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Flexural deformations and collapse of bilayer two-dimensional crystals by interlayer excitons
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We develop a consistent theory of the interlayer exciton-polaron formed in atomically thin bilayers. Coulomb
attraction between an electron and a hole situated in the different layers results in their flexural deformation and
provides an efficient mechanism of the exciton coupling with flexural phonons. We study the effect of layers
tension on the polaron binding energy and effective mass leading to suppression of polaron formation by the
tension both in the weak and strong coupling regimes. We also consider the role of the nonlinearity related to
the interaction between the out- and in-plane lattice displacements and obtain the criterion of the layer sticking,
where the exciton collapses due to the Coulomb attraction between the charge carriers.
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I. INTRODUCTION

Polarons, compound condensed matter quasiparticles,
formed by charge carriers interacting with internal excitations
such as phonons or magnons, can play a critical role in the
understanding of the properties of solids [1,2]. The polarons
formed by electrons and phonons can be responsible for con-
ductivity of semiconductors [1,3–6], their optical properties
[7,8], and collective electron phases [9,10]. Similar effects
appear in magnetic semiconductors due to interaction between
electrons and magnons [11], as well as a result of the hyperfine
interaction between the electron and nuclear spins [12]. In
high-temperature superconductors polarons built by electrons
and magnons [13,14] may determine the magnetic properties
and the type of superconductivity. Several nontrivial quantum
effects in polaron physics were addressed in Refs. [15–17].

The physics of the polarons depends on three main parame-
ters. The first one is the coupling strength between the particle
and the system excitations, such as phonons or magnons. The
second parameter is the spectrum of the excitations depen-
dent on the effective system stiffness. When the host material
becomes softer, the coupling naturally increases. The third
parameter is the dimensionality since in the systems with
low dimensionality even relatively weak coupling can have a
strong effect on the motion of the particle and ultimately cause
its localization.

The novel atomically thin semiconductors such as
graphene and transition-metal dichalcogenide monolayers,
provided a playground for studies of their rich physical prop-
erties, including various aspects of coupling of the charge
carriers to the host layers. In these two-dimensional materials,
the coupling of phonons to electrons, excitons, and polaritons
[18] provides efficient relaxation channels [19–21], forms
sidebands in absorption and emission spectra [22,23], controls

resonant Raman processes, and impacts coherence generation
[24–27].

Furthermore, one of the key aspects of two-dimensional
materials physics is given by out-of-plane displacements of
atoms forming soft flexural phonons with the parabolic in the
wave-vector dispersion [28–31] at a large phonon wavelength.
Due to the low dimensionality and softness, flexural phonons
result in rippling and crumpling of the atomic planes, produce
anomalous temperature-dependent elasticity [32–35], and are
of interest for mechanical and optomechanical applications
[36–38]. However, it is difficult to achieve a strong coupling
of electrons moving in the atomic planes to the out-of-plane
displacement flexural phonons since the interaction of carri-
ers with the flexural phonons is suppressed [31,39,40] as it
requires deformations of the single layer along the orthogonal
axis, similar to the spontaneous symmetry breaking.

Recently, bilayer structures attracted a lot of attention of
researchers. One of the interesting objects there is an inter-
layer exciton, where electron and hole, bound by the modified
Coulomb interaction, are located in different layers. This out-
of-plane interaction activates coupling of interlayer excitons
to the flexural phonons since the attraction between electron
and hole tends to displace the carriers out of the atomic
planes. Thus, the interlayer excitons, as it was theoretically
demonstrated in Ref. [41], interact much stronger with out-
of-plane phonons in double-layer structures shown in Fig. 1
than intralayer complexes or single charge carriers. Here the
change of the interlayer distance modifies the Coulomb en-
ergy of electron-hole interaction. This coupling, be it weak
or strong, produces the interlayer exciton-polaron. Current
experimental techniques allow one to manipulate the spectrum
of flexural phonons by applying external tension, thus modi-
fying the exciton-phonon coupling and, in turn, properties of
the exciton-polarons.
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FIG. 1. Schematic illustration of the two-dimensional interlayer
exciton.

Another important aspect of the problem of the exciton-
polaron is the nonlinearity. Since the flexural phonons are
soft, the formation of the exciton-polaron can involve many
phonon states with large out-of-plane atomic displacements,
and, thus, go beyond the quadratic in the lattice deformation
description of the contribution of the lattice to the polaron
energy. This nonlinearity can strongly modify the properties
of the polaron and make them dependent on the size of the
nano or microflake where the exciton is located.

The interlayer exciton-polaron has been studied theoret-
ically in Ref. [41] in the simplified model that neglected
tension of the layers, anharmonicity effects, and possibil-
ity of layer sticking (exciton-polaron collapse) due to the
electron-hole attraction. In this work we present the consistent
theory of the interlayer exciton-polaron both in the linear and
anharmonic regimes. We show that tension of the layers in
the linear regime effectively decreases the coupling to the
flexural phonon and study the polaron produced by coupling
of interlayer exciton to the flexural phonons in the presence
of a strong tension. In the nonlinear regime we present the
equations describing the deformation of the layers based on
the nonlinear theory of elasticity and find the corresponding
deformation caused by the presence of the interlayer exciton.

The paper is organized as follows. In Sec. II we concentrate
on the linear regime and present the results for the interlayer
exciton-polaron for the tension-influenced bilayer. We com-
pare exact results with the asymptotics for the weak and strong
tension. In Sec. III we derive equations for the exciton-polaron
energy and layer deformation in a strongly nonlinear regime
and study their dependence on the system size. We also study
system parameters, which controls the collapse of the bilayers.
In Sec. IV we discuss possible manifestations of the results
obtained in various domains of parameters for materials such
as transition metal dichalcogenides and their nanofabricated
structures. Then, in Sec. V we present conclusions of our
work. Analysis of the effects of the renormalized temperature-
dependent phonon dispersion on formation of polarons and
calculation of the shape of the atomic layers are presented in
the Appendixes.

II. LINEAR REGIME

Following Ref. [41] we consider the two-layer system as
shown in Fig. 1 with the charge carriers of opposite signs
located in the different layers. The equilibrium distance be-
tween the layers L can vary depending on the realization of

the system from � 1 nm for homo or heterobilayers where
the layers are in “contact” with each other to 10–100 nm
for drumlike or resonatorlike structures where layers can be
detached, cf. Refs. [36–38,42]. For simplicity we assume a
symmetric system and the equation for the “breathing” mode
where the layers move synchronously towards or against each
other reads

ρ

2

∂2ζ (r)

∂t2
+ B

2
�2ζ (r) − T

2
�ζ (r) + ρω2

0

2
ζ (r) = f (r). (1)

Here ρ is the mass density of the layer, ζ (r) = ζ1(r) − ζ2(r)
is the relative coordinate of the layers, r is the in-plane coor-
dinate, B is the bending rigidity of the layer, T is the external
tension, and ω0 is the cut-off frequency. The latter is related
either to the finite size of the flake layers, in which case ω0

is the frequency of the lowest, fundamental, out-of-plane vi-
bration mode, or the van der Waals coupling, see Ref. [41] for
details. On the right-hand side of Eq. (1) f (r) is the pressure
caused by the Coulomb attraction of the electron and hole.
Strictly speaking, the van der Waals interaction of the layers
results in the additional contribution to the pressure fvdW(r). It
results in the attraction of the layers even in the absence of an
exciton which is balanced by the rising tension. It gives rise to
an equilibrium deformation ζvdW(r). In the linear regime we
consider the displacements of layers with respect to this equi-
librium deformation ζ (r) → ζ (r) − ζvdW(r). In the geometry
depicted in Fig. 1 ζ1(r) > 0, ζ2(r) < 0, and ζ (r) > 0 in the
situation where the layers shift towards each other.

In the absence of excitons Eq. (1) admits the plane wave as
a solution ζ (r) = ζq exp(iqr − iωqt ) + c.c., with q being the
phonon wave vector, ωq is its frequency, and

ωq =
√

ω2
0 + νq2 + κ

2q4 ≈
⎧⎨
⎩

ω0, small − q,√
νq, intermediate − q,

κq2, large − q.

(2)

Here we used the following notations:

κ =
√

B

ρ
, ν = T

ρ
. (3)

Note that for intermediate values of q, where, on the one hand,
q � ω0/

√
ν, and, on the other hand, q � √

ν/κ, the disper-
sion of the phonons is governed by the tension ω ∝ q. For
smaller wave vectors the phonon frequency cuts off at ω = ω0,
and for larger wave vectors the dispersion is quadratic as
expected for flexural vibrations.

The exciton envelope wave function can be presented in the
following form:

�(r, �) = ψ (r)ϕ(�), (4)

where r is the in-plane position vector of the exciton center of
mass, and � is the in-plane relative coordinate of the electron-
hole motion. The function ϕ(�) is governed by electron-hole
attraction and satisfies equation

− h̄2

2μ
�ϕ(�) + V (�, z)ϕ(�) = −EBϕ(�). (5)

Here μ = memh/m is the reduced mass of the electron-hole
pair with m = me + mh being the exciton translational motion

205305-2



FLEXURAL DEFORMATIONS AND COLLAPSE OF BILAYER … PHYSICAL REVIEW B 105, 205305 (2022)

mass and me, mh are the effective masses of the electrons and
holes, EB is the exciton binding energy, V (�, z) is the potential
energy of the electron-hole attraction where z is the local
distance between the layers, and z = L − ζ (r), with L being
equilibrium interlayer distance.

The exciton center of mass wave function ψ (r) is deter-
mined by the polaron effect, i.e., by the deformation of the
layers on large scales, which exceed by far the exciton Bohr
radius, and by corresponding variation of the exciton energy.
We recall that the electron and hole are localized in the respec-
tive layers [corresponding envelopes are omitted in Eq. (4)];
thus, the interlayer exciton induced pressure f (r) in case of
sufficiently small displacement ζ (r) � L can be recast in the
following form:

f (r) = −
∫

d2�|ϕ(�)|2 ∂V (�, z)

∂z

∣∣∣∣
z=L

|ψ (r)|2. (6)

Physical meaning of Eq. (6) is clear: f (r) is the normal
component of the Coulomb pressure attracting the electron
and hole, related to the −∂V (�, z)/∂z derivative, aver-
aged over the exciton envelope function. Making use of
Eq. (6) we obtain the following exciton-phonon interaction
Hamiltonian:

Û =
∑

q

Uqeiqrb̂q + H.c., Uq = DFs(q)

√
h̄

ρωqS
. (7)

Here b̂q, b̂†
q are the annihilation and creation operators of the

phonons with the wave vector q, and the interaction parame-
ters Uq are expressed in the standard way via the elementary
displacement

√
h̄/ρωqS with S being the normalization area,

the “deformation potential parameter”

D =
∫

d2�|ϕ(�)|2 ∂V (�, z)

∂z

∣∣∣∣
z=L

, (8)

and the form factor accounting for the finite Bohr radius of the
exciton

Fs(q) = 1

D

∫
d2�|ϕ(�)|2 ∂V (�, z)

∂z

∣∣∣∣
z=L

× 1

2

[
exp

(
− iq�

mh

me + mh

)
+ exp

(
iq�

me

me + mh

)]
.

(9)

For the electron-hole interaction in the unscreened
Coulomb form, V (�, z) = −e2/

√
�2 + z2, the deformation

potential parameter can be written, in the limits of small and
large interlayer distances as compared to the two-dimensional
exciton Bohr radius aB = h̄2/(2μe2), as [41]

D =
⎧⎨
⎩

4e2/a2
B, L � aB,

e2/L2, L � aB.

(10)

Figure 2 shows the dependence of the exciton binding energy
EB [Fig. 2(a)] and the deformation potential parameter D
[Fig. 2(b)] on the interlayer distance L calculated numeri-
cally following Ref. [43]. Solid red curves show the results
for the Coulomb form of the interaction, dashed magenta
curves show the results for the potential taking into account

FIG. 2. (a) Interlayer exciton binding energy EB calculated af-
ter Eq. (5) and (b) deformation potential parameter D calculated
after Eq. (8) as a function of interlayer distance. Solid red curves
correspond to the unscreened Coulomb interaction, dashed magenta
curves correspond to the screened potential after Ref. [43] with the
screening radii being r1 = r2 = 6aB, and dotted blue curves show
large-L asymptotics. An extended range of the L axis is used to
illustrate the asymptotics.

dielectric screening in the system (being the extension of the
Rytova-Keldysh potential for bilayer, Ref. [43]), and dotted
blue curves show universal large distance asymptotics e2/L
and e2/L2 for the binding energy and deformation potential,
respectively.

A. Weak coupling

In a weak coupling regime the polaron energy is described
by the second order perturbation theory. For negligibly small
temperatures, there are no phonons in the system, and we
need to take into account only virtual phonon emission and
absorption processes with the result

δE = −
∑

q

|Uq|2
h̄ωq + h̄2(q2 − 2kq)/2m

. (11)

Evaluating sum over q in Eq. (11) at k = 0 we obtain
the closed-form expression for the corresponding polaron
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FIG. 3. Absolute value of the polaron energy in the units of
β h̄ω0 as a function of the bilayer tension. Solid red curve has been
calculated after Eq. (12), dashed green and dotted blue curves show,
respectively, small and large tension asymptotics calculated after
Eq. (14). Here the dimensionless bending rigidity κ/K = 0.001.
Inset demonstrates the renormalization of the polaron effective mass
m∗/m − 1 in the units of β as a function of the bilayer tension.
Solid red curve shows the full dependence, Eq. (15), dashed green
and dotted blue curves demonstrate the asymptotics, Eq. (17). An
extended range of the α axis is used to illustrate the asymptotics.

energy:

δEw = − β h̄ω0

2π

1√
1 − κ

2/K2 + α2

× tanh−1

√
1 − κ

2/K2 + α2

1 + κ/K + α
. (12)

Here we use the following notations:

β = 2mD2

ρ h̄2ω2
0

, α = ν

2ω0K
, K = h̄

2m
, (13)

with β being the dimensionless coupling constant, α be-
ing the dimensionless tension, and K characterizes the
steepness of the exciton dispersion. In a weak coupling
regime studied in this section the condition β � 1 is
fulfilled.

The polaron energy in a weak coupling regime as a func-
tion of the tension α is shown in Fig. 3 together with its
asymptotic values at the small and large tension. They can be
readily evaluated from Eq. (12) as

δEw ≈ −β h̄ω0

4π

⎧⎨
⎩

− ln (κ/K + α), α � 1,

α−1 ln 2α, α � 1.

(14)

In order to find the exciton-polaron effective mass we de-
compose the general expression (11) up to the k2 terms and,
after some transformations, arrive at

m∗

m
= 1 + β

4π
ξ (α), (15)

with the function ξ (α) given by

ξ (α) = 1 + 3α − 2α2

(α2 + 1)2
− 2

2α − α3

(α2 + 1)5/2
tanh−1

√
α2 + 1

1 + α
.

(16)

Correspondingly, in the small- and large-α regimes we
have

ξ (α) ≈
⎧⎨
⎩

1 − 2α ln(2/α) + 3α, α � 1,

(ln 2α − 2)/α2, α � 1.

(17)

The correction to the free exciton effective mass m∗/m − 1 in
the units of the coupling constant β is plotted in the inset in
Fig. 3.

In the limit of a very small tension α → 0, our results
correspond to those obtained in Ref. [41]. Both energy of the
polaron and renormalization of mass are proportional to the
small coupling constant β � 1. Polaron energy is logarithmi-
cally large due to the parameter K/κ � 1. With the increase
of the tension, the polaron binding energy and correction to
the effective mass decrease. It is because the system becomes
more rigid and the Coulomb attraction between the electron
and the hole results in smaller deformations of the layers. If
the tension becomes large, α � 1, the properties of the system
are controlled solely by the tension resulting in relation ωq ∝
q. Therefore, the polaron energy and mass are independent of
the layer bending rigidity κ in this case.

B. Strong coupling

If the cut-off frequency ω0 becomes sufficiently small,
the dimensionless coupling constant β becomes larger than
unity and the perturbation theory approach presented above
becomes inapplicable. It can happen for sufficiently large
interlayer separation L in a drumlike structures, see estimates
in Ref. [41] or, if the cutoff is provided by the finite size of the
flake, for sufficiently large flakes.

Here we address the strong coupling regime where β � 1
and the vibrations of the layers can be described classically. In
this regime, the exciton generates considerable deformation of
the layers and gets self-trapped in the induced potential well.
Thus, the polaron energy can be found from the minimization
of the δEs defined as [41]

δEs = − h̄2

2m
〈ψ (r)|�|ψ (r)〉 −

∑
q

|Uq|2
h̄ωq

|F (q)|2, (18)

where ψ (r) is exciton center-of-mass wave function and

F (q) = 〈
ψ (r)

∣∣e−iqr
∣∣ψ (r)

〉
(19)

is the Fourier component of the corresponding probability
density. The first term in Eq. (18) describes the kinetic energy
of the localized exciton and the second term presents the
mechanical energy of the layers. The latter is presented as a
sum of energies of individual oscillators with the momentum
q and frequency ωq.

Variational approach is used to minimize energy in
Eq. (18). A Gaussian trial function

ψ (r) =
√

2b

π
e−br2

, (20)
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FIG. 4. Absolute value of the polaron energy in the strong cou-
pling regime in the units of β h̄ω0 as a function of the bilayer tension.
Solid red curve has been calculated after Eq. (21), dashed green
and dotted blue curves show, respectively, small and large tension
asymptotics calculated after Eq. (25). Here the dimensionless bend-
ing rigidity κ/K = 0.001 and dimensionless coupling parameter
β = 1000. Inset demonstrates the renormalization of the polaron
effective mass m∗/m − 1 in the units of β as a function of the bilayer
tension. Solid red curve shows the full dependence, Eq. (26), dashed
green and dotted blue curves demonstrate the asymptotics, Eq. (28).

with the polaron size R = b−1/2, is assumed. Combining
Eqs. (18) and (20) we obtain the following expression for the
polaron energy:

δEs(b) = h̄2b

m
− D2

4πρ

∫ ∞

0

exp[−x/(4b)]

ω2
0 + νx + κ

2x2
dx. (21)

In order to obtain an analytical approximation we replace
the exponent in the integral in Eq. (21) by the constant but
limit the integration over x by 4b. As a result, the polaron
energy can be recast as

δEs ≈ h̄2b

m
− D2

4πρ

∫ 4b

0

1

ω2
0 + νx + κ

2x2
dx. (22)

The integral in Eq. (22) can be readily expressed via the
inverse trigonometrical functions and the minimization over
b can be performed analytically (as presented in Appendix B)
with the result

δEs = −K
κ

β h̄ω0

4π
g(α, β ), (23)

with function g(α, β ) being

g(α, β ) = 1√
u

(
arctan

√
u

v
− arctan

√
u

β/2π − u

)

− 2π

β

(√
β

2π
− u − v

)
(24)

and v = αK/κ, u = 1 − v2.
Figure 4 demonstrates the polaron energy in the strong

coupling regime as a function of tension α and its asymptotic
behavior at small and large tension. Analytical approximation
of energy, Eq. (24), is very close to the result of exact numer-

ical calculation (within the thickness of the curves in Fig. 4)
and is not shown. The limits of small and large tension can be
found from Eq. (23) as

g(α, β ) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
u

arctan

√
u

v
−

√
2π

β
, v � √

β,

1

2v

(
ln

β

2π
− 1

)
, v � √

β.

(25)

At α → 0 the expressions Eq. (23) pass to formulas derived in
Ref. [41]. Similarly to the weak coupling regime, the tension
results in a decrease of the polaron energy. Note that polaron
bound state within the strong coupling approach exists only at
β � 1, which is, in reality, the condition for the realization of
said regime by definition.

Polaron effective mass can be expressed as [41]

m∗

m
− 1 =

∑
q

f 2
q

ρω4
q

q2

m
= β

4π

(K
κ

)2

h(α, β ), (26)

where fq is Fourier component of the pressure. After trans-
formations similar to the ones used to obtain Eq. (23) from
Eq. (21) we arrive at the analytical expression for renormal-
ization of mass

h(α, β ) = 1

u

[
1 − u + v

√
β/(2π ) − u

β/(2π )

− v√
u

(
arctan

√
u

v
− arctan

√
u

β/(2π ) − u

)]
.

(27)

Inset in Fig. 4 shows correction to the polaron mass in
strong coupling regime Eq. (26). An analytical approximation
Eq. (27) is in good agreement with the numerical one obtained
using the exact expression Eq. (26). In cases of small and large
tension, Eq. (27) can be simplified as

h(α, β ) ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

u

(
1 − v√

u
arctan

√
u

v

)
, v � √

β,

1

2v2

(
ln

β

2π
− 1

)
, v � √

β.

(28)

For sufficiently small tension, α � κ

√
β/K, the polaron mass

is parametrically larger than the mass of the free exciton,
because the exciton drags a significant deformed area of the
layers.

Interestingly, for the large enough tension, both in the weak
coupling and strong coupling regimes (α � 1 for weak cou-
pling and α � κ

√
β/K for strong coupling regime), energy

and mass of polaron do not depend on the bending rigidity κ

and are related by

m∗ − m = −ρδE/T . (29)

In fact, −δE/T (note that δE < 0) is the area where the
exciton-induced deformation is significant and −ρδE/T is its
mass.
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FIG. 5. Shape of the layer in anharmonic regime with point force
at the center of circular flake for different Poisson’s ratio. Solid lines
show exact solution of Eqs. (34)–(36). Dashed lines demonstrate
approximate form of the layers Eq. (40). Inset illustrates the bilayer
exciton-polaron in nonlinear regime.

III. ANHARMONIC REGIME

As we demonstrated above, the polaron energy and mass
are proportional to the dimensionless coupling constant β and,
since β ∝ ω−2

0 , diverge if the cut-off frequency ω0 introduced
in Eqs. (1) and (2) diminishes. The cut-off frequency ω0 can
be related to the in-plane size of the structure or to the van
der Waals interaction between the layers. For a sufficiently
large system and interlayer distances the coupling constant
β can become so large that within the presented model the
spatial extension of the deformed area becomes comparable
with the in-plane size of the structure. In this situation, linear
analysis developed in the previous sections becomes invalid
and we have to consider anharmonic contributions. Since said
contributions are important only for sufficiently large β, the
vibrational modes of the layers can be treated classically.
In contrast to the previous section, here we go beyond the
harmonic approximation for the flexural mode and take into
account that, under flexing, an in-plane deformation of the
layer occurs. The schematic illustration of the bilayer exciton-
polaron is shown in the inset to Fig. 5.

Following Refs. [28,44] we obtain the equilibrium condi-
tions in the form of the axially symmetric Föppl–von Kármán
equations assuming that the flake has a circular shape:

1

r
L̂r

dϕ

dr
+ Y

2

(
dζ1

dr

)2

= 0,

BL̂r
dζ1

dr
− r

dϕ

dr

dζ1

dr
= Pr

2π
. (30)

Here the differential operator L̂r is defined as

L̂rχ =
(

r2 d2

dr2
+ r

d

dr
− 1

)
χ = r2 d

dr

(
1

r

d

dr
(rχ )

)
, (31)

where χ ≡ χ (r) is an arbitrary function of the radius. Other
notations are as follows: ζ1 ≡ ζ1(r) is an out-plane displace-
ment of the lower layer (the displacement of the upper layer
has the same absolute value but opposite sign and satisfies the

analogous equation), ϕ ≡ ϕ(r) is the Airy stress function, Y
is the two-dimensional Young’s modulus, and

P ≡ P[ζ1(0)] = e2

[L − 2ζ1(0)]2
(32)

is the Coulomb force [cf. Eq. (10)] applied to the layer due to
the attraction of the charge carrier in this layer to the carrier
in the other layer. In Eq. (32) we assumed that the exciton
Bohr radius is much smaller than the interlayer distance L
and the size of the deformed area, which makes it possible
to neglect the in-plane extension of the exciton and consider
it as pointlike and use the Coulomb form of their interaction.
Note that in our coordinate frame (see Fig. 5) the z axis points
from the bottom to the top layer, correspondingly, ζ1 > 0 and
P > 0.

It is convenient to make the following substitutions:

g =
(

2πaY

P

)1/3 dζ1

dr
, h =

(
2πaY

P

)2/3 1

aY

dϕ

dr
, (33)

and introduce the dimensionless coordinate x = r/a (we re-
call that a is the radius of the system). As a result, we obtain

L̂xh + x

2

1

h2
= 0. (34)

In derivation of Eqs. (30) we have also disregarded the bend-
ing rigidity, i.e., we assumed that(

4π2B3

a4P2Y

)1/3

→ 0, (35)

which also yields g = −1/h. Note that in the opposite case,
where B is sufficiently large, we recover the linear regime
studied above.

Nonlinear Eqs. (30) and (34) should be supplemented with
the boundary conditions, which we take in the form of the
absence of the in-plane displacements at the center of the
layer and at the edges. Thus, the boundary conditions can be
formulated as

xh′(x) − σh(x) → 0, at x → 0,

h′(1) − σh(1) = 0. (36)

Here σ is the Poisson’s ratio. Noteworthy, due to the axial
symmetry of the problem, it affects only the boundary condi-
tions.

Numerical solutions of Eqs. (34) and (36) can be easily
found and the corresponding layer displacements ζ1(x) are
represented in Fig. 5 by solid lines. It is instructive to obtain
an approximate analytical solution of Eqs. (34) and (36). To
that end, we start from the Schwerin’s classic solution valid at
the specific Poisson’s ratio σ = 1/3 [45],

h0(x) =
(

9x

16

)1/3

, (37)

and seek the solution in the form of h(x) = h0(x) + pxt , where
p and t are the parameters. Substituting such an expression
into Eqs. (34) and (36) we arrive at

h(x) = 3

√
9

16
[x1/3 − c2(σ )x5/3] + O(x3), (38)
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with the function c(σ ) given by

c2(σ ) = 1/3 − σ

5/3 − σ
. (39)

The leading omitted term is ∝ x3 with a numerically small co-
efficient. After substitution of the analytical expression from
Eq. (38) to (33) we obtain the shape of the layer

ζ1(0) − ζ1(x) =
(

3a2P

πY

)1/3 tanh−1 [c(σ )x2/3]

c(σ )
. (40)

The analytical expressions are plotted in Fig. 5 by dashed
lines. One can see a very good agreement between the nu-
merics and analytical approximations. Note that an interplay
of the temperature-induced flexural fluctuations of the layers
and anharmonicity can result in renormalization of B and Y for
sufficiently small wave vectors q < q∗ with the temperature-
dependent q∗, see Appendix A for details.

According to Ref. [45], the deflection of the layers satisfies
a self-consistency condition:

ζ1(0) = −ζ2(0) = ζ (0)

2
= F (σ )

(
a2P

Y

)1/3

, (41)

where ζ (0) ≡ ζ1(0) − ζ2(0) is the relative displacement of
the layers. Note that P depends on ζ (0) according to Eq. (32)
making Eq. (41) strongly nonlinear.

The function F (σ ) can be found numerically. Our analyti-
cal approximation follows from Eq. (40) at x = 1 as F (σ ) =

3
√

3/π tanh−1[c(σ )]/c(σ ). Reference [45] presents the fit to
numerical result in the form F (σ ) = 1.0491 − 0.1462σ −
0.15827σ 2. Our analysis shows that the difference between
the numerical calculation and the analytical one does not ex-
ceed 1% in the range of Poisson’s ratio variation from σ = 0
to σ = 1/2. Also, the function F (σ ) remains quite close to
unity in this range varying from F (0) ≈ 1.05 to F (1/2) ≈
0.94.

The elastic energy of the layer under the external force P is
the work of this force in the process of quasistatic stretching
of the film

U [ζ1(0)] =
∫ ζ1(0)

0
P(ζ1)dζ1 = Y ζ 4

1 (0)

4F3(σ )a2
. (42)

Making use of the Coulomb law, Eq. (32), we obtain the total
energy of the system, i.e., the energy of the exciton-polaron
with the anharmonic deformations:

E = e2

L
− e2

L − ζ (0)
+ 2U

(
ζ (0)

2

)
. (43)

Combining Eqs. (42) and (43) we get the total energy as a
function of center displacement ζ (0),

E = Eγ 1/5

(
− ζ (0)

L − ζ (0)
+ 1

32γ

ζ 4(0)

L4

)
, (44)

where

E =
(

e8Y

F3(σ )a2

)1/5

, (45)

and we introduced the interaction parameter γ as

γ = F3(σ )a2e2

Y L5
. (46)

FIG. 6. Absolute value of the exciton-polaron binding energy in
the anharmonic regime as a function of the distance between layers
in the units of critical distance Lc, Eq. (49). Solid blue curve has
been calculated after minimization of Eq. (44), dashed red curve
represents its asymptotic behavior at large distance Eq. (48). Inset
demonstrates the total energy of the system as a function of the dis-
tance between the layers change for different interaction parameters
γ in Eq. (44). Solid curves demonstrate energy for the realizations,
in which polaron exists. The polaron energies shown by dots are
obtained by minimization of Eq. (44). A dashed black line shows
the critical behavior with maximum interaction of polaron existence.
Dotted curves represent large interaction with monotonic behavior of
the energy, when the layers stick and the polaron collapses.

The energy E in Eq. (44) for different values of interaction
parameter γ is shown in the inset in Fig. 6. For relative
displacement ζ (0) → L the Coulomb energy dominates and
E → −∞. Depending on the value of γ an additional mini-
mum in the E [ζ (0)] appears, as shown by dots in the inset.
The exciton-polaron energy corresponds to the local mini-
mum, which can be found as a root of derivative ∂E/∂ζ (0) =
0, and plotted in the main panel of Fig. 6 by the solid line.
The bound state exists only for sufficiently small interaction
parameter γ being less than critical parameter γc determined
by the conditions ∂E/∂ζ (0) = 0, ∂2E/∂ζ 2(0) = 0 for the
same ζ (0), producing the inflection point in the E [ζ (0)] de-
pendence corresponding to the dot at the dashed black line in
the inset of Fig. 4. Using Eq. (44) we obtain

γ < γc = 33 · 24

105
= 0.00432, ζ (0) < 0.6L, (47)

which means that layers are rigid enough. For stronger in-
teraction, the local minimum is absent and the layers stick
together due to the Coulomb interaction.

For sufficiently weak interaction γ � γc, the dependence
of the Coulomb force on displacement can be neglected. Set-
ting P = e2/L2 we obtain the following expression for the
polaron energy:

E = −3

2
F (σ )

(
a2e8

Y L8

)1/3

= −3

2
Eγ 8/15. (48)

Note that if the exciton Bohr radius aB is larger as com-
pared to the interlayer distances, but still much smaller than
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the flake size (L � aB � a), then P = D = 4e2/a2
B in ac-

cordance with Eq. (10) and instead of Eq. (48) we have
E = −6F (σ )[(4a2e8)/(Ya8

B)]1/3. Divergence at ζ (0) = L dis-
appears and the polaron energy as the function of ζ (0)
corresponding to the inset of Fig. 6 becomes a function with a
single extremum.

Exciton-polaron binding energy E together with its asymp-
totic behavior Eq. (48) as a function of distance between
layers L is shown in Fig. 6. Here L is taken in units of critical
distance Lc, which correspond to distance at γ = γc:

Lc =
(F3(σ )a2e2

Y γc

)1/5

. (49)

IV. DISCUSSION

Here we discuss the obtained results and highlight the key
aspects of the interlayer exciton-polaron.

A. Strong strain and lattice distortion

In this subsection we consider the ability to manipulate the
properties of the exciton-polaron by applying a strain to the
layers. As it has been shown [41], in the limit of zero cut-off
frequency (ω0 → 0), the polaron collapses due to softness of
the flexural phonons modes. The strain naturally increases
the stiffness of these modes and, thus, works against the col-
lapse, however, without cut-off frequency layers still stick. We
studied this effect in Sec. II and obtained modification of the
polaron energy and effective mass due to the strain effect.

To understand realization of the strain-induced effects, we
estimate the tension T in terms of the material parameters as

T ∼ Y
δa0

a0
, (50)

where the Young’s modulus Y ∼ W/a2
0, where W ∼ e2/a0 ∼

1 eV is the characteristic electron energy bandwidth, a0 is
the lattice constant, and δa0 is its variation due to applied
external force. Next, we consider the polaron formed by an
exciton. Aiming at analysis of the limiting cases, we intro-
duce parameter lmax ≡ max(aB, L), maximal value between
exciton Bohr radius aB and the interlayer distance L, which
roughly determines the strength of the exciton coupling with
out-of-plane vibrations D ∼ e2/l2

max, cf. Eq. (10). Thus, for
sufficiently large tension where the interlayer coupling can be
disregarded, the equilibrium condition has the form

ζ ∼ D

T
. (51)

The relation (51) describes the balance of the exciton-induced
pressure and tension, see Eq. (1). Accordingly, the polaron
energy can be estimated as

δE ∼ −Dζ ∼ −D2

T
, (52)

which is in agreement with the second line of Eq. (14) if one
omits logarithmic factor unimportant for the simple estimates.

We begin with the possibility of realization of large-strain
condition α > 1. Following the definition in Eqs. (13) and
(50), we obtain relative lattice distortion corresponding to

α > 1 as

δa0

a0
>

M

m

h̄ω0

W
. (53)

Note that α > 1 condition can also be recast as ms2/(h̄ω0) >

1 with s = √
T/ρ is the tension-induced sound velocity. Thus,

one needs to minimize h̄ω0 to achieve large α. Taking into
account that M/m ∼ 105, ω0 behaves as 1/L3, and at L ∼
a0, h̄ω0 ∼ 3 meV [46], we obtain that one needs L ∼ 10a0 to
produce an achievable strain to overcome the effect of the van
der Waals forces.

Next, we establish the boundary of the strong tension
regime formulated in Eq. (B5) as v � √

β as applied in
Eq. (23). Taking into account the definition of the system pa-
rameters in Eqs. (3) and (13), we estimate v as ∼T/(ω0

√
Bρ ).

Since typical values of B are of the order of W, we obtain

v ∼
√

W/ρω2
0. As a result, strong tension effects begin at

relative distortions δa0/a0 ∼ (|EB|/W )(a0/lmax). Taking into
account that at a0/lmax ∼ 0.1 one has |EB|/W ∼ 0.1 we obtain
the resulting δa0/a0 ∼ 10−2 and the tension T ∼ 10 erg/cm2.

Note that condition v >
√

β requires a much smaller lattice
distortion than the condition α > 1, implying that a large
effect of the tension can be achieved at a relatively small α, as
can be seen from the analysis in Appendix B.

B. Critical size of the flake and polaron collapse

There is another aspect, which is related to the nonlinear
regime in the polaron formation. The layer deformations be-
come so large that the coupling between the out-of-plane and
in-plane displacements starts to play a role. The effect of the
nonlinearity increases with the increase of the flake size a, and
the polarons collapse due to sticking of the layers if the flake
size is sufficiently large. First, we mention that by comparing
linear ∼Bζ 2/a2 and nonlinear ∼W ζ 4/(a2

0a2) contributions to
the deformation energy and taking into account that B ∼ W
we see that the nonlinear term becomes important at deforma-
tions ζ > a0.

We assume here the conditions considered in Sec. III with
lmax = L. For nonlinear deformation one has from Eq. (41):

ζ ∼
(

e2

L2

a2

Y

)1/3

. (54)

Thus, taking into account that Y ∼ W/a2
0 with W ∼ e2/a0,

the deformation can be expressed as

ζ ∼ a0

(
a2

L2

)1/3

, (55)

and depends solely on the dimensions of the system mean-
ing that the nonlinear effects become relevant at a > L. The
condition of collapse ζ ∼ L implies

a

a0
∼

( L

a0

)5/2

, (56)

suggesting that the critical radius of the flake is rather small,
being ∼100a0 at L ∼ 5a0.

For the aB � L realization one obtains ζ ∼ a0(a2/a2
B)1/3

and, correspondingly, the condition for sticking of the layers
as a ∼ (L/a0)3/2aB, of the order of 10aB at L ∼ 5a0.
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Interestingly, the physics described above can be realized
in a wide spectrum of the systems involving atomically thin
semiconductors and membranes. For example, one can con-
sider a monolayer suspended over a dielectric or metallic
substrate. In this situation, attraction of a charged donor to its
electrostatic image can result in the monolayer deformation
and donor-polaron effect. Depending on the system parame-
ters, the gain in the polaron energy can, in principle, exceed
the binding energy of the electron to the donor rendering it in
the autoionized state. The polaron effects may also affect the
shape of the bubbles [47] arising in two-dimensional crystals
deposited on substrates. A membrane with embedded ions,
which, due to the interaction with image charges, produce
the membrane deformation, could be another example of the
polaron-related effects.

V. CONCLUSION

We have theoretically studied exciton-polarons in bilay-
ers of transition metal dichalcogenides formed by excitons
coupled to the flexural phonon modes. We demonstrated the
ability to manipulate the exciton-polaron energies and effec-
tive masses by applying strain to the layers in small and large
strain regimes and also for weak and strong exciton-phonon
coupling. Application of the strain decreases electron-phonon
coupling and diminishes its effect on the polaron energy and
effective mass. It is due to hardening of the flexural phonons
in the presence of the strain. The role of strain increases with
increasing the distance between the layers since the out-of-
plane phonon frequency decreases rapidly with the interlayer
distance.

We also studied the nonlinear regime of the polaron forma-
tion and obtained the limits of applicability of this approach.
As expected, the nonlinear effects become important if the
lattice flexural displacement in the polaron exceeds the lat-
tice constant. The effect of the nonlinear coupling strongly
depends on the size of the nanoflake where the exciton is
located and at a sufficiently large flake the exciton collapses
and layers stick to each other. These results can be useful for
the design of transport and optical properties of bilayers and
their nanostructures.
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APPENDIX A: EFFECTS OF FINITE TEMPERATURE,
FLUCTUATIONS, AND ANHARMONICITY

To discuss the role of a nonzero temperature, we begin by
noticing that with the increase in the temperature both virtual
and real phonon-assisted processes take place and can become
essential for the understanding of the effects considered in

terms of the perturbation theory. The analysis performed in
Ref. [41] shows that at temperatures kBT � h̄ω0 (where kBT
is the temperature in the energy units) the constant β in
Eq. (12) increases approximately by a factor of 2kBT/h̄ω0.
Also, exciton-phonon scattering starts to play a role resulting
in temperature-induced broadening of the polaron state.

Another effect of finite temperature is its impact on the
flexural phonon dispersion at small wave vectors, caused by
the anharmonicity in the motion of the layers. For a single
layer the correlation function of the out-of-plane displace-
ments severely diverges in the limit of q → 0 with 〈ζ 2

q 〉 ∝
kBT/q4. The coupling of the flexural and in-plane vibrations
results in the wave-vector dependent renormalization of the
bending rigidity yielding steeper dispersion of the flexural
phonons in the form [29,32,33,44,48,49]

ωq ∝ q2−η/2, q � q∗, (A1)

where η ≈ 0.6–0.8 is the exponent describing the renormal-
ization of the bending rigidity, and q∗ ∼

√
kBTY/B2 serves as

an inverse critical length scale of the theory of phase transi-
tions. At q � q∗ the quadratic dispersion of flexural phonons
is restored. Thus, if the system size is sufficiently large,
aq∗ � 1, the effects of the phonon dispersion renormalization
described by Eq. (A1) should be taken into account. Still,
the phonon dispersion remains sufficiently soft and, in the
absence of the cut-off frequency ω0, the polaron energy shift
diverges already in the weak-coupling regime, cf. Eq. (11).
The results for the polaron shift and effective mass obtained,
which account for finite ω0, are similar to those presented in
the main text.

The coupling between the out-of-plane and in-plane vi-
brations also results in the anomalous elasticity of the layers
[35,50]. For aq∗ � 1 the analysis of the anharmonic regime
presented in Sec. III remains valid, but both bending rigidity
and Young’s modulus should be replaced by the renormalized
values [35,50]

B → B(aq∗)η, Y → Y (aq∗)−ηu , (A2)

with ηu ≈ 2 − 2η.
We note that the anharmonic coupling between the flex-

ural and in-plane phonons can be strongly suppressed if
the interaction between the layers is large enough. In-
deed, the frequency ω0 �= 0 suppresses the divergence of
〈ζ 2

q 〉 at q → 0 validating the analysis presented in the
main text. The strong role of this suppression can be seen
from the following estimate. Following Eq. (2), one obtains
κ(q∗)2/ω0 ∼ √

m/M(kBT )/(h̄ω0) � 1 due to a small m/M
ratio. Therefore, the temperature-dependent phonon disper-
sion renormalization cannot modify the effect of finite ω0.

APPENDIX B: LAYERS SHAPE IN THE STRONG
COUPLING REGIME

In the linear regime layers can be described as infinite
planes, while the polaron has a finite size. Naturally the pa-
rameter b in the Gaussian trial function in Eq. (20) is related
to the in-plane size of the polaron R as R = 1/

√
b. After

minimization of the energy in Eqs. (21) and (22) it can be
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FIG. 7. Polaron radius in the strong coupling regime in the units√
κ/ω0 as a function of the bilayer tension. Solid black curve has

been calculated after minimization Eq. (21). Solid red curve is cal-
culated using the first line of Eq. (B1). Dashed green and dotted
blue curves show, respectively, small and large tension asymptotics
Eq. (B2). Inset demonstrates the deflection of the polaron in the units
of

√
m/ρ as the function of bilayer tension. Solid black curve has

been calculated after minimization Eq. (21). Solid red curve is found
after substitution of b from Eq. (B1) in Eq. (B4). Dashed green
and dotted blue curves show, respectively, small and large tension
asymptotics Eq. (B5).

written as

b ≈
(√

β

2π
− u − v

)
ω0

4κ

≈ ω0

4κ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
β

2π
− v, v � √

β,

β

4πv
, v � √

β.

(B1)

Then, a good estimate of the polaron radius is

R ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
√

κ

ω0

[(
2π

β

)1/4

+
(

2π

β

)3/4
v

2

]
, u � √

β,

4
√

πvκ

βω0
, u � √

β,

(B2)

and shown in Fig. 7. In the linear regime the out-of-plane
displacement of the layers is proportional to the force ζq =
2 fq/(ρω2

q ), and can be found as

ζ (r) =
∑

q

ζqeiqr = D

πρ

∫ ∞

0

exp[−q2/(8b)]J0(qr)qdq

ω2
0 + νq2 + κ

2q4
.

(B3)
Note that the polaron radius R is significantly smaller than
the size of the deformed area. The latter is connected
with the scale where ζ (r) in Eq. (B3) significantly decreases.
In the absence of tension the deformation radius can be es-
timated as Rd ∼ √

κ/ω0 according to Rd ∼ 1/qd where the
denominator in Eq. (B3) starts to increase. This result can be
easily understood assuming that the cut-off frequency ω0 is

FIG. 8. Shape of the layers calculated after Eq. (B3) for different
bilayer tension α (presented in the plot legend).

related to the in-plane size of the layer a. In this situation,
under a point load, the layer deformation extends over the
whole layer [28].

With the increase in the tension, deformation size is de-
termined by tension Rd ∼ √

ν/ω0, the layers become stiffer
and the polaron effect diminishes: the polaron size increases,
while the layer deflection decreases. The shape of the layers
found from Eq. (B3) is presented in Fig. 8.

After transformation similar to one between Eqs. (21) and
(22), the layer deflection at the polaron center is expressed as

ζ (0) ≈ 1

2π

K
κ

√
2βm

ρu

(
arctan

√
u

v
− arctan

√
u

v + 8κb/ω0

)
.

(B4)

The limits of Eq. (B4) for the small and large tension are

ζ (0) ≈ 1

2π

K
κ

√
2βm

ρ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
u

arctan

√
u

v
, v � √

β,

1

2v
ln

β

π
, v � √

β.

(B5)

The out-of-plane displacement of the center as a function of
bilayer tension is shown in the inset in Fig. 7.

The system can be correctly described in the linear regime
only if the angle of the layers deflection is sufficiently small.
This criteria can be represented in terms of deformation radius
Rd and layer deflection ζ (0):∣∣∣∣dζ

dr

∣∣∣∣ ≈ ζ (0)

Rd
≈ K

4κ

√
2βmω0

ρκ

. (B6)

Equation (B6) is valid at α → 0. In the presence of the
tension, the angle decreases.

Let us analyze the dependence of the deflection angle on
the interlayer distance at L � aB. If ω0 is related to the size
of the layers and is independent of the interlayer distance L,
then β ∝ 1/L4 and the angle decreases with the increase in
the interlayer distance as |dζ/dr| ∝ 1/L2. In the case of the
van der Waals coupling between the layers, we have β ∝ L2
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and ω0 ∝ 1/L3, thus, the deflection angle decreases with in-
creasing of the interlayer distance as |dζ/dr| ∝ 1/

√
L.

The theory above is valid at |dζ/dr| � 1. This con-
dition should be fulfilled both in the harmonic and an-

harmonic regimes, Secs. II and III, respectively. Note that
the transition between the linear and anharmonic regimes
is determined, in agreement with Eqs. (35) and (55), by
B3 ∼ a4P2Y .
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