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Non-Hermitian pseudo mobility edge in a coupled chain system
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In this work, we explore interesting consequences arising from the coupling between a clean non-Hermitian
chain with skin localization and a delocalized chain of the same length under various boundary conditions (BCs).
We reveal that in the ladder with weak rung coupling, the non-Hermitian skin localization could induce a pseudo
mobility edge (ME) in the complex energy plane, which separates states with extended and localized profiles yet
allows unidirectional transport of signals. We also demonstrate the gradual takeover of the non-Hermitian skin
effect in the entire system with the increase of the rung coupling under conventional open BC (OBC). When
taking OBC for the non-Hermitian chain and periodic BC (PBC) for the other, it is discovered that a quantized
winding number defined under PBC could characterize the transition from the pseudo-ME to the trivial extended
phases, establishing a “bulk-defect correspondence” in our quasi-1D non-Hermitian system. This work hence
unveils more subtle properties of non-Hermitian skin effects and sheds light on the topological nature of the
non-Hermitian localized modes in the proximity to systems with dissimilar localization properties.
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I. INTRODUCTION

Any amount of uncorrelated disorder shall localize all bulk
states in large noninteracting systems of dimension d < 3
[1,2]. In higher dimensions, a mobility edge (ME) emerges
as the energy separating localized and extended eigenstates
[3–8]. Replacing the uncorrelated disorder by a quasiperiodic
potential, e.g., in the Aubry-André-Harper model [9,10], a
quantum phase transition can take place in one dimension
where all eigenstates become extended or localized when the
potential strength varies [11,12]. In the presence of long-range
hopping, slowly varying potential or lattice deformations, a
ME may also appear in low-dimensional systems [13–18].
The emergence of MEs in non-Hermitian disordered sys-
tems under periodic boundary condition (PBC) have been
discussed [19,20]. MEs in the complex energy plane have
also been reported in non-Hermitian quasiperiodic systems
recently [21–30].

Effective non-Hermitian descriptions for classical and
quantum systems have attracted great attention. In theory,
non-Hermitian models can host a plethora of exotic phenom-
ena absent in their Hermitian counterparts [31–39], e.g., their
exceptional topology has been discovered and classified into
enriched symmetry tables [40–44]. Experimentally, various
non-Hermitian phases have been observed in a wide range of
classical and quantum simulators like photonic, acoustic, elec-
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tronic and ultracold atom systems [45–50], yielding potential
applications such as topological lasing and high-performance
sensing [51–57].

Among the rich features of non-Hermitian models reported
so far, the non-Hermitian skin effect (NHSE) stands out as
an intriguing localization mechanism [58–67]. It refers to the
phenomenon where all eigenstates are localized at the edges
when the system breaks translational symmetry. Because of
possibly betraying the well-established band theory and the
renowned principle of bulk-boundary correspondence (BBC),
new theoretical formulations, such as the non-Bloch Brillouin
zone, and refined definitions of topological invariants have
been proposed and pushed forward for a resolution in the
presence of NHSE [67–75].

MEs without disorder or quasiperiodicity are rarely ex-
plored [76,77], and we naturally ask whether there exists a
ME for systems exhibiting non-Hermitian skin localization.
In this work, we propose to consider a clean non-Hermitian
skin localized chain with nonreciprocal hoppings coupled
to a delocalized chain of the same length. We reveal that
the NHSE in the non-Hermitian chain can propagate to its
proximity under certain boundary conditions (BCs) and in-
terchain couplings. Remarkably, a ME seemingly emerges
in the complex energy plane separating the localized eigen-
states from the extended, though a suppression of transport
in the localized regime analogous to Anderson localization
does not occur and is replaced by directional amplification
instead [78–81]. We hence dub this border between localiza-
tion and delocalization as a non-Hermitian pseudo-ME and
investigate its properties under various BCs. Surprisingly, a
quantized jump of a spectral winding number is found to
characterize the transition from a phase with a pseudo-ME to
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FIG. 1. A schematic illustration of the hybridized HN ladder. The
leg A/B is formed by a clean HN/Hermitian chain.

extended phases under an unconventional BC, establishing a
“bulk-defect correspondence.”

The remaining paper is organized as follows. We intro-
duce our model in Sec. II with the importance of BCs for
non-Hermitian skin localization highlighted. In Sec. III, we
demonstrate that the proximity effect of NHSE could induce
a pseudo-ME phase in the composite system with weak inter-
chain coupling under different BCs. Characterizations of the
eigenstate spatial profiles are performed by calculating the in-
verse participation ratio (IPR) and its scaling with the system
size. Furthermore, the fractal dimension (FD) and topological
winding number are also employed to confirm the pseudo-ME
phase and transitions to extended phases. Finally, we sum-
marize our results and discuss potential future directions in
Sec. IV.

II. MODEL

In this section, we introduce a minimal model that could
demonstrate the presence of the pseudo-ME before the full
takeover of NHSE. Our model consists of a non-Hermitian
disorder-free Hatano-Nelson (HN) chain [19,20] with non-
reciprocal nearest-neighbor hoppings and another chain with
reciprocal hoppings of the same length. We further introduce
site-to-site reciprocal single-particle hoppings between the
two chains to realize a nontrivial system. We will term this
model as a hybridized HN ladder thereafter, with a schematic
illustration given in Fig. 1. In the tight-binding representation,
the bulk Hamiltonian of our hybridized HN ladder reads

H =
∑

n

J (eγ c†
n,Acn+1,A + e−γ c†

n+1,Acn,A)

+
∑

n

(Jc†
n,Bcn+1,B + V c†

n,Acn,B + H.c.)

+
∑

n

μ(c†
n,Acn,A − c†

n,Bcn,B), (1)

where c†
n,A/B is the creation operator at A/B sublattice in

the n-th unit cell with n = 1, ..., N the unit cell indices (see
Fig. 1). We may alternatively think of the two sublattices
as an additional degree of freedom such as spin or flavor.
The parameter J denotes the nearest-neighbor hopping am-
plitude and γ controls the asymmetry between right-to-left
and left-to-right hoppings along the HN chain formed by all A
sublattices. The interchain coupling strength is controlled by
V , and an onsite potential bias 2μ is applied between the two
sublattices in each unit cell. From now on, we take J = 1 as

FIG. 2. A sketch of possible eigenstate spatial profiles of the hy-
bridized HN ladder under different BCs when the interchain coupling
V increases with other system parameters fixed. N − 1 and 1 are the
indices of unit cells.

the unit of energy. Any additional terms from the boundary
coupling are illustrated in Fig. 2.

Translational symmetry in our model can be either pre-
served by connecting the first and last sites or broken by
not connecting them, though it is always broken in Anderson
models with disorder-induced localization. BCs are crucial or
a priori for the appearance of the non-Hermitian skin localiza-
tion, and in this work, we will consider various types of BCs
for our system.

We first note that under PBC, i.e., c†
N,s = c†

1,s with s =
A, B, our model is translational invariant and thus can be
written as H = ∑

k H̃ (k)c†
kck in momentum space with the

Fourier transformation c†
n,s = 1√

N

∑
k e−iknc†

k,s with s = A, B.
We have

H̃ (k) = h0σ0 + hxσx + hzσz,

h0 = cos(k − iγ ) + cos k,

hx = V,

hz = cos(k − iγ ) − cos k + μ, (2)

where the identity σ0 and Pauli σx,z matrices acting in the
pseudo-spin- 1

2 space spanned by sublattices A and B in each
unit cell; k ∈ (−π, π ] is the quasimomentum. Eigenstates
under the PBC are Bloch states and extended in real space.

The open BC (OBC) of our model refers to taking OBC for
both chains, disconnecting all the end sites. It is thus possible
that all eigenstates are pushed by the nonreciprocal pumping
in a preferred direction and accumulate at the boundary. Here
we further consider taking PBC along the Hermitian chain
and OBC along the HN chain, named as mixed BC (MBC).
Our motivation for considering the MBC is that the chain
with reciprocal hopping is expected to be barely affected by
the BCs, where eigenstates are all extended when there is
no interchain coupling either as standing waves under OBC
or as Bloch waves under PBC. However, the eigensystem
under MBC might change dramatically compared with that
under OBC due to the extreme sensitivity to extra coupling
of the resultant non-Hermitian ladders. Intrinsic connections
between results obtained under different types of BCs will be
presented and discussed in the following sections.
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III. RESULTS AND DISCUSSIONS

We now present the eigensystem and the emergence of a
pseudo-ME in the complex energy plane of our model under
different BCs. In particular, we will focus our attention on the
topological features of the hybridized HN ladder under the
unconventional MBC.

In Sec. III A, we show the spectrum of the system under
PBC. Unique to non-Hermitian systems, a spectral winding
number can be introduced to characterize the transition from
a point-gap to a line-gap spectrum, with the phase boundary
obtained analytically. In Sec. III B, we present in detail the
eigensystem of our model under OBC and MBC. One of our
main results is that a pseudo-ME phase, determined from the
IPR of eigenstates, emerges when the interchain coupling V
is small while it transits to a localized phase and extended
phase as V increases under OBC and MBC, respectively. We
provide a sketch of phases based on eigenstate spatial profiles
of our model in Fig. 2 for the ease of reference. Bounds of the
pseudo-ME under MBC are exactly determined by the edges
of Bloch bands and further confirmed by FD calculations in
Sec. III C. We especially find that the transition of the system
from a pseudo-ME phase to an extended phase under MBC
is accompanied by the quantized jump of a spectral winding
number under PBC. In Sec. III D, we establish the topologi-
cal phase diagram of the model under MBC and discuss its
transitions.

A. Spectrum and winding number under PBC

We first present the spectrum of our system under PBC in
Fig. 3. From Eq. (2), we see that the system has two complex
bulk bands given by

E±(k) = h0 ±
√

h2
x + h2

z . (3)

Along the real-energy axis, the upper bounds of E±(k) are
located at

E+(0) = cosh γ + 1 +
√

V 2 + (cosh γ − 1 + μ)2, (4)

E−(0) = cosh γ + 1 −
√

V 2 + (cosh γ − 1 + μ)2, (5)

whereas the lower bounds of E±(k) are found at

E+(π ) = − cosh γ − 1 +
√

V 2 + (cosh γ − 1 − μ)2, (6)

E−(π ) = − cosh γ − 1 −
√

V 2 + (cosh γ − 1 − μ)2. (7)

When the interchain coupling is turned off, i.e., V = 0,
the spectrum of the HN chain forms a loop on the complex
energy plane, and eigenenergies of the other chain reside
along the real axis, as shown in Fig. 3(a). When V is turned
on, the two chains are coupled and the spectrum of the hy-
bridized system consists of two loops in the complex energy
plane. We also show the occupation on the HN chain of
each eigenstate ρ(A) = ∑N

n=1 |ψ i
n,A|2 by color to indicate how

strong the two chains are hybridized. The two loops partially
overlap, and they share the central point gap in the range
E+(π ) < Re(E ) < E−(0). When V is large, the two bands are
shifted away and become separated by a line gap, as shown in
Fig. 3(d). The spectrum of the system changes from point to

(a) (b)

(c) (d)

( )

FIG. 3. Spectrum of the hybridized HN ladder under PBC. Other
system parameters are (J, γ , μ) = (1, 0.3, 0.5) for (a)–(d) and the
length of ladder is N = 100. The color of each point represents the
occupation of the corresponding eigenstate on the HN chain.

line gapped when E−(0) = E+(π ), yielding critical values of
interchain coupling

V c
± = ± 2

cosh γ + 1

√
cosh γ [(cosh γ + 1)2 − μ2]. (8)

Note that we are more interested in the regime where the two
chains can be efficiently coupled by even a small V , and hence
we focus on the spectral transitions mentioned above with μ ∈
(μ−, μ+), where

μ± = ±(cosh γ + 1). (9)

When |μ| > |μ±|, the on-site bias is too large such that the
bands are separated by a line gap at V = 0. Moreover, the
band touching point at the spectral transition is found to be
E0 = E−(0) = E+(π ), i.e.,

E0 = −μ
cosh γ − 1

cosh γ + 1
(10)

assuming μ ∈ (μ−, μ+).
Now we can define a spectral winding number with respect

to E0 under PBC [41], i.e.,

w =
∫ π

−π

dk

2π i
∂k ln det [H (k) − E0]. (11)

When V ∈ (V c
−,V c

+), the base energy E0 resides in the central
point gap of H (k) and is encircled twice by E±(k) when k
sweeps from −π to π , yielding a winding number w = ±2,
which is easy to see geometrically in Figs. 3(b)–3(c). When
|V | > |V c

±|, E0 appears in the line gap of H (k) and is not
encircled by E±(k), leading to a winding number w = 0.
Therefore, the point-gap and line-gap phases of the hybridized
HN ladder under PBC can be distinguished by the topological
winding number w. We will demonstrate a “bulk-defect” cor-
respondence of this winding number in Secs. III C and III D.
Before that, we first resolve the spectral and transport nature
of the system under the OBC and MBC.
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(a)

(c) (d)

(b) IPR

FIG. 4. Spectrum of the hybridized HN ladder under OBC. Other
system parameters are (J, γ , μ) = (1, 0.3, 0.5) for (a)–(d) and the
length of ladder is N = 100. The color of each point represents the
IPR of the corresponding eigenstate. All states with IPR > 0.1 are
dyed with the same color for illustration purpose.

B. Eigensystem under OBC and MBC

Under OBC or MBC, we can obtain the spectrum and
eigenstates of the hybridized HN ladder by solving the eigen-
value equation with the corresponding Hamiltonian Eq. (1) in
real space. We present the spectrum for OBC in Fig. 4 and that
for MBC in Fig. 5. We first note that when the two chains are
decoupled, eigenenergies are all real since the spectrum of an
open HN chain is real, as shown in Figs. 4(a) and 5(a).

For a finite interchain coupling V > 0, a dramatic change
of the spectrum occurs as a result of the extreme sensitivity of
non-Hermitian systems. We observe a ring immediately de-
velops in the central region of the OBC spectrum and shrinks
as V increases, as seen in Figs. 4(b) and 4(c). Eventually, two

(a) (b)

(c) (d)

IPR

FIG. 5. Spectrum of the hybridized HN ladder under MBC.
Other system parameters are (J, γ , μ) = (1, 0.3, 0.5) for (a)–(d) and
the length of ladder is N = 100. The color of each point represents
the IPR of the corresponding eigenstate. All states with IPR > 0.1
are dyed with the same color for illustration purpose.

line-gapped bands on the real axis are formed when V is suffi-
ciently large. We can understand such transitions qualitatively
by examining the role of V in different parameter regions.
An infinitesimal coupling between two chains with dissimi-
lar skin localization in thermodynamic limit could alter very
much their eigenspectrum in a nonperturbative manner [66].
In principle, we can obtain the OBC spectrum analytically
by employing the generalized Brillouin zone approach with
a nonvanishing V in the thermodynamic limit, though it is
highly nontrivial to derive the exact expression. Instead, on
one hand, we could understand the emergence of the central
ring qualitatively with the concept of level repulsion in stan-
dard quantum mechanics. In the overlapping region of the
spectrum, density of states is high and nearby eigenvalues
repel in the complex plane. Specifically, in the basis where
the non-Hermitian Hamiltonian of two decoupled chains is
diagonal, the interchain hoppings may consist of an anti-
Hermitian part, forcing the eigenvalues to repel one another
along the imaginary axis [82]. A similarity transformation to
a Hermitian model is thus impossible. On the other hand, we
could also understand it from a dynamical point of view. Let
us imagine if we input a signal at one of the chains. The
interchain couplings then provide propagation channels for
the signal frequency that is on resonance with the other chain,
possibly allowing an infinite directional amplification of the
signal via forming shortcuts in the system. This dynamical
instability is now manifested as complex eigenenergies in
the central ring regime of the spectrum [78,83]. In the limit
of large V , the roles of the interchain coupling V and the
potential bias μ are effectively exchanged. The model is then
dominated by the term V σx in each unit cell, and the eigen-
states become the symmetric and antisymmetric combinations
of the two sublattices A and B, which are weakly perturbed by
intrachain couplings. Each of these linear combinations natu-
rally inherits the nonreciprocal hoppings from the HN chains
and also the OBC of both chains. Therefore the spectrum ends
up residing on the real axis as if there are two copies of open
HN chains.

We next look at the spectrum under MBC. Interestingly,
besides the development of rings for small V , we find that a
portion of the spectrum is pinned to the Re(E ) axis, ending at
the E+(π ) and E−(0) of the PBC spectrum, which is quite
different from the case under OBC. We further verify that
the range of V to observe these real eigenvalues coincides
with the point-gap phase V ∈ (V c

−,V c
+) under PBC. When

V > V c
+, all eigenvalues form two loops separated by a line

gap, resembling the spectrum of two closed HN chains. As
discussed previously, the system is now analogous of two HN
chains formed by two linear combinations of A and B, except
that they also inherit the boundary couplings of the original
Hermitian chain. Therefore they both have finite boundary
couplings, leading to the PBC-like loops of the spectrum.

Now let us turn our attention to the localization property of
the eigenstates at different energies under OBC and MBC. We
recall that a non-Hermitian Hamiltonian H with eigenvalues
En has a set of right eigenvectors H |ψn〉 = En|ψn〉 as well
as a set of left eigenvectors 〈φn|H = 〈φn|En. They together
form a complete biorthonormal eigensystem. In this work, we
focus on the non-Hermitian skin localization and we therefore
employ only the right eigenstates of the Hamiltonian. Note
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(c)

(b)

(d)= 0.3

= −0.3

= −0.3

(a) = 0.3

FIG. 6. Eigenstate spatial distribution with different asymmetric
parameter γ under different BCs. OBC for (a) and (b) with V = 0.1
and MBC for (c) and (d) with V = 1.0. Red colors correspond to
eigenstates with IPR > 0.02 and blue colors to those with IPR <

0.02. Other system parameters are (J, μ) = (1, 0.5) for (a)–(d) and
the length of ladder is N = 100 with L = 2N .

that in disordered HN chains under PBC, delocalization has
been investigated with both the left and the right eigenvectors
[84]. We define the IPR of a right eigenvector as

IPR(|ψi〉) =
N∑

n=1

∑
s=A,B

|ψ i
n,s|4, (12)

where |ψi〉 = ∑
n,s ψ i

n,sc
†
n,s|0〉 is the normalized right eigen-

vector of H . The IPRs of all eigenstates under OBC and
MBC are indicated by the color of points in Figs. 4 and 5,
respectively.

One of the most striking features of the eigenstates of our
model under OBC or MBC is the presence of both (skin)
localized and extended states. This is evident from the sharp
color contrast from their IPRs. A cluster of eigenstates under
either OBC or MBC is more localized than others in a finite
range of the interchain coupling V . In Fig. 6, we present the
spatial distribution of right eigenstates defined as

ρi(x) =
∑

s=A,B

|ψ i
n,s|2 (13)

for certain V under both OBC and MBC. Note that the di-
rectional localization of some states toward one boundary
for different asymmetric parameter γ is a clear signature
of NHSE, while the relation between a seemingly preferred
direction indicated by γ and the actual localization direction
may not be trivial [85]. We also observe that the amount of lo-
calized eigenstates increases (decreases) when the interchain
coupling is tuned up for OBC (MBC). Moreover, as these
skin-localized modes can coexist with extended states, we
claim the NHSE-induced ME on the complex energy plane
for such coupled chain system. We note that there is a major
difference between ME of non-Hermitian skin localization
observed in our model under OBC and ME of Anderson
localization in a disordered HN chain under PBC. We do not
expect the suppression of transport of local excitations in our
system. Instead, with the presence of skin-localized modes in
the ME phase, directional amplification is expected for signal

(a)

(c)

(b)

(d)

FIG. 7. Scaling of the maximum, minimum and average of IPRs
versus the length of ladder N under OBC. Other system parameters
are (J, γ , μ) = (1, 0.3, 0.5) for (a)–(d) and the length of ladder goes
from N = 10 up to N = 100 with L = 2N .

frequencies matched with certain energies [78–81]. This is
the reasoning behind the term “pseudo-ME” we adopted here.
Another observation is that when V is large, all eigenstates
are localized under OBC, while the localization of states
eventually vanishes under MBC. This reconfirms our previ-
ous interpretation at large V in terms of effective HN chains
without (with) boundary couplings for OBC (MBC).

Last but importantly, we investigate the scaling of IPRs
versus the system size under OBC and MBC. To further
distinguish between (skin) localized and extended states in
our model, we study the maximum, minimum, and average
of IPRs, which are defined as

max(IPR) = max
i∈{1,...,L}

IPR(|ψi〉), (14)

min(IPR) = min
i∈{1,...,L}

IPR(|ψi〉), (15)

ave(IPR) = 1

L

L∑
i=1

IPR(|ψi〉), (16)

where L = 2N counts the total number of states. For extended
(localized) states, we have IPR ∼ N−1 (IPR ∼ ξ−1), where
the localization length ξ is independent of the system size.
Our numerical results are presented for OBC in Fig. 7 and for
MBC in Fig. 8.

We find that under OBC, only the minimum of IPRs scales
with the system size for some small interchain couplings, as
shown in Figs. 7(b) and 7(c), while the average and maximum
of IPRs are almost constant. It also indicates that eventually
the minimum of IPRs becomes constant for large V , as seen
in Fig. 7(d). This is in line with our previous discussions, i.e.,
our model effectively consists of two open HN chains at large
V . Note that localization lengths of all eigenstates of an open
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(a) (b)

(c) (d)

FIG. 8. Scaling of the maximum, minimum and average of IPRs
versus the length of ladder N under MBC. Other system parameters
are (J, γ , μ) = (1, 0.3, 0.5) for (a)–(d) and the length of ladder goes
from N = 10 up to N = 250 with L = 2N .

HN chain are the same in the thermodynamic limit, while
they may differ due to numerical calculations up to a finite
system size. In short, we clearly observe the propagation of the
non-Hermitian skin localization from the HN chain to another
chain at its proximity, and all states can be localized in the
hybridized ladder under OBC.

We also observe the coexistence of finite amounts of ex-
tended and skin-localized states in our model under MBC,
though IPRs behave differently at large V from those un-
der OBC. We further numerically verify that the pseudo-ME
phase under MBC agrees very well with the range of inter-
chain coupling V ∈ (V c

−,V c
+). This corresponds to the cases

shown in Figs. 8(b) and 8(c), where the max(IPR) ∼ ξ−1

and the min(IPR) ∼ N−1. Now let us relate these results
here to the previous results on spectrum under PBC. Re-
markably, it turns out that the central point-gap phase under
PBC corresponds to the pseudo-ME phase under MBC. When
|V | > |V c

±|, we find IPR ∼ N−1 for all states, implying the
coincidence between the line-gap phase within PBC and the
extended phase under MBC of the hybridized HN ladder.
Because of the excellent phase correspondence observed here,
we will focus on their intrinsic connections in the following
subsections.

C. Non-Hermitian skin localization transition and pseudo
mobility edge

We now know that tuning the interchain coupling in our
model may induce a transition from a pseudo-ME phase to
an extended phase under MBC. Surprisingly, we also have
clues that this phase transition coincides with that from a
point-gapped spectrum with winding number w = ±2 to a
line-gapped spectrum with w = 0 under PBC. To obtain fur-

FIG. 9. Fractal dimensional FD versus the hopping asymmetry γ

and interchain coupling V (bias μ) in (a) and (b) [(c), (d)]. OBC/PBC
is taken along leg A/B. The length of ladder is N = 500. Red dashed
and dotted lines are phase boundaries and bounds of μ as given by
Eqs. (8) and (9).

ther confirmations of this view, we construct the FD of the
eigenstates from the average of their IPRs, i.e.,

FD = − ln[ave(IPR)]/ ln L, (17)

where L = 2N is the total number of states and ave(IPR)
is defined in Eq. (16). For a phase in which all states are
extended, we would expect ave(IPR) ∼ L−1 and FD � 1. For
a phase with pseudo-MEs, we would instead have 0 < FD <

1. In Fig. 9, we show the FD of the hybridized HN ladder
under MBC. In all these examples, we find that for γ �= 0,
the configurations of FD exhibit two distinct regions. When
V ∈ (V c

−,V c
+), we find FD ∈ (0, 1), which corresponds to the

pseudo-ME phase in which extended and skin-localized states
coexist. When |V | > |V c

±|, the FD approaches one. The system
thus undergoes a delocalization transition and roams into an
extended phase. Notably, the phase boundaries [dashed lines
in Figs. 9(a)–9(d)] are exactly determined by Eq. (8), i.e.,
the transition point of the spectrum between point- and line
gapped under PBC. Moreover, beyond μ = μ± [dotted lines
in Figs. 9(c) and 9(d)], the system enters the extended phase
whenever an infinitesimal coupling V is switched on. In this
case, the non-Hermitian skin localization of an open HN chain
is vanishing by coupling it to a periodic chain, because of the
finite boundary couplings inherited from its proximity. Hence
the extra boundary coupling in the Hermitian chain is essential
for the presence of delocalization transitions in our system
under MBC.

To acquire more details of the pseudo-ME, we calculate
the IPRs of all eigenstates with respect to the real parts
of their energies. Our results are presented in Fig. 10 with
considerations of other parameters as well. The red dashed
lines in Figs. 10(a)–10(d) are band edges determined from
Eqs. (5) and (6), beyond which the IPRs of all states go to
zero in the L → ∞ limit. Therefore Eqs. (5) and (6) can be
viewed as the upper and lower bounds of the pseudo-ME in
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FIG. 10. IPRs of all states versus the real parts of their energies
ReE and interleg coupling V (bias μ) in (a) and (b) [(c) and (d)]. The
hybridized HN ladder contains N = 500 unit cells. OBC/PBC along
the leg A/B is taken in the calculation of IPRs. Dashed and dotted
lines are bounds of the ME (in ReE ) and the real parts of spectrum, as
obtained from Eqs. (4)–(7). Green circles denote the winding number
w, generated under the PBC by Eq. (11).

the ReE -parameter plane of the system for V ∈ (V c
−,V c

+) and
μ ∈ (μ−, μ+). Moreover, we observe a quantized jump of
the spectral winding number w under PBC [green circles in
Figs. 10(a)–10(d)] from two to zero when the system transits
from the pseudo-ME phase to the extended phase under MBC.
These results confirm that the spectral winding number w

defined in Eq. (11) can serve as a topological order parameter
to characterize the phase transitions in the hybridized HN
ladder under MBC. Our key results are collected in Table I
for quick reference.

D. Topological phase diagram

Based on the above discussions, let us now complete the
topological characterization of our system. In Fig. 11, we
present typical examples of topological phase diagrams of the
hybridized HN ladder. We first note that the sign of wind-
ing number w is determined by the sign of γ , or physically

FIG. 11. Phase diagram of the hybridized HN ladder. In (a)–(d),
each region with a uniform color corresponds to a topological phase,
whose winding number w is denoted explicitly therein. The red
dashed and dotted lines denote phase boundaries and upper/lower
bounds of μ for the NHSE, which are obtained from Eqs. (8) and
(9).

speaking the “chirality” of the NHSE. More precisely, when
γ > 0 (γ < 0), bulk states are mainly localized at the left
(right) boundary of the ladder, and we find w = 2 (−2) for
V ∈ (V c

−,V c
+) [in between the red dashed lines in Figs. 11(a)–

11(d)]. When the interchain coupling |V | > |V c
±|, we find

w = 0 for all cases. Comparing the results in Figs. 9 and
11, we find that the pseudo-ME (extended) phase coincides
well with the regions in which w = ±2 (w = 0). Hence we
establish a one-to-one correspondence between the spectrum
(point-gapped or line gapped under PBC), states (with or
without skin-localized modes under MBC), and topological
properties of the hybridized HN ladder.

Our interpretation of w as a topological order parameter
for the system under PBC and MBC can be further un-
derstood as follows. When the point gap in the range E ∈
[ReE+(π ), ReE−(0)] is present under the PBC, we find all
bulk states appearing under the MBC to be localized with
real energies in that energy range, while other bulk states are
extended with nonreal energies. When the point gap in the

TABLE I. Summary of results for the hybridized HN ladder under MBC. V c
± and μ± are given by Eqs. (8) and (9). ξ and L denote the

localization length and total number of lattice sites. IPR, FD, and w refer to the IPR, FD [see Eq. (17)] and winding number [see Eq. (11)].

Phase Pseudo mobility edge Extended

Condition |μ| < |μ±|, |V | < |V c
±| |μ| < |μ±|, |V | > |V c

±|
or |μ| � |μ±|, |V | > 0

Energy Real/Complex for skin- Complex
localized/extended states

IPR ∼ξ−1/∼L−1 for skin- ∼L−1

localized/extended states
FD ∈ (0, 1) � 1
Winding w = ±2 w = 0
number
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FIG. 12. Winding number w versus the base energy E0 and inter-
chain coupling V (bias μ) in (a) and (b) [(c) and (d)]. In (a)–(d), each
region with a uniform color has a fixed w. The dashed and dotted
lines are band edges determined by Eqs. (4)–(7).

overlapping region of the two bands vanishes such that w

changes from ±2 to 0, the real-energy localized states and
the pseudo-ME in the spectrum also vanish. In this sense,
we interpret the region with pseudo-ME as a phase that is
topologically protected by the point-gap winding number of
the PBC Hamiltonian. Note that this type of spectral winding
number does not require any symmetry protection, and its
quantization has been shown to be robust to various pertur-
bations [41].

We may also appreciate the excellent correspondence ob-
served in our system under PBC and MBC from another
perspective. If we regard the missing coupling between the
two ends in the HN chain as a defect in our system un-
der MBC, then our result may also be interpreted as a
“bulk-defect correspondence” in this quasi-1D non-Hermitian
system. Therefore the topological invariant of bulk spectrum
under PBC is closely related to the localization nature of states
around such defect in the ladder under MBC.

To furnish the topological view of the pseudo-ME phase
under MBC, we let the base energy E0 in Eq. (11) be a tunable
parameter and show the winding number w versus (E0,V ) and
(E0, μ) in Fig. 12. When E0 is chosen beyond the range of
bulk bands [i.e., E0 < E−(π ) or E0 > E+(0) ] or inside the
line gap under PBC, we find w = 0 as expected. When E0 is
chosen inside the central point gap [i.e., E+(π ) < E0 < E−(0)
], we find the winding number w = 2 for γ > 0, irrespective
of the exact location of E0 in this regime. This observation
also indicates the robustness of the topological quantization of
w with respective to perturbations in system parameters V and
μ. Exceeding the bounds of the pseudo-MEs [i.e., between the

red dashed and the dotted lines in Figs. 12(a)–12(d)], we find
w = 1 for all available E0. Comparing these with the results
presented in Fig. 10, we conclude that the winding number w

can indeed be employed as a refined facility to discriminate
the states of the hybridized HN ladder into collections with
distinct localization nature. For completeness, we have per-
formed calculations of the spectrum, IPRs, and FD by taking
the other type of MBC, i.e., choosing PBC/OBC along the leg
A/B of the ladder. Results thus obtained are consistent with
those presented in this section, which confirms the generality
of the connections we established among different aspects of
the system.

IV. SUMMARY

In this work, we considered a noninteracting coupled-chain
system consisting of a non-Hermitian chain with nonre-
ciprocal hoppings and a delocalized Hermitian chain. We
discovered that a pseudo-ME phase may emerge under a weak
interchain coupling. We demonstrated that non-Hermitian
skin localization can propagate to its proximity when both
chains are under OBC. Such NHSE propagation or takeover is
fragile to extra boundary coupling in either of the two chains,
reflecting the extreme sensitivity of non-Hermitian systems
and the fragility of the NHSE against boundary perturba-
tions [86–89]. We also characterized the transitions from the
pseudo-ME phase to the extended phase under MBC with a
topological spectral winding number under PBC of our model.
Our findings thus provide more insight for understanding the
topological and localization properties of the NHSE in a com-
posite system and we unveil new possibilities of NHSE under
external perturbations. In future work, it would be interesting
to investigate the non-Hermitian localized system coupled
to different systems [90] and consider possible realizations
of the hybridized HN ladder in some quantum simulators.
The potential applications of these results in sensing and
lasing technologies are also worthy of further exploration. An-
other promising aspect may come from the consideration of
interaction effects. Two Luttinger liquids coupled with single-
particle hoppings have been intensively studied [91–94]. The
effects brought by non-Hermiticity in one of the systems or
both should be a fruitful problem to investigate.
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