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Valley-driven Zitterbewegung in Kekulé-distorted graphene
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Graphene deposited on top of a copper(111) substrate may develop a Y-shaped Kekulé bond texture (Kekulé-
Y), locking the momentum with the valley degree of freedom of its Dirac fermions. Consequently, the valley
degeneracy of its band structure is broken, generating an energy dispersion with two nested Dirac cones with
different Fermi velocities. This work investigates the dynamics of electronic wave packets in the Kekulé-Y
superlattice with strength �0. We show that, as a result of the valley-momentum coupling, a valley-driven
oscillatory motion of the wave packets (Zitterbewegung) could appear, but with a drastically reduced attenuation
rate and lower frequency (proportional to �0) when compared to the Zitterbewegung effect associated with
pristine graphene. Furthermore, we justify the presence of these Zitterbewegung frequencies in terms of the
Berry connection matrix and a discrete symmetry present in the system. These results make Kekulé-Y graphene
a compelling candidate for experimental observation of the Zitterbewegung phenomenon in a two-dimensional
system.
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I. INTRODUCTION

Experimental studies [1,2] have shown that inducing a
Kekulé bond pattern in graphene leads to interesting changes
in its band structure, as the breaking of its chiral (valley) sym-
metry [3,4], giving rise to appealing electronic and transport
properties. The Kekulé-O (Kek-O) type of bond distortion
consists of a periodic modification of an alternating weak
and strong (hexagonal) carbon bonding pattern in graphene. It
leads to the coupling of the two distinct Dirac valleys [5] of its
electronic band structure, and in momentum space can be seen
as effectively folding the pristine graphene Brillouin zone
toward its center at the � point [6]. It has been theorized that
a periodic arrangement of alkali atoms adsorbed in graphene
can mimic the Kekulé structure [6,7]. Indeed, this was recently
confirmed experimentally [2]. where it was further observed
that the Kek-O bonding drives the opening of a small band
gap. The latter is due to the broken chiral symmetry, which
within tight-binding models turns out as a consequence of
the intervalley mixing [8] and is proportional to the hopping
amplitude �0 of the textured bonds. Another experimental
study [4] found that epitaxial graphene grown on a Cu(111)
substrate can develop a novel Y-shaped Kekulé distortion
(Kek-Y). Later, a unified theoretical model of both Kekulé
distortions [8] showed that Kek-Y also couples the valley
isospin to the momentum, leading to a dispersion relation
consisting of two concentric Dirac cones with different Fermi
velocities. Notably, the Dirac fermions retain their massless,
pseudorelativistic nature from pristine graphene even though
chiral symmetry is broken.

*ramoncarrillo@uabc.edu.mx

The physical consequences of both types of Kekulé
distortions on graphene electronic and transport properties
have been the subject of exhaustive exploration theoreti-
cally, spanning from studies of the enhanced valley-dependent
Klein tunneling in a rectangular potential barrier in Kek-Y
graphene by Wang et al. [9] and the coherent manipulation
of a valley switch due to the selective valley pseudo-
Andreev reflection in a Kek-Y graphene superlattice potential
by Beenakker et al. [10], to studies on the nature of
valley-dependent currents in Kek-O distorted superconduct-
ing heterojunctions [11]; also, recent theoretical studies by
Andrade et al. [12] found that a uniaxial strain-driven Kek-Y
distortion [13] in graphene can separate the Dirac cones away
from the � point. This was recently confirmed experimentally
by Eom and Koo [1]. Other interesting studies include a device
proposal for the manipulation of the valley orientation of
channeled electrons through valley-induced precession pro-
duced by the Kek-Y texture [14] in graphene, as well as a
study of the resonant electronic transport in graphene nanorib-
bons with periodic Kekulé distortions [15]. More recently, the
optical response and transport properties of Kek-Y graphene
have been characterized using the Kubo [16,17] and Boltz-
mann approaches [18] as well as the addition of second-order
terms in the Kek-Y Hamiltonian [19,20].

Until now, however, the dynamical properties of wave
packets in Kek-Y monolayer graphene have not yet been
investigated, nor the Zitterbewegung effect. Schrödinger [21]
predicted that the dynamics of the Dirac Hamiltonian develop
a high-frequency oscillatory (trembling) motion (Zitterbewe-
gung). This effect is owed to the coupling of particle and
antiparticle states of the Dirac system, yielding states that
are superpositions of the two. The trembling occurs because
the initial state is not an eigenstate of the coupled system.
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The Zitterbewegung, however, is not strictly a relativistic
effect and comprises a broad class of phenomena that cou-
ple the momentum of quasiparticles to their spin or their
spinlike degrees of freedom [22]. Indeed, earlier theoreti-
cal studies on Zitterbewegung in solids were performed in
superconductor materials by Lurie and Cremer [23] and in
bulk semiconductors by Cannata et al. [24]. It was not until
after the works of Schliemann et al. [25] and Zawadski [26]
on the plausibility of the observation of the Zitterbewegung
in two-dimensional semiconductor systems with spin-orbit
coupling that the topic experienced mainstream relevance. In
connection with graphene, the wave packet dynamics and the
Zitterbewegung effect were analyzed by Rusin and Zawad-
ski [27], and later by Maksimova et al. [28], showing that the
effect and the intensity of the oscillations depends on the po-
larization of the sublattice pseudospin relative to the direction
of motion. Subsequent studies have resorted to the dynamics
of electronic wave packets to study the Zitterbewegung of a
number of two-dimensional materials and systems, including
Dirac [29] and Weyl [30] semimetals, silicene [31,32], phos-
phorene [33], borophene [34], dice lattices [35], topological
insulators [36–38], in ABC-stacked n-layer graphene [39],
and even more recently, in moiré excitons in MoS2/WSe2
heterobilayers [40]. Interestingly, the first direct experimental
observation of the Zitterbewegung effect was realized not in
high-energy physics or in solid state materials, but in the realm
of trapped ions [41], using Bose-Einstein condensates [42]
and spin-orbit-coupled ultracold [43] atoms of 87Rb. Most re-
cently it was realized through classical laser optics simulation
of the one-dimensional Dirac equation for a free particle [44].

In this work, we examine the dynamics of electronic wave
packets generated by the chiral symmetry breaking in Kek-Y
graphene, and study the Zitterbewegung phenomena associ-
ated with the simultaneous presence of the pseudospin- and
valley-momentum coupling in this Dirac system.

The outline of the rest of paper is as follows. In Sec. II
we present the Dirac Hamiltonian for Kekulé-Y distorted
graphene, and its associated band structure. In Sec. III we
study the dynamics of the position, of the velocity, and of the
generalized spin matrix within the Heisenberg picture as well
as the Zitterbewegung effect. Next we present the numerical
studies and analysis of the dynamics of Gaussian wave packets
under different initial momentum, pseudospin, and isospin
conditions, as well as the Zitterbewegung of the averaged
trajectories of the wave packets (Sec. IV). Lastly, we present
our conclusions in Sec. V.

II. THE KEK-Y HAMILTONIAN AND ITS TWO-FLAVOR
CHIRAL FERMIONS

Following Gamayun [8], we start by writing the Hamil-
tonian for the low-energy electronic excitations in graphene
subject to Kekulé-Y textured bonding as

Ĥ = vσ (Ŝ
σ · p̂) + vτ (Ŝ

τ · p̂), (1)

where p̂ = ( p̂x, p̂y, 0) is the momentum vector, and the
sublattice (vσ ) and valley (vτ ) Fermi velocities are renor-
malizations [8] of the Fermi velocity (v f = 10 Å/fs) of
pristine graphene; without loss of generality, we take vσ = v f

and vτ = �0v f , with �0 < 1 the Kekulé coupling strength

parameter. We have used a set of generalized 4 × 4 pseu-
dospin and isospin matrices to define the vector operators
Ŝ

σ = τ0 ⊗ σ̂ and Ŝ
τ = τ̂ ⊗ σ0, respectively, where the vectors

τ̂ = (τ̂x, τ̂y, τ̂z ) and σ̂ = (σ̂x, σ̂y, σ̂z ) represent 3-component
Pauli matrix vectors which act solely on the valley (τ ) and
sublattice (σ ) degrees of freedom, while the σ0 and τ0 matrices
are the corresponding 2 × 2 identity matrices. Note that, be-
sides the pseudospin-momentum coupling term (Ŝ

σ · p̂) akin
to pristine graphene, the Kek-Y distortion introduces an ad-
ditional term (Ŝ

τ · p̂) that binds the valley isospin to the
momentum (valley-momentum locking). The valley-locking
term is responsible for breaking the valley degeneracy be-
tween the K and K ′ cones of pristine graphene, producing
nested Dirac cones with different Fermi velocities, with the
dispersion relation given by

Eμν = μ(vσ + νvτ )p, (2)

where p =
√

p2
x + p2

y , with μ = +/− for the
fermion/antifermion branch and ν = ± are associated
with the two distinct valleys. Although the valley-momentum
coupling breaks chiral symmetry, the new chiral (valley)
symmetry introduced by the Kek-Y superlattice [8] still
produces massless chiral fermions. This superlattice
chirality is actually a combination of two distinct flavors
of chirality (or helicity), introduced by the pseudospin-
and valley-momentum coupling. The sublattice helicity
( 1

2 Ŝ
σ · p̂/p) distinguishes positive energy states (fermions)

whose pseudospin is parallel to the momentum from
those of negative energy states (antifermions) whose
pseudospin is antiparallel to the momentum. The valley
chirality ( 1

2 Ŝ
τ · p̂/p) differentiates between states whose

isospin is parallel (K cone) or antiparallel (K ′ cone) to
the momentum, which we shall call right and left chiral
states, respectively. The chiral fermions in Kek-Y graphene
can be distinguished by their associated group velocities.
A right (left) chiral fermion (antifermion) will move at a
group velocity vg = vσ + vτ (vg = −vσ − vτ ) while a left
(right) chiral fermion (antifermion) will travel at group
velocity vg = vσ − vτ (vg = −vσ + vτ ). In Fig. 1 we show a
schematic draw of the resulting dispersion laws and expected
expected orientation of the sublattice pseudospin (purple
arrows) and valley isospin (orange arrows) vectors at a given
positive energy.

III. HEISENBERG EQUATIONS OF MOTION
AND ZITTERBEWEGUNG

To begin the analysis, we follow the standard procedure of
calculating the equations of motion of the quantum operators
in the Heisenberg representation. The time evolution of an
operator Â with the Hamiltonian of Eq. (1) is

d

dt
Â(t ) = vσ

ih̄
[Â(t ), Sσ · p̂] + vτ

ih̄
[Â(t ), Sτ · p̂], (3)

where it is assumed that Â does not depend explicitly on
time [∂A/∂t = 0]. Also, owing to chirality being a conserved
property of massless fermions, we have omitted the time
dependence of the momentum coupling terms. We can track
the time evolution of the sublattice and valley degrees of
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FIG. 1. Schematic dispersion relation for Kek-Y graphene de-
scribed in Eq. (2), and schematic depiction of the expected
orientation of the sublattice pseudospin (purple arrows) and valley
isospin (orange arrows) vectors for the positive energy (upper) Dirac
cones. For the bottom cones, the direction of the pseudospin and
isospin is reversed.

freedom independently since [Sτ
i , Sσ

j ] = 0 for all i, j = x, y, z.
Let the index α represent either σ or τ ; then the 4 × 4 matrix
components of Sα satisfy

[
Sα

i , Sα
j

] = 2iεi jkSα
k , (4)

[
Sα

i , p j
] = 0, for all i, j, k = x, y, z. (5)

One can immediately notice that the Kek-Y phase conserves
linear momentum (〈ṗ〉 = 0). The time dependence of the posi-
tion operator r̂ = (x̂, ŷ) is obtained by solving for the velocity
operator, and it is given by

v̂(t ) = d

dt
r̂(t ) = vσ Sσ (t ) + vτ Sτ (t ), (6)

from which it follows immediately that the total velocity oper-
ator is the sum of two velocity operators, one proportional to
the time evolution of the sublattice and the other to the valley
degree of freedom. Hence, the time-dependent quasiparticle
velocities depend on the pseudospin and isospin, not just on
its momentum.

By the same token, from the equation of motion (3) for a
generalized spin matrix Sα (t ) we get

d

dt
Sα (t ) = 2vα

h̄
p̂ × Sα (t ), (7)

which clearly describes the time-dependent pseudospin-
momentum (α = σ ) and valley-momentum (α = τ ) dynam-
ical locking phenomena. This expression is equivalent to
the equation of motion of a magnetic dipole in a magnetic
field [45] B (with 2v f p̂

h̄ → −γ B, γ being the gyromagnetic
ratio). The solutions for the components of Sα (t ) are given by

Sα
x (t ) = Sα

x + p̂y

p
Sα

z sin (ωαt )

+ p̂y

p2

(
p̂xSα

y − p̂ySα
x

)
[1 − cos (ωαt )], (8)

Sα
y (t ) = Sα

y − p̂x

p
Sα

z sin (ωαt )

− p̂x

p2

(
p̂xSα

y − p̂ySα
x

)
[1 − cos (ωαt )]; (9)

here Sα
i (without the dependence of t) are the spin matri-

ces in the Schrödinger picture. Equations (8) and (9) show
that the pseudospin (α = σ ) and isospin (α = τ ) vectors pre-
cess around the linear momentum with angular frequencies
ωσ = 2pvσ /h̄ and ωτ = 2pvτ /h̄, respectively. The nature of
these frequencies and their relation with the presence of a
pseudospin and valley-driven Zitterbewegung effects will be
discussed in more detail below.

Once we substitute Eqs. (8) and (9) in (6) and integrate
over time accordingly, we obtain the time-dependent position
vector operator. The explicit solution can be written as

r̂(t ) = r̂0 + (v̂0 + v̂⊥)t + ξ̂(t ), (10)

where r̂0 = r̂(0) is the initial position vector operator,
v̂0 = v̂(0) is given by Eq. (6), and the two time-independent
components of v̂⊥ are

v̂⊥
x =

∑

α=σ,τ

vα

p̂y

p2

(
p̂xSα

y − p̂ySα
x

)
, (11)

v̂⊥
y =

∑

α=σ,τ

vα

p̂x

p2

(
p̂xSα

y − p̂ySα
x

)
. (12)

The second term in (10), (v̂0 + v̂⊥)t , describes a rectilinear
motion, akin to free particles, while the last term in Eq. (10),
ξ̂(t ) = (ξ̂x(t ), ξ̂y(t )), comprises the sum of two distinct oscil-
latory terms,

ξ̂(t ) = ξ̂
σ

(t ) + ξ̂
τ
(t ), (13)

associated with the sublattice and valley degrees of freedom.
These terms describe the trembling motion of a Zitterbewe-
gung effect, where the components are determined by the
expressions

ξ̂ α
x (t ) = h̄

2

p̂y

p2
Sα

z [1 − cos (ωαt )]

− h̄

2

p̂y

p3

(
p̂xSα

y − p̂ySα
x

)
sin (ωαt ), (14)

ξ̂ α
y (t ) = − h̄

2

p̂x

p2
Sα

z [1 − cos (ωαt )]

+ h̄

2

p̂x

p3

(
p̂xSα

y − p̂ySα
x

)
sin (ωαt ). (15)
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FIG. 2. Schematic cross section of the dispersion relation of the
Kek-Y fermions, Eq. (1). The small horizontal arrows indicate the
direction of the momentum, and the expected value of the pseudospin
and valley orientation. The oscillation frequencies of pseudospin-
and valley-driven Zitterbewegung correspond to the energy differ-
ence between the cones connected by (purple) dashed and (orange)
dotted double arrows, respectively.

By evaluating the expectation value of the position oper-
ator in Eq. (10), it can be shown that a pseudospin-driven
Zitterbewegung phenomenon arises due the mixing of states
with same valley helicity, but opposite sublattice helicity,
and associated with the transition energies E++ ↔ E−− and
E+− ↔ E−+ whose absolute difference yields the oscillating
frequency ωσ (p) = 2vσ p/h̄. This resembles the interference
of positive and negative energy states that generate the
Schrödinger Zitterbewegung [28] of the Dirac Hamiltonian.
In contrast, the valley-driven Zitterbewegung is owed to the
mixing of states with opposite valley chirality (and the same
sublattice helicity), associated with the smaller transition en-
ergies E++ ↔ E+− and E−− ↔ E−+ corresponding to the
oscillating frequency ωτ (p) = 2vτ p/h̄, as a direct result of the
intervalley mixing introduced by the Kek-Y phase [4] (see
Fig. 2). Note that, unlike the former, the valley-driven Zit-
terbewegung occurs only between fermions or antifermions,
that is, between states with the same energy sign. The
valley-driven Zitterbewegung is thus more like that occurring
in Rashba spin-orbit semiconductor two-dimensional sys-
tems [25]. Note that other possible energy differences between

E+− ↔ E−− and E++ ↔ E−+, that will correspond to the
frequencies 2p(vσ − vτ )/h̄ and 2p(vσ + vτ )/h̄, respectively,
do not participate in the Zitterbewegung oscillations. The
physical origin of the absence of these beating frequencies
can be elucidated from the Berry phase connection matrix for
the Kek-Y Hamiltonian system and its close relation with the
Zitterbewegung amplitude oscillations in the position operator
vector. Following Dávid and Cserti [22] on the general theory
of the Zitterbewegung, such relation turns out evident by writ-
ing an equivalent form of the oscillatory terms of the position
operator in terms of the Berry connection matrix,

ξ̂(t ) =
∑

k,l

(eiωkl t − 1)Akl (p)|φk (p)〉〈φl (p)|, (16)

where |φk (p)〉 are the eigenvectors of the Hamiltonian op-
erator, ωk,l = (Ek − El )/h̄ are the beating frequencies, and
Akl (p) is the Berry connection matrix, defined as

Akl (p) = ih̄〈φk (p)| ∂

∂ p
|φl (p)〉. (17)

Note that nonzero value of the Berry connection matrix in
Eq. (17) will entail in general a finite accumulated phase
between the states involved, and as a consequence, from (16),
a multifrequency-Zitterbewegung effect could arise in the sys-
tem.

Now, for the Kek-Y graphene Hamiltonian in Eq. (1) with
eigenenergies E1 = E++, E2 = E+−, E3 = E−−, and E4 =
E−+, the frequencies defined before as ωσ and ωτ will corre-
spond precisely to ω13 and ω12, respectively. Using Eq. (17) in
this system one can show that for the Kek-Y graphene Hamil-
tonian certain matrix elements vanish; explicitly, A14(p) =
A41(p) = 0 as well as A32(p) = A23(p) = 0. This implies
[from Eq. (16)] that the contribution to the Zitterbewegung
associated with the beating frequencies ω14 and ω32 vanishes
identically.

This can also be understood through symmetry arguments
by considering the discrete symmetry operator P = −τx ⊗
σxK (where K is the complex conjugate) that commutes with
the Kek-Y graphene Hamiltonian. This P symmetry inverts
the position operator [P(ih̄ ∂

∂ p )P† = −ih̄ ∂
∂ p ] and the Zitter-

bewegung operator ξ̂. Therefore, it imposes a selection rule
which makes the matrix elements between states with the
same P symmetry zero for both operators. Hence, no Zitter-
bewegung associated with the E1 ↔ E4 and E3 ↔ E2 energy
differences is developed.

IV. WAVE PACKET DYNAMICS WITH
VALLEY-MOMENTUM COUPLING

To further analyze the time evolution of the position and
velocity operators and the induced Zitterbewegung effects
in Kek-Y graphene, we numerically study the dynamics of
wave packets within the Schrödinger picture in real space.
We consider an initial state (t = 0) characterized by a four-
component spinor with the form of a Gaussian wave packet
given by

|ψστ (x, 0)〉 = 1

d
√

π
e− |x|2

2d2 +ik0·x|τ 〉 ⊗ |σ 〉, (18)
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FIG. 3. Snapshots of the probability density at t = 25 fs de-
veloped by a stationary (k0 = 0) Gaussian packet of initial width
d = 20 Å in pristine (a) and Kek-Y (b) graphene (�0 = 0.1), with
θσ = θτ = 0. Note that the Kek-Y graphene case develops two con-
centric rings of high probability density.

where x = (x, y) is the position vector, d the width
of the Gaussian wave packet. The initial wave vector
k0 = k0(cos θp, sin θp) defines the average momentum vector
(〈p̂0〉 = h̄k0) of the Gaussian wave packet, where |k0| = k0

and θp is the polar angle of the momentum. The |τ 〉 and |σ 〉 ket
states describe the initial isospin and pseudospin polarization
conditions, respectively. Using the Bloch sphere notation, they
can be written in the basis of the eigenvectors of the z-Pauli
matrix, |z,±〉, as

|τ 〉 = cos (θτ /2)|z,+〉 + eiφτ sin (θτ /2)|z,−〉, (19)

|σ 〉 = cos (θσ /2)|z,+〉 + eiφσ sin (θσ /2)|z,−〉, (20)

where the colatitudes and azimuthal angles of the isospin and
pseudospin vectors are given by θτ , θσ , φτ , and φσ , respec-
tively.

We numerically evaluate the dynamics of the Gaussian
wave packet [Eq. (18)] by adopting the methodology in
Ref. [46]. In such numerical approach, a suitable, discretized
time-evolution operator of the system is obtained using the
Zassenhaus formula and Cayley expansion. This operator is
used to compute the wave function at a later time t + �t at
any point in space in terms of the wave function at a previous
time t , starting from the initial condition given by Eq. (18).
In order to analyze the Zitterbewegung, we find it convenient
to use instead the Fourier transform of the Gaussian wave
packet [Eq. (18)] to compute the expectation values of the
time-dependent velocity [v(t )] and position [r(t )] given by
Eqs. (6) and (10), respectively. Unless specified otherwise,
in all the simulations shown here we considered a Kekulé
coupling amplitude of �0 = 0.1.

First, for illustrative purposes of our quantum simulations,
we compare the dispersion of a Gaussian wave packet of
width d = 20 Å at t = 25 fs in pristine [Fig. 3(a)] and Kek-Y
graphene [Fig. 3(b)] with zero average momentum (〈p̂(0)〉 =
0) and both pseudospin and isospin vectors pointing in the
positive z direction, that is, θσ = θτ = 0. This initial condition
is equivalent to a superposition of every possible state with
momentum, pseudospin, and isospin states in the xy plane. As
such, the wave packet contains left and right chiral fermionic
and antifermionic states, which disperse uniformly in every
direction due to pseudospin- and valley-momentum locking.
As a result, the wave packet in pristine graphene shown in

FIG. 4. Probability density of a Gaussian wave packet of width
d = 20 Å at t = 25 fs in Kek-Y graphene (�0 = 0.1) with average
momentum (k0 = 0.05 Å−1, θp = 0) parallel to the isospin and pseu-
dospin in the x direction, indicated by the blue arrow (θτ = θσ =
π/2, φτ = φσ = 0).

Fig. 3(a) forms a probability density ring that propagates
isotropically outward from its center at an associated group
velocity close to the Fermi velocity v f . In Kek-Y graphene
[Fig. 3(b)], the valley degeneracy allows the same wave packet
to travel at two different Fermi velocities; hence the wave
packet develops two concentric probability density rings. We
associate the outermost ring with right chiral fermions and
antifermions that travel at group velocity vg = ±(vσ + vτ ),
and the slower ring with left chiral fermions and antifermions
that propagate with group velocity vg = ±(vσ − vτ ). From
quantum simulations of the time evolution of Gaussian wave
packets in a Dirac system, the appearance is well known of the
rippling behavior of the probability density [47] of the wave
packet as time passes while maintaining zero average position.
In Kek-Y graphene, the rippling effect forms a (light pink)
ring shadow that travels behind the main probability density
rings.

Now, in Fig. 4, we consider a Gaussian wave packet of
width d = 20 Å in Kek-Y graphene whose momentum (k0 =
0.05 Å−1) and the pseudospin and isospin point in the same
direction, specifically along the x direction (θp = 0, θσ =
θτ = π/2, and φσ = φτ = 0). By fixing the average momen-
tum of the wave packet parallel to the pseudospin and isospin
vectors at t = 0 fs, the time-evolved wave packet propagates
as a whole in the direction of the momentum (represented by
a blue arrow). From the plot one can estimate the average
position of the wave packet at this time (t = 25 fs) that leads
us to estimate that the wave packet is moving at an average
velocity, very close indeed to the group velocity of the right
chiral fermions (≈ vσ + vτ ). Due to the presence of states
with momentum orthogonal to the pseudospin and isospin,
a pair of crescent-shaped trails form behind the Gaussian
and the average velocity fluctuates rapidly with time in the
direction of motion.

In Fig. 5, we characterize the resulting trembling motion
of the Gaussian wave packets by plotting only the oscillatory
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FIG. 5. Numerical evaluation of the oscillatory part for the ex-
pectation value of the position of the centroid of the wave packets
as a function of time for Kek-Y (solid curves) and pristine (dashed
curves) graphene. The initial Gaussian wave packet has an aver-
age momentum (k0 = 0.05 Å−1, θp = 0) parallel to the isospin and
pseudospin in the x direction (θτ = θσ = π/2, φτ = φσ = 0). Two
cases are considered, Gaussian widths of d = 200 Å (black) and
d = 100 Å (blue). Two types of longitudinal Zitterbewegung natu-
rally emerge when the Kek-Y distortion is present. The oscillations
with the smaller period are due the pseudospin-induced Zitterbewe-
gung, while the larger superimposed period is due the valley-driven
Zitterbewegung.

part for the expectation value of the position of the centroid
of the wave packets. For the simulations, we consider two
different widths of the initial wave packets (d = 100 Å and
d = 200 Å) for both Kek-Y graphene (solid curves) and pris-
tine graphene (dashed curves), and set the average momentum
(k0 = 0.05 Å−1, θp = 0) parallel to the initial pseudospin and
isospin vectors (θp = 0, θσ = θτ = π/2, and φσ = φτ = 0),
that is, along the x axis. Note that for this case there is no
Zitterbewegung in the y direction, that is, 〈ξ̂y(t )〉 = 0. How-
ever, the components of the wave packet whose momentum is
orthogonal to pseudospin and isospin induce a so-called longi-
tudinal Zitterbewegung [28] in the direction of propagation, as
expected from the previous theoretical analysis; see Eqs. (14)
and (15). As discussed, in pristine graphene, the interference
between states of opposite sublattice helicity with respective
positive and negative energies drives the pseudospin Zitter-
bewegung with characteristic frequency ωσ = 2vσ p/h̄, while
in Kek-Y graphene, the interference between states with op-
posite valley chirality corresponding to positive and negative
energies induces an additional oscillatory motion, but in this
case with a much lower frequency ωτ = 2vτ p/h̄, that is
ωτ = �0ωσ . We can estimate the expected characteristic
frequencies by using p → h̄k0, with k0 = 0.05 Å−1, which
results in characteristic half-period oscillations of exactly π fs
and 10π fs, respectively (with Tσ = 2π/ωσ and Tτ = 2π/ωτ ).
As the wave packet dynamics shows in Fig. 5, in the absence
of Kek-Y distortion (�0 = 0) an oscillatory behavior is de-
veloped of 〈ξ̂x(t )〉, from which we can extract a half period of
approximately 3 fs with a decaying behavior of its amplitude
as time increases. However, when the Kek-Y distortion is
present (�0 = 0.1) a second oscillatory behavior is superim-
posed to the first one with a half period of approximately of
32 fs. It is clear that such values are in excellent agreement
with the expected theoretical estimates for the characteristic

pseudospin and valley longitudinal Zitterbewegung oscilla-
tions periods discussed above.

The decaying nature of the amplitude at long times of the
Zitterbewegung oscillations is well understood. Early studies
by Rusin and Zawadzki [27,48], focused on the dynamics
of wave packets in mono- and bilayer graphene, show that
the Zitterbewegung phenomenon persists so long as the wave
subpackets (associated with particle and antiparticle states)
are physically overlapped in real space, decaying as the sub-
packets move away from each other. Thus it can be argued
that the decaying in time of the Zitterbewegung is a decreasing
function of its spatial uncertainty. From Fig. 5, we can infer
that the decay time depends on the sublattice (vσ ) and valley
(vτ ) velocities, as the valley Zitterbewegung decays much
slower than its pseudospin counterpart. This is clearly due
to the fact that vτ /vσ = �0. Since in this case, �0 = 0.1,
therefore the valley Zitterbewegung decays ten times slower
than the pseudospin-induced Zitterbewegung.

In Fig. 6, we show the time-evolved Gaussian wave packets
of width d = 20 Å in Kek-Y graphene at time t = 25 fs for
various directions of momentum, θp, while maintaining the
pseudospin fixed in the x direction (θσ = π/2, φσ = 0) and
setting the isospin in the negative z direction (θτ = π ), with
k0 = 0.05 Å−1. The average momentum vector of the incident
Gaussian wave packet is represented by arrows, where its
color corresponds to the values of θp described in Fig. 7. In
Fig. 6(a), the average momentum is aligned with the initial
pseudospin vector (θp = 0) and the wave packet propagates
horizontally toward the right. Here, similarly as occurs in
Fig. 3(b), the probability density splits into two wave fronts
due to their different group velocities in Kek-Y graphene,
but this time its cylindrical symmetry is lost and the wave
packets develop maximums in the probability density which
drifts to the right because its eigenstate solutions with positive
velocities are dominant owing to that the initial momentum
〈p0〉 of the wave packet is to the right. As we increase the
angle θp in Figs. 6(b)–6(e), we observe that the centroid of the
wave packets tends to follow the direction of motion set by
〈p0〉. However as the θp approaches to π/2, that is, when the
direction of the momentum tends to be aligned to polarization
of the pseudospin (θσ ), the wave packets split into two groups
of two maximums (associated with the valley and pseudospin
components propagating in opposite directions. Hence, as
θp increases, the probability density of the component wave
packet with pseudospin antiparallel to momentum grows in
amplitude, and moves in the opposite direction 〈p0〉. The
asymmetry of the probability density along the x axis being
maximum for positive x shows us that the wave packet is
indeed propagating toward that direction as well. This is most
apparent when the pseudospin is precisely orthogonal to the
momentum, as in Fig. 6(e). A similar behavior was described
in Ref. [28] for the dynamics of wave packets in monolayer
graphene.

In Fig. 6(f), we plot the corresponding trajectory described
by the expectation values of the components of the posi-
tion operator as time evolves (〈x̂(t )〉, 〈ŷ(t )〉), in Kek-Y (solid
lines), and in pristine graphene (dashed lines), and for differ-
ent angles θp [the rest of the parameters are as in Fig. 5(a)].
Clearly a uniform rectilinear path along the x axis is followed
by the quasiparticle wave packets with an average velocity
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FIG. 6. Dynamics of Gaussian wave packets with for various directions of momentum given by θp (k0 = 0.05 Å−1) with the pseudospin
and isospin, initially, in the positive x and negative z directions, respectively (θσ = π/2, φσ = 0, θτ = π ). (a)–(e) Probability densities at
t = 25 fs corresponding to Gaussian wave packets of width d = 20 Å, where the momentum vectors are represented by arrows whose color
corresponds to the color of the curves in (f). (f) Average trajectories of the Gaussian wave packets of width d = 200 Å in Kek-Y (solid lines)
and pristine graphene (dashed lines). The final time of the integration is t f = 110 fs.

of 10 fs/Å, which corresponds to the Fermi velocity of the
quasiparticles in graphene without Kekulé distortion. Once
the Kek-Y bond texture is introduced a longitudinal valley
Zitterbewegung is induced.

For θp = 0, the average rectilinear motion of the wave
packet in Kek-Y graphene (blue solid line) is very close to
the path of the same wave packet in pristine graphene (blue
dashed line) as 〈v0 + v⊥〉 ≈ vσ . The vx(t ) operator exhibits
longitudinal pseudospin precession similarly to Fig. 5; how-
ever the amplitude of this oscillation is very small compared
to the other cases. Meanwhile, the vy(t ) component departs
from zero and begins to oscillate with frequency ωτ as the
isospin begins to precess since |τ 〉 = |z,−〉 is perpendicular
to 〈p〉.

As θp increases, the average trajectories in Fig. 6(f) roughly
follow the direction of the momentum with the wave packet
traveling a similar distance in both Kek-Y and pristine
graphene since vτ /vσ = �0 = 0.1. The amplitude of the pre-
cession in the x direction given by 〈vx(t )〉 increases and, as
the the precession decays, the velocity vector 〈v(t )〉 begins
to settle at a constant value given by 〈v0 + v⊥〉. However,
because 〈v0,y〉 = 0, the magnitude of average velocity after
decay |〈v(t → ∞)〉| decreases as θp increases. Therefore,
the average radial distance traveled by the wave packet re-
duces from ∼vσ t for θp = 0 to zero for θp = π/4. In the
Schrödinger picture [Figs. 6(a)–6(e)], we can attribute this

to the probability amplitude of states that propagate in the
direction opposite to 〈p〉 (those with opposite chirality and
helicity) increasing as a function of θp.

Now, we proceed to explore further the Zitterbewegung
using the analytical expressions for the velocity and position
operators derived in Sec. III by calculating its expectation
values through direct numerical integration. In Figs. 7(a)
and 7(b), we plot the expectation values of the velocity com-
ponents as a function of time for several directions of the
momentum by varying θp. The rest of the parameters used
were as follows: d = 200 Å, k0 = 0.05 Å−1, �0 = 0.1, while
maintaining the pseudospin and isospin fixed in the x direc-
tion (θσ = π/2, φσ = 0) and negative z direction (θτ = π ),
respectively. Note that under these conditions and θp = 0,
the average velocity 〈vx〉 barely develops oscillations (blue
line), while 〈vy〉 a clear oscillation occurs originated by the
transverse Zitterbewegung with a period of 20π fs, which
indicates that it is a valley-driven effect. On the other hand,
when θp = π/2 (green lines), the simultaneous presence of
the pseudospin- and valley-induced transverse Zitterbewe-
gung emerges in the transient behavior of 〈vx〉, with periods
of 2π fs and 20π fs, respectively. However, no oscillations
are developed for the 〈vy〉. The latter is due to that the ori-
entation of the momentum of the wave packet is parallel to
the pseudospin and perpendicular to the valley polarization.
In Figs. 7(c) and 7(d), we show the oscillatory contribution of
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FIG. 7. Time evolution of the average velocities (a) 〈vx (t )〉 and
(b) 〈vy(t )〉, as well as the Zitterbewegung in the (c) x and (d) y
direction for Gaussian wave packets of width d = 200 Å in Kek-Y
graphene for various directions of momentum, θp. The pseudospin
and isospin are initially in the positive x and negative z directions,
respectively, that is, θσ = π/2, φσ = 0, and θτ = π .

the expected position of the wave packets, 〈ξx(t )〉 and 〈ξy(t )〉,
respectively. Similarly, as occurs in the average velocities, the
average position follows the same dependence on the angle of
the momentum.

V. CONCLUDING REMARKS

The emergent fermions in Kekulé-Y textured graphene are
described by two distinct chiralities related to the sublattice

and valley degrees of freedom. Using numerical methods
to solve for the dynamics of Gaussian wave packets in the
Schrödinger picture, it was shown that the broken chiral sym-
metry allows wave packets to propagate at two different Fermi
velocities determined by their chiralities, while retaining their
pseudorelativistic behavior from pristine graphene. The dy-
namics in the Heisenberg picture were also analyzed and it
was found that the valley-momentum locking phenomenon
introduces a second Zitterbewegung in addition to the well-
known pseudospin Zitterbewegung found in pristine graphene.
Similarly to the pseudospin Zitterbewegung, this new Zitter-
bewegung can be interpreted as generated by the precession
of the valley degree of freedom (τ ) around the momentum
with a characteristic angular frequency ωτ = �0ωσ , where
�0 � 1 is the Kekulé coupling constant and ωσ is the renor-
malized angular frequency of pseudospin Zitterbewegung in
Kekulé-Y graphene. While the pseudospin Zitterbewegung is
due to interference between fermionic and antifermionic en-
ergy states, this valley Zitterbewegung is due to the mixing of
valley states with the same energy, akin to the Zitterbewegung
type occurring in two-dimensional semiconductor systems
with Rashba spin-orbit coupling. The valley Zitterbewegung
has been shown to share some of the properties as the pseu-
dospin Zitterbewegung as its amplitude increases as the angle
between the valley isospin and momentum increases, and it
dampens to zero at larger times. However, the lower frequency
of oscillation leads to a drastic decrease in the attenuation rate
of valley Zitterbewegung compared to pseudospin Zitterbe-
wegung. We believe that the one order of magnitude smaller
frequency (that entails larger time periods of the oscillations)
and the significant decrease in its attenuation rate may favor
the detection of the valley Zitterbewegung in current ultra-
fast time-resolved measurements [29,49]. We showed that the
appearance of these Zitterbewegung frequencies is closely
related to the Berry connection matrix of the Kek-Y graphene
Hamiltonian. The results opens up new routes that can be
explored in Dirac materials with Kekulé distortions for the
observation of the Zitterbewegung phenomenon.
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logically protected wave packets and quantum rings in silicene,
Phys. Rev. B 100, 085306 (2019).

[33] S. M. Cunha, D. R. da Costa, G. O. de Sousa, A. Chaves, J. M.
Pereira, and G. A. Farias, Wave-packet dynamics in multilayer
phosphorene, Phys. Rev. B 99, 235424 (2019).

[34] A. Yar and A. Ilyas, Effects of electric and magnetic fields on
Zitterbewegung of electron wave packet in borophene, J. Phys.
Soc. Jpn. 89, 124705 (2020).

[35] T. Biswas and T. K. Ghosh, Dynamics of a quasiparticle in the
α-T3 model: Role of pseudospin polarization and transverse
magnetic field on zitterbewegung, J. Phys.: Condens. Matter 30,
075301 (2018).

[36] V. Y. Demikhovskii and A. Telezhnikov, Dynamics of electron
wave packets in topological insulators, JETP Lett. 99, 104
(2014).

[37] G. J. Ferreira, R. P. Maciel, P. H. Penteado, and J. C. Egues,
Zitterbewegung and bulk-edge Landau-Zener tunneling in topo-
logical insulators, Phys. Rev. B 98, 165120 (2018).

[38] A. Yar, M. Naeem, S. U. Khan, and K. Sabeeh, Hybridization
effects on wave packet dynamics in topological insulator thin
films, J. Phys.: Condens. Matter 29, 465002 (2017).

[39] I. R. Lavor, D. R. da Costa, A. Chaves, S. H. R. Sena,
G. A. Farias, B. V. Duppen, and F. M. Peeters, Effect
of Zitterbewegung on the propagation of wave packets in
ABC-stacked multilayer graphene: An analytical and com-
putational approach, J. Phys.: Condens. Matter 33, 095503
(2021).

[40] I. R. Lavor, D. R. da Costa, L. Covaci, M. V. Milošević, F. M.
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