case. For smaller values of magnetic
field (say, for 200 T and 100 T), the plot shows a qualitatively
similar behavior. For the Dirac case, the maximum Faraday
rotation is 3.9◦ (≈ 0.06 rad) at B = 400 T, which is larger than
the other two magnetic fields, namely, B = 200 T (shown by
green dotted curve) and 100 T (shown by red dashed curve)
as shown in Fig. 7(b). For both the cases, the spectra depend
on the value of the magnetic field used. To further endorse
the correspondence, we plot the maximum Faraday angle as
a function of B for both the semi-Dirac and Dirac cases as
shown in the inset of Fig. 7. There is a steady growth of θmax

[corresponding to the peak value of Re(σxy)] and a decline in
θmin (corresponding to the peak in the negative direction) for
both the cases. The behavior observed for the Faraday rotation
angle and its dependence on the value of the magnetic field for
the maximum and the minimum rotation angles in graphene
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[41], namely, θmax and θmin match well with the Dirac case
presented here.

IV. CONCLUSION

We have investigated MO transport properties of a semi-
Dirac system subjected to an external magnetic field and
compared them to those for the Dirac systems. Owing to the
different properties of the Landau levels, the MO conductiv-
ities show several distinct features for the semi-Dirac case as
compared to the Dirac one. The real parts of the longitudinal
MO conductivities [Re(σxx) and Re(σyy)] in either of the cases
acquire a series of absorption peaks owing to the transition
between the Landau levels with the semi-Dirac case having
additional features owing to an asymmetric distribution of the
Landau levels and their densities of states. Also, the peak
intensity for Re(σyy) is one order of magnitude larger than that
of Re(σxx) as the semi-Dirac case has relativistic dispersion in
the y direction (nonrelativistic in the x direction) and hence
entails a larger velocity than that in the x direction. Further, in
the case of MO Hall conductivity, the semi-Dirac case shows
extra absorption peaks for the real, as well as the imaginary
parts, owing to the optical transitions. Moreover, we have
studied the effect of electron filling on the absorption spectra
by tuning chemical potential between the consecutive Landau
levels. Also to explore the interplay of the polarization of
the incident radiation with MO transport, we consider the
light of a different polarization, namely, a circularly polarized
light. Particularly, the right circularly polarized beam yields
distinct features for the semi-Dirac case compared to the Dirac
one. Finally, to ascertain the MO activity of the semi-Dirac
systems, we study Faraday rotation where we obtained two
discernible Faraday rotation angles for the semi-Dirac case.
It should be possible that this feature may be realized in the
experiments.
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APPENDIX: CHEBYSHEV EXPANSION

The first kind Chebyshev polynomials can be defined as
Tn(x) = cos(n cos−1(x)) in the range [−1, 1]. The recur-
sion relations, T0(x) = 1, T1(x) = x and Tn+1(x) = 2xTn(x) −
Tn−1(x) and the orthogonality relation,

∫ 1

−1
Tn(x)Tm(x)

dx√
1 − x2

= δnm
1 + δn0

2
(A1)

are satisfied by these polynomials. The expansion of the Dirac
delta in terms of Chebyshev polynomials, can be written as

δ(ε − H0) =
∞∑

n=0

n(ε)
Tn(H0)

1 + δn0
, (A2)

where

n(ε) = 2Tn(ε)

π
√

1 − ε2
. (A3)

Also the Green’s function can be expressed in terms of the
Tn(x) as

gσ,λ(ε, H0) = h̄
∞∑

n=0

gσ,λ
n (ε)

Tn(H0)

1 + δn0
, (A4)

where

gσ,λ
n (ε) = −2σ i

e−niσ cos−1(ε+iσλ)√
1 − (ε + iσλ)2

. (A5)

The function gσ,λ represents both the retarded and the ad-
vanced Green’s function in the limit λ → 0+, where λ is the
finite broadening parameter. g+,0+

and g−,0+
are the retarded

and the advanced Green’s function respectively. Hence, the
Dirac deltas and Green’s function are combinations of a poly-
nomial of H0 (the unperturbed Hamiltonian) and a coefficient,
which are functions of the frequency and the energy param-
eters. The trace in the conductivity can be written as a trace
over a product of polynomials and ĥ operators. The � matrix
needed in the expression of conductivity is written as

�α1,··· ,αm
n1···nm

= Tr

N

[
h̃α1

Tn1 (H0)

1 + δn10
· · · h̃αm

Tnm (H0)

1 + δnm0

]
, (A6)

where N is the number of unit cells. The upper indices can be
used for any number of indices: α1 = α1

1α
2
1 · · ·αN1

1 and h̃α1 =
(ih̄)N1 ĥα1 . Here the coefficients of the Chebyshev expansion
can be written similarly in a matrix form as,

�n =
∫ ∞

−∞
dε f (ε)n(ε) (A7)

and

�nm(ω) = h̄
∫ ∞

−∞
dε f (ε)

[
gR

n (ε/h̄ + ω)m(ε)

+ n(ε)gA
m(ε/h̄ − ω)

]
, (A8)

where f (ε) = (1 + eβ(ε−μ) )−1 is the Fermi-Dirac distribu-
tion function, where β is the inverse temperature and μ is
the chemical potential. Hence the first-order conductivity be-
comes

σαβ (ω) = −ie2


ch̄2ω

[ ∑
n

�αβ
n �n +

∑
nm

�nm(ω)�α,β
nm

]
(A9)

where 
c is the volume of the unit cell.
Also, the density of states can be found in terms of Cheby-

shev polynomials using Eq. (A2) as

ρ(ε) = 1

N
Trδ(ε − H0) = 1

π
√

1 − ε2

∞∑
0

μnTn(ε), (A10)

where N = dim Ĥ0 is the dimension of the Hilbert space. μn

denotes the Chebyshev moment, is given by

μn = 1

N

1 + δn0

2
Tr Tn(H0). (A11)
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It is to be noted that the broadening in the Landau levels arises
from the truncation of the infinite series in Eq. (A10) till finite

number of terms. This depends strongly on the number of
Chebyshev polynomials that we have used in our calculation.
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