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The linear charge transport properties of Weyl semimetals, such as negative magnetoresistance related to chiral
anomaly, have been studied extensively. In this work, the nonlinear current response of Weyl semimetals to a
strong dc-ac electric field in the ultraquantum regime with a strong magnetic field is explored by employing a
nonperturbative treatment based on the stochastic Liouville equation. Our systematic studies of nonlinear charge
transport for two types of ac fields (the cosinusoidal electric field and the periodic pulsed field) have revealed
extraordinary modulation of nonlinear current response by the ac fields. For the case with the cosinusoidal
electric field, we find the following: (i) in the high-frequency regime, dynamic localization (vanishing of current)
and quasienergy band collapse occur under a suitable condition of J0( eEAd

h̄ω0
)=0, where J0 is the Bessel function

with EA and ω0 being the strength and frequency of the ac field, and d denoting the lattice constant of Weyl
semimetals; and (ii) in the intermediate- and low-frequency regimes, the multiple-photon-assisted transport leads
to extremal values of current responses whose patterns can be tuned by the magnetic field. As for the pulsed
electric field, our results show that (i) the dynamic localization and quasienergy band collapse appear under a
different condition of cos( eEAd

h̄ω0
)=0; and (ii) the influence of the ac field on the current response disappears when

eEAd
h̄ω0

=mπ , with m being an integer. The experimental conditions are also discussed and the predicted nonlinear
transport effects could be observed in experiments.

DOI: 10.1103/PhysRevB.105.205303

I. INTRODUCTION

Nowadays, two-dimensional (2D) and three-dimensional
(3D) Dirac materials, such as graphene [1,2], 3D topological
insulators [3,4], and Weyl semimetals [5–16], have attracted
more and more attention in the field of condensed-matter
physics for the abundant topological properties they offer.
Especially, Wan and his collaborators have predicted Y2Ir2O7

to be a Weyl semimetal [6]. A family of nonmagnetic ma-
terials including TaAs, TaP, NbAs, and NbP have also been
demonstrated as type-I Weyl semimetals, in which inversion
symmetry is broken but time-reversal symmetry holds, and
a pair of upright Weyl cones with opposite chirality are
pinned at Fermi level [12]. More recently, a series of Weyl
semimetals has been theoretically proposed and realized in
experiments. According to the geometry of the Fermi sur-
faces, Weyl semimetals have been generalized into type-II
and type-III. Differing from the type-I Weyl semimetals, the
Weyl cones in type-II Weyl semimetals are overtilted, and the
corresponding Fermi surface is composed of touched electron-
hole pockets [13]. Furthermore, the Fermi surface of type-III
Weyl semimetals consists of two-electron or two-hole pockets
touching at a multi-Weyl cone [14].

Remarkably different from conventional electronic struc-
tures, which possess a parabolic low-energy dispersion
relationship near the Fermi level, the low-energy states near
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the Weyl nodes of Weyl semimetals are characterized by a
Weyl Hamiltonian with linear gapless dispersions. The Weyl
nodes act as monopoles in momentum space with topologi-
cal charges. The geometry and topology of Weyl semimetals
related to the Berry phase and the monopole charge lead to
novel physical consequences, such as Fermi arc surface states,
the magnetotransport related to chiral anomaly, the anomalous
Hall effect, and axion electrodynamics [5].

External fields have great impact on the electronic dy-
namics of Weyl semimetals. In the presence of a magnetic
field, interesting physical effects, such as magnetothermal
conductivity [17], the magneto-optical response [18,19], the
3D Hall effect [20], the chiral magnetic effect [21–24], and
the nonlinear Hall effect [25–27] have been theoretically and
experimentally explored. The magnetic field not only changes
the band structure (formation of Landau levels) but also af-
fects the scattering time [28–32], which is crucial in charge
transport. In particular, experiments and theory (based on
either quantum theory or the semiclassical approach with the
Berry-phase effect taken into account [33,34]) have revealed
the magnetotransport property related to a chiral anomaly
[28–32,35–44]. The dependence of magnetoconductivity of
Weyl semimetals on the external magnetic field B exhibits
interesting features. For instance, in the weak magnetic field
regime, magnetoconductivity is proportional to B2 [31,41,42];
while in the quantum regime with a strong magnetic field,
a linear dependence of magnetoconductivity on B has been
uncovered [39,42]. Most recently, a unified picture of the
magnetotransport of Weyl semimetals covering the weak and
strong magnetic field regimes has been developed, and a
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transition from quadratic magnetoconductivity at weak mag-
netic fields to linear magnetoconductivity at high magnetic
fields has been theoretically obtained [45].

Furthermore, recent studies have indicated that ac fields
have an important impact on the quasienergy spectrum and
the electric transport in Weyl semimetals as well as other
Dirac systems [46–60]. For example, despite the absence of
an external magnetic field, a dynamic gap in the Dirac cone of
the graphene system can be opened under the application of
an ac field and the so-called photovoltaic Hall effect may be
realized [46–48]. Ma et al. and Chan et al. studied the photon
current in Weyl semimetals [49,50]. The topological proper-
ties of light-induced Floquet-Weyl semimetals have also been
extensively studied [52–56]. It is noticed that because the
time-reversal symmetry is broken by a circularly polarized
laser field, distinct shifts in the spectrum of each Weyl cone
in Floquet-Weyl semimetals are generated. Kundu et al. in-
vestigated the Floquet topological transitions [60].

Most of the studies on charge transport mentioned above
focused on the linear response of Weyl semimetals to weak
dc fields. Recently, the nonlinear current response of Weyl
semimetals to strong dc electric fields in the ultraquantum
regime have been investigated, and the nonmonotonic depen-
dence of current on the electric field and the optimal condition
for the highest current response have been uncovered [61].
The nonlinear response may not only provide an important
alternative approach to testify various extraordinary exotic
properties, such as Fermi arcs and the chiral anomaly involved
in Weyl semimetals, but may also provide instructive guidance
on designing nanodevices based on Weyl semimetals. Due
to the importance in both the perspectives of basis physics
and potential applications of Weyl semimetals in nanodevice
fields, it is interesting and timely necessary to carry out a
theoretical analysis of the nonlinear current response of Weyl
semimetals to the dc-ac electric field in the ultraquantum
regime with a strong magnetic field. From this aspect, we
take a step further to investigate this problem by employing
a nonperturbative approach based on the stochastic Liouville
equation (SLE) [62–66]. Our current work is remarkably dif-
ferent from many studies that have focused on generating the
Floquet-Weyl semimetal phase by time-dependent fields or
the current response based on perturbative formalism.

The systematic theoretical studies in this work reveal
several interesting features in the nonlinear charge trans-
port driven by dc-ac fields. Two types of ac fields, the
cosinusoidal electric field and the periodic pulsed field,
are considered in our Weyl semimetal systems. We find
that in the high-frequency regime, the ac fields bring
about interesting renormalization effects of current. Explic-
itly, for the cosinusoidal electric field with high frequency,
the long-time averaged current can be derived as 〈 j〉 =
〈 j〉|EA=0J2

0 (ω̄A), where 〈 j〉|EA=0 is the current response to a
pure dc field, and J0(ω̄A) is the zeroth Bessel function. Here,
ω̄A = eEAd

h̄ω0
, with d being the lattice constant of Weyl

semimetals. Dynamic localization (current suppression) and
quasienergy band collapse appear under the condition
of J0(ω̄A) = 0. In the intermediate- and low-frequency
regimes, multiple-photon-assisted transport leads to multiple-
resonance patterns in the nonlinear current responses. For the
periodic pulsed field, 〈 j〉 = 〈 j〉|EA=0 cos2 ω̄A. It is clear that

FIG. 1. The scheme of a Weyl semimetal under the external elec-
tric field and the magnetic field, which are parallel to the z direction.

the corresponding dynamic localization and quasienergy band
collapse induced by the periodic pulsed field occur under a
different condition of cos ω̄A = 0. Furthermore, the modula-
tion from the periodic pulsed field disappears when eEAd

h̄ω0
=

mπ , with m being an integer. Moreover, the experimental
conditions to observe the theoretical predictions shown in this
paper are briefly addressed.

II. THEORETICAL FORMULISM: THE HAMILTONIAN
AND THE SLE

We start from the minimal cubic lattice model of Weyl
semimetals H (k) = H0(k) + H1(k) [67]. H0(k) describes an
electronic dynamics in a cubic lattice with the lattice constant
d , which is given by

H0(k) = h̄v

d
{σz⊗[sx sin(kyd )−sy sin(kxd )]+σy⊗ sin(kzd )},

(1)

with σ and s being the Pauli matrices in orbital and spin space,
respectively. The low-energy effective Hamiltonian around
the three-dimensional (3D) Dirac points (0,0,0) and (0, 0, π )
can be written as the usual form Hχ (k) = χ h̄vk · σ , with
χ = ±1 denoting two kinds of chirality and k being the
wave vector relative to the Dirac points. The energy spec-
tra around the 3D Dirac points can be readily obtained as
E±,χ (k) = χ h̄vk. The other time-reversal symmetry-breaking
perturbation term H1(k) is of the form H1(k) = h̄v

d b⊗sz, with
|b| < 1. Then the Weyl semimetal emerges with the Weyl
points at ±k̄z = ± 1

d arcsin (b) and the effective Fermi velocity
vF = v

√
1 − b2.

We consider both a magnetic field and a dc-ac electric
field along the z direction, i.e., B = Bẑ and E = Eẑ. The
scheme of the Weyl semimetal under the external electric
field and the magnetic field is shown in Fig. 1. In this pa-
per we are interested in the nonlinear current response along
the ẑ direction. By taking the low-energy linear approxi-
mation along the x̂ − ŷ plane and introducing the Landau
ladder operators a† = lB√

2
(�x−i�y) and a = lB√

2
(�x+i�y),

with � = (�x,�y, 0) = k + eA, A = (0, Bx, 0), and lB =√
h̄/eB being the magnetic length, we can obtain the effective
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Hamiltonian as

H(kz ) = H (kz ) − eEzI4×4, (2)

with

H = h̄v

⎛
⎜⎜⎜⎜⎝

b
d i

√
2a

lB
−i sin(kzd )

d 0

−i
√

2a†

lB
− b

d 0 −i sin(kzd )
d

i sin(kzd )
d 0 − b

d i
√

2a
lB

0 i sin(kzd )
d −i

√
2a†

lB
b
d

⎞
⎟⎟⎟⎟⎠.

(3)
In the following we abbreviate kz as k for the convenience of
expression.

It is seen that the magnetic field discretizes the continuum
energy spectra into a series of Landau levels (LLs), and the
energy spectra are given by

εn,s(χ ) =
{

sh̄v
√

d−2[b ± sin(kd )]2 + 2n(lB)−2,

−χ (h̄v/d )[sin(kd ) ± b],
n �= 0,

n = 0.

(4)
In the ultraquantum regime, both the chemical potential μ

and the temperature kBT ≡ 1/β are small compared to the
energy difference between the zeroth level and the first LLs,
i.e., μ, 1/β <

√
2h̄v/lB. In this case, only the chiral branches

of the spectrum (n = 0 LLs) are occupied by electrons, which
contribute to the current.

The dc-ac electric field is given by

E = [ED+EAP(ω0t )]ẑ, (5)

with ED being the dc field strength, and EA and ω0 being the
strength and the frequency of the ac field. P(ω0t ) is a periodic
function. In the present work, we consider two types of ac
electric fields: the cosinusoidal electric field and the periodic
pulsed field. Explicitly,

P(ω0t ) = cos(ω0t ) (6)

for the cosinusoidal electric field and

P(ω0t ) = 2
∑∞

m=0
(−1)mδ(ω0t−mπ ) (7)

for the periodic pulsed field. The periodic pulsed field in
Eq. (7) can be considered as a sum of the trigonometric func-
tions with different weights, i.e.,

∑
m(−1)mδ(ω0t−mπ ) =∑

n cn cos(nω0t ).
To explore the nonlinear transport of Weyl semimetals

in the ultraquantum regime, we apply a nonperturbative ap-
proach based on the SLE [64], which has been successfully
used to study the Zener transitions between dissipative Bloch
bands [65]. Within a constant relaxation rate approximation,
the SLE for the density matrix ρ is expressed as [64]

ih̄
∂ρ

∂t
= [H, ρ(t )]−i�[ρ(t )−ρT ]. (8)

Here, ρ(t ) is the density matrix with matrix elements
ρNi,Nj (t ) = 〈Ni|ρ̂|Nj〉. The density operator is defined as
ρ̂ = ψψ† = ∑Nmax

N1,N2
cN1 c∗

N2
|N1〉〈N2|, with ψ = ∑Nmax

N cN |N〉
being the wave function of electrons under the basis of
{|N〉} = {|n, s, χ〉}. ρT is the Fermi-Dirac equilibrium dis-
tribution at temperature T , which is written as ρ

Ni
T (k) =

{exp[βεNi (k)]+1}−1 with the chemical potential set to μ = 0
for simplicity. � describes the relaxation of the off-diagonal

elements of ρ(t ) through dephasing [61,64]. In our case,
the intervalley scattering dominates and the k dependence of
the scattering time can be neglected due to the splitting of the
Weyl points in momentum space. Thus, there is no change of
the main physics by using the relaxation time approximation,
which has also been applied in previous studies of magneto-
transport in Weyl semimetals [17,36]. After some derivations,
Eq. (8) is rewritten as

∂ρNi;Nj

∂ t̄
−[ω̄D+ω̄AP(t̄ )]

∂ρNi;Nj

∂ k̄

= F (Ni; Nj )−ᾱ
[
ρNi;Nj −ρ

Ni
T δNiNj

]
, (9)

in which we have employed the dimensionless parameters
k̄ = kd , t̄ = ω0t , ε̄Ni (k̄) = εNi (k)/h̄ω0, β̄ = β h̄ω0, ω̄D(A) =
eED (A)d/h̄ω0, and ᾱ = 1/τω0, with τ representing the relax-
ation time. In Eq. (9), F (Ni; Nj ) is a very complex function
and has relation with the other LLs (same n index and different
χ and s).

In the present work, we consider Weyl semimetals in the
ultraquantum regime with a strong magnetic field, so that
only the lowest LLs are occupied by electrons. Namely, only
|N1〉 ≡ |n = 0, χ = 1〉 and |N2〉 ≡ |n = 0, χ = −1〉 are con-
sidered in Eq. (9). The general case for any B including the
LLs with n �= 0 terms is left for future study. We briefly
denote |N1(2)〉 as |χ = ±1〉 in the following. Based on this
consideration, Eq. (9) is simplified as

∂ρχ ;χ

∂ t̄
−[ω̄D+ω̄AP(t̄ )]

∂ρχ ;χ

∂ k̄
= −ᾱ

[
ρχ ;χ−ρ

χ

T
]
, (10)

∂ρχ ;χ̄

∂ t̄
− [ω̄D + ω̄AP(t̄ )]

∂ρχ ;χ̄

∂ k̄
= 0. (11)

As a result, the analytical expression of ρχ ;χ is given by

ρχ ;χ = e−ᾱt̄

{
ρ

χ

T [k̄ + ω̄Dt̄ + f (t̄ )] + ᾱ

∫ t̄

0
dt̄ ′eᾱt̄ ′

ρ
χ

T [k̄

+ ω̄D(t̄ − t̄ ′) + f (t̄ ) − f (t̄ ′)]
}
, (12)

where

f (x) = ω̄A

∫ x

0
dx′P(x′). (13)

Substituting Eqs. (6) and (7) into Eq. (13), one can easily find
f (t̄ ) = ω̄A sin t̄ for the cosinusoidal field, and

f (t̄ ) =
{

ω̄A,

−ω̄A,

for 2mπ�t̄�(2m+1)π,

for (2m+1)π�t̄�2(m+1)π,
(14)

for the periodic pulsed field, respectively. The sketch map of
f (t̄ ) is shown in Fig. 2. Finally, the long-time averaged current
is given by

〈 j〉 = lim
T̄ →∞

1

2π T̄

∫ T̄

0
dt̄

∫ π

−π

dk̄ j(k̄, t̄ ), (15)

where

j(k̄, t̄ ) = eg
∑
s,χ

∂ε
s,χ
0

h̄∂ k̄
ρχ ;χ (k̄, t̄ ) = egvF cos k̄ρ−(k̄, t̄ ), (16)
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FIG. 2. The sketch map of the function f (t̄ ) in our analytical
derivation. The green solid line and the red dashed line represent
the f (t̄ ) corresponding to the ac fields of the trigonometric function
[Eq. (6)] and the periodic pulse [Eq. (7)], respectively.

with vF = v
√

1 − b2 being the Fermi velocity, ρ− = ρ1;1 −
ρ 1̄;1̄, and g = 1

4π l2
Bd

being the degree of degeneracy for Weyl
fermions.

III. RESULTS AND DISCUSSIONS

A. Nonlinear charge transport modulated by the cosinusoidal
electric field

In this subsection, we study the current response to the
dc-ac electric field of the form [ED+EA cos(ω0t )]ẑ. By using
Eqs. (12), (13), (15), and (16), the long-time averaged current
is derived as

〈 j〉 = egvF
ᾱ

2π
lim

T̄ →∞
1

T̄

∫ T̄

0
dt̄

∫ t̄

0
dt̄ ′Z (t̄, t̄ ′), (17)

where Z (t̄, t̄ ′) is expressed as

Z (t̄, t̄ ′) = Re

[
eᾱ(t̄ ′−t̄ )−is

∫ s+π

s−π

dk̄eik̄ tanh

(
β̄ sin k̄

2

)]
, (18)

with s = ω̄D(t̄−t̄ ′)+ω̄A(sin t̄− sin t̄ ′). At zero temperature,
i.e., β̄→∞, the analytical expression of the long-time aver-
aged current can be obtained as

〈 j〉 = 2h̄egvF

πτ

∞∑
m=−∞

(−1)mJ2
m

(
eEAd

h̄ω0

)

× eEDd+mh̄ω0

(h̄/τ )2+(eEDd+mh̄ω0)2
, (19)

where Jm(z) is the mth-order Bessel function of the
first kind. During the derivation, we have used the re-
lationships i = 1

4

∫ s+π

s−π
dk̄eik̄ tanh[ β̄ sin k̄

2 ]β̄→∞ and eiz cos x =
J0(z)+2

∑∞
m=1 imJm(z) cos(mx). Equation (19) is the main re-

sult of this work. It is clear that 〈 j〉 = 0, when ED = 0 as it
should be; while in the absence of the ac field (EA = 0), we
have

〈 j〉|EA=0 = 2egvF

π

eEDdh̄/τ

(h̄/τ )2+(eEDd )2
, (20)

FIG. 3. (a) The current response 〈 j〉 (in unit of egvF ) as a
function of ω̄A = edEA/h̄ω0. The parameters are ω0 = 2 THz, ᾱ =
1/τω0 = 0.2, and ω̄D = edED/h̄ω0 = 0.1, 1.0. (b) The quasienergy
spectrum (in units of h̄v/d) as a function of ω̄A. ω̄D = 0.1. The other
parameters are the same as those in panel (a).

which is just the nonlinear current response to the pure
dc field. Furthermore, for the linear response to the weak
dc electric field, Eq. (20) reduces to the well-known re-
sult of the linear current response in the ultraquantum
regime 〈 j〉|EA=0→ e2vF τED

4π2 h̄l2
B

as a consequence of chiral anomaly
[28,39].

1. Nonlinear charge transport modulated by the cosinusoidal
electric field I: Band collapse and dynamic localization

The dependence of the current 〈 j〉 on the ac field displayed
in Fig. 3(a) exhibits decayed oscillation behavior. To explore
the physical mechanism, we consider the high-frequency
(1/τ�ω0, eEDd�h̄ω0) regime. In this case, the m = 0 term
in the summation of Eq. (19) plays a dominant role, and the
current expression reduces to

〈 j〉 = 2egvF

π

eEDdh̄/τ

(h̄/τ )2 + (eEDd )2
J2

0

(
eEAd

h̄ω0

)

= 〈 j〉|EA=0J2
0 (ω̄A). (21)

Two interesting features can be observed from Eq. (21).
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(i) In the high-frequency regime, the nonlinear current
response to the dc field is modulated by the ac field in the same
way [by a factor J2

0 (ω̄A)] as that for the linear response, i.e.,
〈 j〉Linear = e2EDvF τ

4π2 h̄l2
B

J2
0 (ω̄A) (ac-field-modulated chiral anomaly

effect).
(ii) The current vanishes when J0(ω̄A) = 0 corresponding

to ω̄A = eEAd
h̄ω0

= 2.40, 5.52, 8.65, . . . This complete suppres-
sion of current is an effect known as dynamic localization.

Beyond the high-frequency regime, the higher-order terms
in Eq. (19) cannot be ignored and the ac field has a different
modulation effect [see the curves for ω̄D = 0.1 and 1.0 in
Fig. 3(a)].

Now we use the Floquet theory to gain a deeper under-
standing of the physical mechanism of dynamic localization,
i.e., the vanishing of the current at certain values of ac
field parameters ω̄A = eEAd/h̄ω0. It is well known that the
dynamics of a system with spatial periodic potential is de-
termined by the energy band. Similarly, the dynamics of a
system driven by a temporal periodic field is determined
by the quasienergy. If the Hamiltonian of a system satisfies
the periodic condition that H (t ) = H (t+T ), the solutions
corresponding to the Schrodinger equation may be writ-
ten as a complete set of Floquet wave functions: ψε̃(t ) =
exp(−iε̃t )uε̃(t ), where ε̃ is the so-called “quasienergy,”
and uε̃(t ) = uε̃(t+T ) is also T -periodic [68–70]. In the
high-frequency regime, the quasienergy of the system consid-
ered here is given by

ε̃
χ

0 = 1

T

∫ T

0
dtεχ

0 (k, t ), (22)

where ε
χ

0 (k,t )= −χ h̄v
d [sin(k̃d )±b], with k̃ = k+ eEA

h̄ω0
sin(ω0t )

being a time-dependent wave vector. In the following dis-
cussions, we choose b = 0 because b in ε

χ

0 (k, t ) only
leads to a constant shift of the quasienergy. Thereby, one can
obtain

ε̃
χ

0 = −χ h̄v

d
sin(kd )J0(ω̄A). (23)

The quasienergy as a function of ω̄A = eEAd
h̄ω0

is shown in
Fig. 3(b). Comparing quasienergy [Eq. (23) and Fig. 3(b)]
with the current at the high-frequency limit [Eq. (21) as well
as Fig. 3(a)], one can clearly see that the band collapse and
the disappearance of current occur under the same condi-
tion that J0(ω̄A) = 0. Physically, at the collapse points of the
corresponding quasienergy, the “effective mass” of electrons
becomes infinite, which leads to the dynamic localization and
the vanishing of the current. Here one can see that the current
response (related to chiral anomaly) and the (quasi)energy
band are modulated in a way similar to that in topological
trivial systems (like semiconductors). One of the effects of the
ac field (in the high-frequency range) considered in our work
is the renormalization/suppression of the quasienergy band-
width and the associated modulation of the current response
(related to chiral anomaly). This is remarkably different from
the previous studies on the Floquet topological insulators and
Floquet Weyl semimetals. For example, based on circularly
polarized light fields, the dynamical gap opening in graphene
[46–48], the generation of Weyl nodes from Dirac semimetals
[52], and the shift of the positions of Weyl nodes [58] have

FIG. 4. The current (in units of egvF ) as a function of ω̄D with
ᾱ = 0.1 in panel (a) and ᾱ = 0.67 in panel (b). The black and red
lines correspond to ω̄A = 6.0 and 9.3, respectively. The frequency of
the cosinusoidal field is chosen as ω0 = 0.6 THz.

been explored. Moreover, unlike previous research based on
the linear dispersion, our present work focuses on the non-
linear response in the presence of strong fields, where the
excitation beyond the low-energy linear dispersion is involved
and a very different feature (from that based on the linear
dispersion) occurs [61,67].

2. Nonlinear charge transport modulated by the cosinusoidal
electric field II: Multiple photon-assisted transport

As discussed above, the m = 0 term [in Eq. (19)] dom-
inates the contribution to the current in the high-frequency
regime. Furthermore, a resonant peak, the so-called Esaki-Tsu
peak, may appear in the current when the Bloch frequency
matches the relaxation rate (i.e., ω̄D = ᾱ) [71–73]. The other
terms (m �=0) also have appreciable effects in the intermediate-
or low-frequency regime. In particular, we notice that for
the mth term, the local maximal value of the current |〈 j〉| is
achieved when eEDd = mh̄ω0±h̄/τ (i.e., ω̄D = m±ᾱ), corre-
sponding to the m-photon-assisted charge transport process.
Typical results of the current 〈 j〉 as a function of ω̄D are shown
in Fig. 4 for several values of ᾱ and ω̄A. The peak or valley
in the current curve (at ω̄D = m±ᾱ), the generalization of the
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Esaki-Tsu peak, can be clearly seen in Fig. 4(a). Moreover, we
can observe from Fig. 4(a) that the corresponding amplitude
of the current can be modulated by the ac field. In addition,
we also notice from Fig. 4(b) that, with increasing ᾱ, the
adjacent peaks or adjacent valleys embodied in current curves,
corresponding to the m-photon process (mh̄ω0+h̄/τ ) and the
(m+1)-photon process ((m+1)h̄ω0−h̄/τ ), respectively, may
merge into one peak or one valley. For Weyl semimetals
under an external magnetic field, the relaxation time τ due to
various scattering processes actually depends on the magnetic
field [28–32]. Therefore, by tuning the magnetic field (thus
changing τ ), it may be possible to experimentally observe the
change of the current pattern related to the multiple-photon-
assisted charge transport processes [the pattern of double
peaks versus the pattern of a single peak between mh̄ω0 and
(m+1)h̄ω0]. We would like to point out that the screening
effect also affects the relaxation time [74,75]. It has an impact
on the photon-assisted transport, while it does not affect the
dynamic localization.

B. Nonlinear charge transport modulated by the pulsed field

Now, we turn to discuss nonlinear charge transport in
Weyl semimetals modulated by a periodic pulsed field EA =
EAP(ω0t )ẑ, where P(ω0t ) is expressed as Eq. (7). The cor-
responding current for the case at zero temperature can be
analytically derived and the final result is given by

〈 j〉 = 2
egvF ᾱ

π
Im

(
1

ᾱ−iω̄D

)
−8

egvF ᾱ

π T̄0
sin2 ω̄A

× Im

[
1

(ᾱ−iω̄D)2

e
(ᾱ−iω̄D )T̄0

2 −1

e
(ᾱ−iω̄D )T̄0

2 +1

]
, (24)

where T̄0 = 2π denotes the period of the ac field. The de-
tailed derivation of Eq. (24) is presented in the Appendix.
It is clear that in the presence of a periodic pulsed field the
current [Eq. (24)] is remarkably different from that for the
trigonometric ac field [Eq. (19)].

Herein, we briefly discuss the current response in the pres-
ence of a periodic pulsed field. There are several points that
need to be noted.

(i) When ED = 0, i.e., ω̄D = 0, one can find that 〈 j〉 = 0.
(ii) When EA→0, i.e., ω̄A→0, we have 〈 j〉→ 2egvF

π
ᾱω̄D

ᾱ2+ω̄2
D

,
which is just the result for the case in the presence of a pure
dc field, with a Esaki-Tsu peak in the current response curve.

(iii) With an increasing ac field, more peaks may ap-
pear as shown in Fig. 5. Interestingly, the effect from the
ac field disappears when ω̄A = mπ (m an integer). As an
example, the currents for ω̄A = 0 and ω̄A = 3π are identical
(shown as the black curve and the blue curve in Fig. 5). The
frequency/period of the ac field also has an important impact
on the current response. We also plot in Fig. 6 the long-time
averaged current 〈 j〉 as a function of the strength of the dc field
ωD = eEDd with different ac field frequencies. From Fig. 6,
one can see that different current response patterns appear
when changing the frequency of the ac field.

(iv) In the high-frequency regime, the current reduces to
the neat form 〈 j〉→ 2egvF

π
ᾱω̄D

ᾱ2+ω̄2
D

cos2 ω̄A, which indicates the
dynamic localization again under the condition of cos ω̄A = 0.

FIG. 5. The current response 〈 j〉 (in units of egvF ) as a function
of ω̄D for the periodic pulsed fields with different field strengths (ω̄A).
The parameters are chosen as ω0 = 0.6 THz, ᾱ = 0.2, and ω̄A = 0,
3.33, 9.4, 10.0, and 20.0. The curves for ω̄A = 0 (black curve) and
ω̄A = 9.4 (blue curve) overlap.

Different from the case of an ac field in the form of a trigono-
metric function, the dynamic localization appears periodically
with changing the amplitude of the pulsed field, i.e., ω̄A =
(2m+1)π/2, with m being an integer. The locations of 〈 j〉 = 0
in the current curve in this case should also correspond to the
collapse points of the quasienergy. According to Eq. (22), one
can obtain the quasienergy in the periodic pulsed field in the
high-frequency regime as

ε̃0,χ= −2χ h̄v

d
sin(kd )cos

(
eEAd

h̄ω0

)
. (25)

The quasienergy collapse points, i.e., the points satisfying
cos( eEAd

h̄ω0
) = 0, are just the points for the occurrence of dy-

namic localization (〈 j〉 = 0).

FIG. 6. The current response 〈 j〉 (in units of egvF ) as a function
of ωD = eEDd for the periodic pulsed field with various frequencies
ω0. The black, red, blue, and purple curves correspond to ω0 = 0.2,
0.4, 0.6, and 1.2 THz, respectively. Other parameters are chosen as
ωA = eEAd = 6 THz and 1/τ = 0.12 THz.
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Our theoretical studies have revealed several interesting
features of the nonlinear charge transport modulated by ac
fields in Weyl semimetals, such as the suppression of cur-
rent due to dynamic localization, the multiple-photon-assisted
transport and the associated different patterns of current
curves. At the end of this paper, we briefly discuss the experi-
mental conditions to observe the above theoretical predictions
and explain how to choose the physical parameters. For the
typical type-I Weyl semimetal material TaAs [5], the lattice
constants are a = b = 3.437 Åand c = 11.656 Å. As a rough
estimation, we choose τ ∼ 10−12 s and d ∼ 5 Å. Then, the
critical external electric field between the linear response and
the nonlinear response is estimated as Ec = h̄

edτ
∼ 1.3 × 106

V/m. The strong magnetic field condition in this paper re-
quests that h̄v/lB > eEDd . We suppose v = 3 × 105 m/s and
the required magnetic field B = 0.73 T, which corresponds to
lB = 3.0 × 10−7 m. In order to observe the influence of the
ac field in experiment, especially the behavior of the current
entirely disappearing around the first quasienergy collapse
point for J0( eEAd

h̄ω0
) = 0, one can choose EA = 2 × 106 V/m

and ω0 = 0.63 THz. The experimental conditions estimated
above are easily realized in the current THz experiments re-
lated to condensed-matter physics. Therefore, we hope that
the theoretical findings in this work could be experimentally
observed in the near future.

IV. SUMMARY

In this paper we theoretically investigated the nonlinear
charge transport of Weyl semimetals in the presence of dc-ac
fields in the ultraquantum regime. Nonperturbative calcula-
tions based on the SLE have revealed the key characters
of the ac-field-modulated charge transport. Under an exter-
nal dc-ac field with the ac field EA = EA cos(ω0t ), dynamic
localization and quasienergy band collapse occur under a suit-
able condition of J0(ω̄A) = 0 in the high-frequency regime.
While in the intermediate- and low-frequency regimes, the
multiple-photon-assisted transport process modulated by the
cosinusoidal field leads to magnetic-field-tunable resonant
current peaks, which are the extension of the Esaki-Tsu peak.
The position and the amplitude of the peaks can be tuned by
the magnetic field and the ac field. The case with a periodic
pulsed field, i.e., EA = 2EA

∑∞
m=0(−1)mδ(ω0t−mπ ), has also

been studied, which shows similar ac-field-induced dynamic
localization and quasienergy band collapse under a different
condition of cos ω̄A = 0. In addition, we have also found that
the influence of the periodic pulsed field on current may van-
ish when ω̄A = mπ , with m being an integer. Our theoretical
results deepen the understanding of the nonlinear transport
properties of Weyl semimetals and provide helpful guidance
for the design of photoelectric devices based on topological
materials.
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APPENDIX

In this Appendix, we present the details of deriving the
current response, i.e., Eq. (24), in the presence of a periodic
pulsed field. Substituting Eqs. (5), (7), (13), and (16) into
Eq. (15), the long-time averaged current is derived as 〈 j〉 =
egvF J2, where

J2 = lim
N→∞

ᾱ

2π

1

NT̄0

N−1∑
m=0

Gm, (A1)

with

Gm =
∫ (m+1)T̄0

mT̄0

dt̄
∫ t̄

0
dt̄ ′Z (t̄, t̄ ′). (A2)

Gm can be divided into two parts,

Gm = GA
m+GB

m, (A3)

where

GA
m =

∫ (
m+ 1

2

)
T̄0

mT̄0

dt̄
∫ t̄

0
dt̄ ′Z (t̄, t̄ ′) (A4)

and

GB
m =

∫ (m+1)T̄0(
m+ 1

2

)
T̄0

dt̄
∫ t̄

0
dt̄ ′Z (t̄, t̄ ′). (A5)

After some derivations, we have GA
m = ∫ (m+ 1

2 )T̄0

mT̄0
gA

mdt̄ and

GB
m = ∫ (m+1)T̄0

(m+ 1
2 )T̄0

gB
mdt̄ , where

gA(B)
m =

⎡
⎣m−1∑

n=0

( ∫ (
n+ 1

2

)
T̄0

nT̄0

dt̄ ′+
∫ (n+1)T̄0(

n+ 1
2

)
T̄0

dt̄ ′
)

+
∫ t̄

mT̄0

dt̄ ′

⎤
⎦

× Z (t̄, t̄ ′) =
m−1∑
n=0

[(
gA(B)

m

)(1)

n +(
gA(B)

m

)(2)

n

]+(
gA(B)

m

)(3)
.

(A6)

By using the periodic property of f (t̄ ), one can obtain

(
gA

m

)(1)

n
= 4 Im

[
e−(ᾱ−iω̄D )(t̄−nT̄0 )

ᾱ−iω̄D

(
e

(ᾱ−iω̄D )T̄0
2 −1

)]
, (A7)

(
gA

m

)(2)

n = 4 Im

[
e−(ᾱ−iω̄D )(t̄−nT̄0 )

ᾱ−iω̄D

(
e

(ᾱ−iω̄D )T̄0
2 −1

)
e

(ᾱ−iω̄D )T̄0
2 ei2ω̄A

]
,

(A8)

(
gA

m

)(3) = 4 Im

[
1

ᾱ−iω̄D
−e−(ᾱ−iω̄D )(t̄−mT̄0 )

ᾱ−iω̄D

]
, (A9)
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(
gB

m

)(1)

n = 4 Im

[
e−(ᾱ−iω̄D )(t̄−nT̄0 )

ᾱ−iω̄D

(
e

(
ᾱ−iω̄D

)
T̄0

2 −1

)
e−i2ω̄A

]
,

(A10)

(
gB

m

)(2)

n = 4 Im

[
e−(ᾱ−iω̄D )(t̄−nT̄0 )

ᾱ−iω̄D

(
e

(
ᾱ−iω̄D

)
T̄0

2 −1

)
e

(ᾱ−iω̄D )T̄0
2

]
,

(A11)

(
gB

m

)(3) = 4 Im

[
1

ᾱ−iω̄D
−e−(ᾱ−iω̄D )(t̄−mT̄0 )

ᾱ−iω̄D
e

(ᾱ−iω̄D )T̄0
2

+ e−(ᾱ−iω̄D )(t̄−mT̄0 )

ᾱ−iω̄D

(
e

(
ᾱ−iω̄D

)
T̄0

2 −1

)
e−i2ω̄A

]
. (A12)

In the above equations, T̄0 = 2π . Substituting these equations
into Eq. (A1), one can finally arrive at Eq. (24).
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