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Molecular formations and spectra due to electron correlations in three-electron
hybrid double-well qubits
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We show that systematic full configuration-interaction (FCI) calculations enable prediction of the energy
spectra and the intrinsic spatial and spin structures of the many-body wave functions as a function of the
detuning parameter for the case of three-electron hybrid qubits based on GaAs asymmetric double quantum
dots. Specifically, in comparison with the case of weak interactions and treating the entire three-electron
double-dot hybrid qubit as an integral unit, it is shown that the predicted spectroscopic patterns, originating from
strong electron correlations, manifest the formation of Wigner molecules (WMs). Signatures of WM formation
include: (1) a strong suppression of the energy gaps relative to the noninteracting-electron modeling, and (2) the
appearance of a pair of avoided crossings arising between states associated with two-electron occupancies in the
left and right wells. The Wigner molecule is a physical entity associated with electron localization within each
well, and it cannot be captured by the previously employed independent-particle or two-site-Hubbard theoretical
modeling of the hybrid qubits. The emergence of strong WMs is investigated in depth through the concerted use
of FCI-adapted diagnostic tools like charge and spin densities, as well as conditional probability distributions.
Furthermore, the energy spectrum as a function of the strength of the Coulomb repulsion (at constant detuning) is
calculated in order to complement the thorough analysis of the factors contributing to WM emergence. We report
remarkable agreement with recent experimental measurements. The present FCI methodology for multiwell
quantum dots can be straightforwardly extended to treat valleytronic two-band Si/SiGe hybrid qubits, where the
central role of the WMs was confirmed recently. Such valleytronic FCI could be also adapted and employed
in simulations of Si-based two-qubit logical gates made of two interacting double-quantum-dot hybrid qubits
confining a total of N � 6 electrons.
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I. INTRODUCTION

Methodical control of the parameters and performance of
qubits is a prerequisite for the successful implementation of
quantum computing. To this effect, during the last decade
major experimental endeavors (see, e.g., Refs. [1–7]) have
been undertaken and substantial progress has been reported.
In particular, unprecedented progress has been achieved in
the techniques for controlling and manipulating the spin and
charge electronic degrees of freedom of two-dimensional
(2D) semiconductor hybrid-double-quantum-dot (HDQD)
qubits [8–15], comprising three-electron (3e) [8–10,12,13,15]
and five-electron (5e) [11,14] varieties.

Nonetheless, several experimental scrutinies in the last
two years of state-of-the-art semiconductor double-dot
Si/SiGe [14] and GaAs [15] HDQD qubit devices have
provided incontrovertible evidence (see also Refs. [16,17])
that a key factor influencing the qubit spectra and perfor-
mance had been overlooked in the context of earlier qubit
investigations. This factor is the manifestation of strong
electron-electron (e-e) correlations leading to formation of
Wigner molecules (WMs) [18–31], which rearranges sharply
the electronic spectra of the qubit device with respect to
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those associated with noninteracting electrons. As their name
suggests, the WMs are a fully quantal extension of the con-
cept of a bulk Wigner crystal [32] to the realm of finite
systems.

From a theoretical perspective, the formation of Wigner
molecules cannot be described in the framework of
independent-particle (single-particle) modeling [8,33,34],
which was advanced for 2D quantum dots (QDs) from the
very early stages of the field [35], nor are the more in-
volved two-site Hubbard models [8,36–41] adequate in this
respect [42]. As reaffirmed recently for the case of two par-
ticles (two electrons [14–17] or two holes [17]) in a single
QD, explored in recent experimental investigations [14,15],
formation of WMs, which has been extensively demon-
strated in earlier investigations [18,20,21,23,27–30,43,44],
requires the employment of more comprehensive, ab-initio-
in-nature, theoretical approaches, including the symmetry-
breaking/symmetry-restoration [18,20,23,29] methods and
the full configuration-interaction (FCI) method (referred to
also as exact diagonalization [21,27–30,43–46]).

In this paper we demonstrate the central role that strong
e-e correlations and WM formation play in shaping the
spectra of semiconductor qubits by going beyond the afore-
mentioned recent two-particle CI calculations in a single
dot [14–17], namely, we present FCI calculations for the
case of a hybrid [8–15,33] three-electron double-quantum-dot
GaAs qubit, treated as an integral unit. To establish contact
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with an actual experimental investigation, we employ HDQD
parameters comparable to those in Ref. [15], which measured
the energy spectrum of the qubit as a function of the detuning
at zero magnetic field. As we elaborate below, we find a
remarkable agreement between our 3e-CI energy spectra and
the essential experimental trends that characterize the hybrid
qubit. These trends include the large suppression of the energy
gaps compared to the simple noninteracting-electron problem
and the emergence of the phenomenological 4 × 4 effective
Hamiltonian, which incorporates a pair of avoided crossings
associated with double electronic occupancies in the left and
right well, and which depends linearly on the detuning be-
tween the two wells.

We further present a detailed analysis of the interplay of the
spectral features of the HDQD and the formation of a WM,
by investigating charge and spin-resolved densities, as well
as spin-resolved conditional probability distributions (CPDs),
for the six or eight lowest-in-energy states of the 3e double-
quantum-dot (DQD) spectra for two different cases, namely,
as a function of detuning (keeping constant the dielectric con-
stant κ) and as a function of the dielectric constant (keeping
the detuning constant). In this context, particularly revealing
for the process of WM formation is the contrast of charge
densities (see Fig. 1 below) between a weakly interacting
case (with κ = 1000) and the strongly interacting case (with
κ = 12.5) of the GaAs HDQD qubit.

Plan of the paper. In Sec. II we introduce the many-body
Hamiltonian of the HDQD device model, comprising three
electrons in an asymmetric 2D double-well external confine-
ment, which is modeled by a two-center-oscillator (TCO)
potential joined by a smooth neck. The values of the model’s
parameters, employed in the calculations, are specified in this
section; they are chosen to address the experiments on GaAs
HDQD in Ref. [15]. Also included (Sec. II A) in this section is
a restatement of the Wigner parameter RW [18,29] pertaining
to the propensity for Wigner-molecule formation, as well as
estimates of the RW corresponding to the parameters used in
our calculations.

In Sec. III, the CI-calculated energy spectra as a func-
tion of the interdot detuning parameter at specific values
of the dielectric constant (controlling the strength of the
Coulomb repulsion) are discussed (Sec. III A) for both the
case where the interelectron interaction is taken to be small
(simulating the independent-electron limit) and for the ac-
tual value appropriate for GaAs (illustrating the effect of
strong WM formation on the eigenvalue spectra). Subse-
quently (Secs. III A 1 and III A 2), we analyze the charge
densities and spin structures corresponding to selected values
of the detuning parameter away from the avoided crossings
using both spin-resolved charge densities and spin-resolved
CPDs. Special attention is devoted in Sec. III B to the evolu-
tion of the spectral characteristics and the mixing of WM wave
functions (Sec. III B 1) when the detuning values fall in the
neighborhood of the avoided crossings. In Sec. III C we focus
on the energy gap between the ground and first excited state,
and report remarkable agreement with the measurements of
Ref. [15]. We end Sec. III with an analysis (Sec. III D) of
the CI-calculated spectra for GaAs in the context of a phe-
nomenological matrix Hamiltonian used as a diagnostic tool
in previous works on HDQD qubits.

The effects of interelectron interaction on the Wigner-
molecule formation and associated spectral characteristics are
further highlighted and accentuated in Sec. IV through the
analysis of the CI-calculated spectra and charge densities as a
function of the dielectric constant of the material at a constant
detuning value. We summarize our results in Sec. V.

Appendix A describes the numerical approach to de-
termine the eigenenergies and eigenstates of the one-body
TCO Hamiltonian introduced below in Eq. (3). Because the
community of quantum-information and quantum-computer
scientists have only recently become alerted [14–17] to
the potentialities of the CI many-body method and the
significance of the concept of the Wigner molecule, for com-
pleteness and pedagogical reasons, we include two additional
Appendices as follows: Appendix B describes the CI method-
ology, whereas Appendix C describes the diagnostic tools
(beyond-mean-field single-particle densities and CPDs, and
their spin-resolved varieties) needed to analyze the CI many-
body wave functions and extract the information regarding
WM formation and the intrinsic spin structure of the associ-
ated CI wave function.

II. MANY-BODY HAMILTONIAN AND PARAMETERS OF
THE DOUBLE-WELL DEVICE

Following the recent advances [11,13–15] in the fabri-
cation of hybrid qubits, we investigate in this paper the
many-body spectra and wave functions of three electrons in
an asymmetric two-dimensional double-well external confine-
ment, implemented by a TCO potential as described below.

We consider a many-body Hamiltonian for N electrons of
the form

HMB(ri, r j ) =
N∑

i=1

HTCO(i) +
N∑

i=1

N∑
j>i

V (ri, r j ), (1)

where ri, r j denote the vector positions of the i and j electron.
This Hamiltonian is the sum of a single-particle part HTCO(i),
which implements the double-well confinement, and the two-
particle interaction V (ri, r j ). A notable property of HTCO is
the fact that it allows for the formation of a smooth interwell
barrier between the individual wells; see the inset of Fig. 1(b)
for an illustration.

Naturally, for the case of electrons, the two-body interac-
tion is given by the Coulomb repulsion

V (ri, r j ) = e2

κ|ri − r j | , (2)

where κ is the dielectric constant of the semiconductor
material.

In the two-dimensional TCO employed by us, the single-
particle levels associated with the confining potential are
determined by the single-particle Hamiltonian [18,23,44]

HTCO = p2

2m∗ + 1

2
m∗ω2

y y2 + 1

2
m∗ω2

xkx′2
k + Vneck(x) + hk,

(3)
where x′

k = x − xk with k = 1 for x < 0 (left) and k = 2 for
x > 0 (right), and the hk’s control the relative depth of the
two wells, with the detuning defined as ε = h1 − h2. y denotes
the coordinate perpendicular to the interdot axis (x). The most
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FIG. 1. Spectra for the same three-electron double dot for two different values of the dielectric constant. (a) κ = 1000 (weak Coulombic
repulsion). (b) κ = 12.5 (actual value for GaAs, stronger Coulombic repulsion). (c–h) Charge densities for the ground and first five excited
states for κ = 1000. (i–n) Charge densities for the ground and first five excited states for κ = 12.50. The arrows indicate the value of the
detuning at which the charge densities were calculated, i.e., ε = 1.50 meV for (c–h) and ε = 1.405 for (i–n). The notation (nL, nR; S) denotes
the left electron occupation, the right electron occupation, and the total spin, respectively. For all densities, the scales of all three axes are as in

(g). CI left and right occupations are highlighted in red. In all figures and in the text, the CI energies have been referenced to 3h̄
√

(ω2
x1 + ω2

y )/2.

general shapes described by H are two semiellipses connected
by a smooth neck [Vneck(x)]. x1 < 0 and x2 > 0 are the centers
of these semiellipses, d = x2 − x1 is the interdot distance, and
m∗ is the effective electron mass.

For the smooth neck we use

Vneck(x) = 1
2 m∗ω2

xk

[
Ckx′3

k + Dkx′4
k

]
θ (|x| − |xk|), (4)

where θ (u) = 0 for u > 0 and θ (u) = 1 for u < 0. The four
constants Ck and Dk can be expressed via two parameters
as follows: Ck = (2 − 4εb

k )/xk and Dk = (1 − 3εb
k )/x2

k , where
the barrier-control parameters εb

k = (Vb − hk )/V0k are related
to the height of the targeted interdot barrier (Vb, measured
from the zero point of the energy scale), and V0k = mω2

xkx2
k/2.
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We note that measured from the bottom of the left (k = 1)
or right (k = 2) well, the interdot barrier is Vb − hk . How we
solve for the eigenvalues and eigenstates of HTCO is described
in Appendix A.

Motivated by the asymmetric double dot used in the GaAs
device described in Ref. [15], we choose the parameters enter-
ing in the TCO Hamiltonian as follows: The left dot is elliptic
with frequencies corresponding to h̄ωx1 = 0.413 567 meV =
100 h GHz and h̄ωy1 = h̄ωy = 1.22 meV = 294.9945 h GHz
(1 h GHz = 4.135 67 μeV), whereas the right dot is circular
with h̄ωx2 = h̄ωy2 = h̄ωy = 1.22 meV = 294.9945 h GHz.
The left dot is located at x1 = −120 nm, whereas the right
dot is located at x2 = 75 nm, and the interdot barrier is set
to Vb = 3.3123 meV = 800.91 h GHz. The effective electron
mass and the dielectric constant for GaAs are m∗ = 0.067me

and κ = 12.5, respectively.

A. The Wigner parameter

At zero magnetic field and in the case of a single cir-
cular harmonic QD, the degree of electron localization and
Wigner-molecule pattern formation can be associated with the
so-called Wigner parameter [18,29],

RW = Q/(h̄ω0), (5)

where Q is the Coulomb interaction strength and h̄ω0 is the
energy quantum of the harmonic potential confinement (being
proportional to the one-particle kinetic energy); Q = e2/(κl0),
with l0 = (h̄/(m∗ω0))1/2 the spatial extension of the lowest
state’s wave function in the harmonic (parabolic) confinement.

Naturally, strong experimental signatures for the formation
of Wigner molecules are not expected for values RW � 1. In
the double dot under consideration here, there are two dif-
ferent energy scales, h̄ω1 = 0.413 567 meV (associated with
the long x dimension of the left QD) and h̄ω2 = 1.22 meV
(associated with the right circular QD). As a result, for GaAs
(with κ = 12.5) one gets two different values for the Wigner
parameter, namely, RW,1 = 5.31 and RW,2 = 3.09. These val-
ues suggest that a stronger Wigner molecule should form in
the left QD compared to the right QD, as indeed was found by
the FCI calculation described below; the essentials of the FCI
method are presented in Appendix B.

We note that the earlier fabricated GaAs quantum dots had
harmonic confinements associated with frequencies h̄ω0 �
3 meV (RW < 1.97) [34,35], which correspond to a range
of smaller QD sizes that did not favor the observation of
the WMs at zero magnetic fields, as can be concluded from
an inspection of the earlier experimental literature [47]. In
this context, the much larger anisotropic GaAs double dot of
Ref. [15], as well as the findings of Ref. [14], where strong
WM signatures were observed, heralds the exploration of until
now untapped potentialities in the fabrication and control of
quantum dot qubits.

III. CI SPECTRA AS A FUNCTION OF DETUNING

Before engaging in detailed analyses of the CI numerical
results, we comment on a particular notation that will be
essential in facilitating this task. Indeed, we will extensively
use the three-part notation (nL, nR; S) (with nL + nR = N)

to denote the left-well electron occupation, the right-well
electron occupation, and the total spin, respectively, associ-
ated with a 3e CI wave function. In this vein, the two-part
notation (nL, nR) will also be occasionally used

A. The big picture

Figure 1 compares the CI spectra as a function of de-
tuning (within the same window, 1.40 meV � ε � 2.1 meV)
for two different values of the dielectric constant, i.e., κ =
1000, which is closer to the noninteracting limit, and κ =
12.5, which is the actual value for GaAs QDs. This com-
parison demonstrates a dramatic modification in the spectra.
Indeed, the low-energy spectrum for κ = 1000 [including
the ground state, see Fig. 1(a)] is dominated by states that
have the majority of electrons (two or all three electrons)
residing in the deeper right well; such states are denoted as
(1, 2; S) or (0, 3; S). According to the so-called branching
diagram [48,49], for three electrons the allowed total spin
values are S = 1/2 (with a multiplicity of 2) and S = 3/2
(with a multiplicity of 1). All five lowest-in-energy states in
Fig. 1(a) have a total spin S = 1/2, with the S = 3/2 states
appearing at higher energies (at the top of the plotted energy
spectrum).

On the contrary, in the corresponding low-energy spectrum
in the GaAs case [Fig. 1(b)], the (2, 1; S) states with two
electrons in the left well are prominent, along the (1, 2; S)
states with two electrons in the right well. Furthermore, states
with three electrons in a given well, denoted as (3, 0; S)
or (0, 3; S), are absent. The fact that only the six (2, 1; S)
and (1, 2; S) states comprise the lowest-energy spectrum for
the GaAs double dot is an essential feature that is a pre-
requisite for the implementation of the hybrid qubit, which
uses [8,9,13,15,33] the four (2, 1; 1/2) and (2, 1; 1/2) states.
As it is discussed below, this feature is the effect of the for-
mation of Wigner molecules as a result of the strengthening
of the typical Coulomb energies relative to the energy gaps in
the single-particle spectrum of a confining external potential
that represents a rather large-size and strongly asymmetric
double dot (see the discussion on the Wigner parameter RW

in Sec. II A).
To assist the reader in the exploration of the features

present in the spectra of Fig. 1, we have successively num-
bered the lowest six states at ε = 1.4 meV, starting from
the ground state (no. 1) and moving upwards to the first
five excited ones. Apart from the immediate neighborhood
of an avoided crossing, in both spectra these energy curves
are straight lines, and naturally we keep the same numbering
for all values of the detuning in the window range used in
Figs. 1(a) and 1(b).

In Fig. 1(a), there are no degeneracies, and this numbering
is self-explanatory. The spectrum in Fig. 1(b) is less transpar-
ent because of quasidegeneracies between states 2 and 3, and
5 and 6, as well as the small energy gap (∼ 3 h GHz) between
state 1 and the quasidegenerate pair (nos. 2 and 3). We stress
that states 1 and 2 have two electrons in the left well and
total spin S = 1/2, and thus they are denoted as (2, 1; 1/2),
whereas state 3 has two electrons in the left well but a total
spin of S = 3/2 [denoted as (2, 1; 3/2)]. On the other hand,
states 4, 5 (with S = 1/2), and 6 (with S = 3/2) have two
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electrons in the right well, and they are denoted as (1, 2; S).
A main feature of this six-state spectrum in Fig. 1(b) is that,
apart from the neighborhoods of the two avoided crossings
(see Sec. III B), the energy curves for states 1, 2, and 3 form
one band of parallel lines, whereas the energy curves for the
states 4, 5, and 6 form a second band of parallel lines, and the
two bands intersect at two avoided crossings. Again, the ap-
pearance of such three-member bands, grouping together two
S = 1/2 states and one S = 3/2 state, is a consequence of the
formation of a 3e Wigner molecule (three localized electrons
considering both wells), and this is in consonance with the
findings of Ref. [43] regarding the spectrum of three electrons
in single anisotropic quantum dots in variable magnetic fields.

We further stress that the dominant feature in the spectrum
of Fig. 1(b) is the small energy gap between the two S = 1/2
states, 1 and 2, which contrasts with the large gap between
the other two S = 1/2 states, 4 and 5, a point that will be
discussed in detail in Sec. III C below.

1. Charge densities away from the avoided crossings

Further insight into the unique trends and properties of the
GaAs double dot with the parameters listed in Sec. II is gained
through an inspection of the CI-calculated charge densities,
plotted in Fig. 1 for the ground and first five excited states and
for both values κ = 1000 [see Figs. 1(c)–1(h)] and κ = 12.5
[see Figs. 1(i)–1(d)] of the dielectric constant.

To facilitate the identification and elucidation of the main
trends, we display, along with the charge densities, the CI-
obtained electron occupancies (red lettering) in the left an
right wells of the DQD (rounded to the second decimal point).
[These CI occupations are rounded further to the closest inte-
ger in order to yield the nL’s and nR’s (nL + nR = 3) used in
the notation (nL, nR; S) to characterize the energy curves in the
spectra in Figs. 1(a) and 1(b).] Naturally, the charge densities
are normalized to the total number of electrons, N = 3.

Inspection of the charge densities on the left (for κ = 1000,
that is, for highly weakened interelectron repulsion) reveals
that they conform to those expected from an independent-
particle system. Indeed, in Figs. 1(c), 1(f) and 1(g), two
electrons with opposite spins occupy the lowest nodeless 1s-
type single-particle level in the right well. At the same time,
the single electron in the left well can successively occupy
the zero-node [Fig. 1(c)], one-node [Fig. 1(f)], and two-node
[Fig. 1(g)] single-particle states in this well. The fifth excited
state is a (2,1) [Fig. 1(h)] state, with two electrons with oppo-
site spins occupying the lowest nodeless single-particle level
in the left well, whereas the third electron occupies the node-
less single-particle level of the right well. Finally, the second
and third excited states [Figs. 1(d) and 1(e)] are (0,3) states
with all three electrons residing in the right well. In a circular
dot, these two states would be degenerate and fully circular
with angular momenta +1 and −1, but here the degeneracy is
lifted because of the influence of the left well and the interwell
neck.

The charge densities on the right (for κ = 12.5, case
of GaAs) deviate strongly from those expected from an
independent-particle system. Indeed, the formation of a strong
2e WM in the left well and of a weaker 2e WM in the
right well is clearly seen. For example, contrast the (2,1)

independent-particle density in Fig. 1(h) with the (2,1) WM
density in Figs. 1(i)–1(k) and the (1,2) independent-particle
density in Fig. 1(c) with the (1,2) WM density in Figs. 1(l)–
1(n). We also note the absence of states with higher than
double occupancy in any of the DQD wells, unlike the
findings for the case of the highly quenched interelectron
interaction discussed above; such states may emerge as highly
excited states for GaAs DQDs with the parameters used here
(as well as in the experiments [15]) and need not be of concern
for future application of such DQDs.

2. Spin structure away from the avoided crossings

The charge densities of the states 1, 2, and 3 in the three-
member band for κ = 12.5 [see Figs. 1(i)–1(k)] are very
similar. However, the corresponding spin structures are dif-
ferent, as shown explicitly below. Differences between the
spin structures may be investigated with the employment of
(1) spin-resolved densities and (2) spin-resolved conditional
probability distributions. The concept of spin-resolved densi-
ties is self-evident. The concept of the spin-resolved CPDs
is more complicated, and the full definition is provided in
Appendix C. At the intuitive level, the spin-resolved CPD
addresses the following question: given the specific (fixed)
location r0 of an electron with a definite spin (up or down),
what is the probability distribution at another location r for
finding another electron with a definite (up or down) spin?

As an example of the spin-structure analysis that can be
achieved with the CI calculations, we analyze below the
two cases of the ground state and the first excited state for
κ = 12.5 (GaAs) and ε = 1.405 meV. Figures 2(a) and 2(b)
display, respectively, the spin-up and spin-down densities for
the ground state mentioned above; compare Fig. 1(i) for the
total charge density. From these two spin-resolved densities, it
is evident that the spin structure of this ground state conforms
to the following familiar expression [8,15,41,50] in the theory
of three-electron qubits:

(|duu〉 − |udu〉)/
√

2, (6)

where u and d denote an up and down spin, respectively, with
the three spins arranged in a line from left to right in three
ordered sites, 1, 2, and 3.

Further confirmation for the spin structure in Eq. (6) is ob-
tained from the spin-resolved CPDs, two examples of which
are displayed in Figs. 2(c) and 2(d). Indeed, both the spin
kets in Eq. (6) are compatible with a first electron with spin
up being fixed at the third site. Then the first spin ket in
Eq. (6) allows the presence of a spin-up electron in its second
site with probability 1/4, whereas the second spin ket allows
the presence of a spin-up electron in its first site, again with
equal probability 1/4. This is clearly in agreement with the CI
CPD plotted in Fig. 2(c), which exhibits two humps of similar
height at sites 1 and 2. Likewise, only the second spin ket in
Eq. (6) is compatible with a first electron with spin up being
fixed in the first site, and this spin ket allows the presence
of a spin-down electron in its second site with probability
1/4. This again is in agreement with the CI CPD plotted in
Fig. 2(d), which exhibits a single hump at site 2.

Figures 3(a) and 3(b) display the spin-up and spin-
down densities for the associated first excited state; compare
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FIG. 2. The spin structure of the ground state at κ = 12.5 and
ε = 1.405 [see Fig. 1(i) for the corresponding total charge density].
(a) The spin-up density. (b) The spin-down density. The red decimal
numbers in (a) and (b) indicate the CI-calculated left and right oc-
cupancies (rounded to the second decimal point). (c, d) Examples of
two of the associated spin-resolved CPDs. The red dots and arrows
indicate the position and spin direction of the fixed point. The black
arrows indicate the spin direction associated with the plotted surface.
The spin-resolved densities integrate to the number of spin-up and
spin-down electrons in (a) and (b), respectively. The scale of the
vertical axes in (c) and (d) is arbitrary but the same in both cases.

Fig. 1(j) for the total charge density. From these two spin-
resolved densities, one can conclude that the spin structure
of this first excited state conforms to a second familiar ex-
pression [8,15,41,50] in the theory of three-electron qubits,
namely,

(2|uud〉 − |duu〉 − |udu〉)/
√

6. (7)

Indeed, from Eq. (7) one can derive that the expected spin-
up occupancy for the most leftward and middle positions of
the three spins is 5/6 in both cases, yielding 5/3 = 1.666 for
the expected spin-up occupancy in the left dot, in agreement
with the CI value of 1.66 highlighted in red in Fig. 3(a).
Similarly the expected spin-up occupancy for the right dot
from Eq. (7) is 1/3 = 0.333, in agreement with the CI value
of 0.34 highlighted in red in Fig. 3(a). Moreover, from Eq. (7)
one can derive that the expected spin-down occupancy for the
most leftward and middle positions of the three spins is 1/6 in
both cases, yielding 1/3 = 0.333 for the expected spin-down
occupancy in the left dot, in agreement with the CI value of
0.33 highlighted in red in Fig. 3(b). Finally, the expected spin-
down occupancy for the right dot from Eq. (7) is 2/3 = 0.666,
in agreement with the CI value of 0.67 highlighted in red in
Fig. 3(b).

As mentioned previously, further confirmation for the spin
structure in Eq. (7) can be obtained from the spin-resolved
CPDs, two examples of which are displayed in Figs. 3(c)
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FIG. 3. The spin structure of the first excited state at κ = 12.5
and ε = 1.405 [see Fig. 1(j) for the corresponding total charge
density]. (a) The spin-up density. (b) The spin-down density. The
red decimal numbers in (a) and (b) indicate the CI-calculated left
and right occupancies (rounded to the second decimal point). (c, d)
Examples of two of the associated spin-resolved CPDs. The red dots
and arrows indicate the position and spin direction of the fixed point.
The black arrows indicate the spin direction associated with the
plotted surface. The spin-resolved densities integrate to the number
of spin-up and spin-down electrons in (a) and (b), respectively. The
scale of the vertical axes in (c) and (d) is arbitrary but the same in
both cases.

and 3(d). Indeed, only the second and third spin kets in Eq. (7)
are compatible with a first electron with spin up being fixed at
the third site. Then the second spin ket in Eq. (7) allows the
presence of a spin-up electron in its second site with proba-
bility 1/6, whereas the third spin ket allows the presence of a
spin-up electron in its first site, again with equal probability
1/6. This is clearly in agreement with the CI CPD plotted in
Fig. 3(c), which exhibits two humps of similar height at sites
1 and 2. Likewise, only the first and third spin kets in Eq. (7)
are compatible with a first electron with spin up being fixed
in the first site. Then the first spin ket allows the presence
of a spin-down electron in its third site with probability 2/3,
whereas the third spin ket allows the presence of a spin-down
electron in its second site with probability 1/6. This again
is in agreement with the CI CPD plotted in Fig. 3(d), which
exhibits two humps with relative height 1/4 at sites 2 and 3.

We stress that the two expressions in Eqs. (6) and (7) for the
spin structures of three fermions are not the most general ones.
The most general [51] expression for a total spin S = 1/2 with
a total-spin projection Sz = 1/2 is [52]√

2

3
sin ϑ |uud〉 +

(√
1

2
cos ϑ −

√
1

6
sin ϑ

)
|udu〉

−
(√

1

2
cos ϑ +

√
1

6
sin ϑ

)
|duu〉, (8)
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FIG. 4. Magnification of the neighborhoods of the CI avoided
crossings appearing in Fig. 1(b) (κ = 12.5, case of GaAs). Only
the S = 1/2 states, relevant to the hybrid qubit, are shown. (a) The
left avoided crossing in the neighborhood of 1.49 meV < ε <

1.54 meV. (b) The right avoided crossing in the neighborhood of
1.885 meV < ε < 1.908 meV.

where the angle ϑ can take any value in the interval
[π/2, 3π/2]. Equation (6) is recovered for ϑ = π , whereas
its companion orthogonal expression (7) is recovered for ϑ =
π/2. Thus it is gratifying to see that the FCI solutions, ana-
lyzed with the CPDs that are associated with the hybrid-qubit
device of Ref. [15], do not deviate from the spin structures
invoked in building the theoretical models of three-electron
qubits [8,41,50].

B. The avoided crossings

In Figs. 4(a) and 4(b) we display magnifications of the
neighborhoods of the left and right CI avoided crossings,
respectively, appearing in the spectrum of the GaAs double
dot [Fig. 1(b)]. Only the S = 1/2 states are shown, because
the S = 3/2 states are not relevant for the workings of the
hybrid qubit [8,15,41,50].

The left avoided crossing (situated in the neighborhood
of 1.49 meV < ε < 1.54 meV) is formed through the in-
teraction of the three curves 1, 2, and 4 [we keep the same
numbering of curves here as in Fig. 1(b)]. On the other hand,
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FIG. 5. Examples of charge densities at the left avoided crossing
of the spectrum in Fig. 1(b), namely, at ε = 1.5201 and κ = 12.5.
(a) The ground state. (b) The first excited state. Both states have a
total spin S = 1/2. The red decimal numbers indicate the left-right
electron occupancies according to the CI calculation (rounded to the
second decimal point).

curves 1, 2, and 6 participate in the formation of the right
avoided crossing in the neighborhood of 1.885 meV < ε <

1.908 meV. We note that according to the FCI calculation,
the two avoided crossings are separated by a detuning energy
interval of ∼400 μeV, which agrees with the experimentally
determined value for the hybrid-qubit device in Ref. [15].

The continuous lines in both panels of Fig. 4 represent
the so-called adiabatic paths, which the system follows for
slow time variations of the detuning. For fast time variations
of the detuning, or with an applied laser pulse, the system
can instead follow the diabatic paths indicated explicitly with
dashed lines in Fig. 4(a) and thus jump from one adiabatic line
to another; this occurs according to the celebrated Landau-
Zener-Stückelberg-Majorana [53–55] dynamical interference
theory.

We further mention that the position and the asymmet-
ric anatomy of the two avoided crossings play an essential
role in the operation of the hybrid qubit. Indeed, the qubit
is initialized on line no. 4 and in a (1, 2; 1/2) ground-state
configuration at a value of detuning far to the right of the
left crossing. Then, by decreasing the magnitude of the de-
tuning in an adiabatically evolving manner, the state of the
qubit moves along the no. 4 line and is brought in the neigh-
borhood of the left avoided crossing, where a laser pulse
induces a small-gap-enabled diabatic transition to line no. 1
[a (2, 1; 1/2) line]. Next by increasing the detuning value,
the qubit operation cycle proceeds by moving adiabatically
backwards along line 1 and through the right avoided crossing
transitioning to line 6 [a (1, 2; 1/2) line], where the readout
can be implemented, aided by the large energy gap between
the two (1, 2; 1/2) states 4 and 6 [9,15].

1. Charge densities at the avoided crossings: Mixing of WM states

Inside the neighborhood of the avoided crossings, it is
expected that the ground state will be a superposition of the
two different wave functions (2,1) (with two electrons in the
left well) and (1,2) (with two electrons in the right well). For
κ = 12.5, this is confirmed by the CI ground-state charge den-
sity [see Fig. 5(a)] at the detuning value of ε = 1.5201 meV
[middle point in the neighborhood of the left avoided crossing;
see Fig. 4(a)]. Indeed, the associated left and right electron
occupancies both equal 1.50, suggesting the CI ground state
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is a superposition given by (|1〉 + |4〉)/
√

2. Likewise, at the
same value of ε = 1.5201 meV, the charge density of the first
excited CI state [see Fig. 5(b)] exhibits left and right electron
occupancies equal to 1.64 and 1.36, respectively, suggesting
that this state is a superposition given by 0.8|1〉 − 0.6|4〉.

C. The energy gap between the ground and first excited states

To further highlight the notable specifications of the GaAs
double dot considered in this paper, we display in Fig. 6 the
CI-calculated energy gap between the ground and the first
excited state as a function of the detuning for κ = 12.5 (GaAs)
[see the spectrum in Fig. 1(b)]. Figure 6(a) displays the
broader view in the detuning range from 1.4 to 2.1 meV
covering both avoided crossings. In reference to the spectrum
in Fig. 1(b), this energy gap involves the following states: (1)
states 1 and 2 to the left of the left avoided crossing, (2) states
4 and 1 between the two avoided crossings, and (3) states 4
and 6 to the right of the right avoided crossing. Figure 6(a)
highlights the overarching rise by an order of magnitude of
this energy gap, from ∼3 h GHz to ∼83 h GHz, as the spec-
trum transitions from the (2,1) to the (1,2) configurations with
two electrons in the left and right dots, respectively. We note
that this behavior is in excellent agreement with the sharp rise

of the corresponding energy gap within a detuning range of
∼400 μeV proposed in the experimental paper of Ref. [15]
[see Fig. S5(b) therein].

Moreover, Fig. 6(b) magnifies the corresponding energy
gap in a smaller range [see the dashed-border box in Fig. 6(a)]
covering only the left avoided crossing. The CI-calculated
curve in 6(b) exhibits remarkable overall agreement with the
corresponding measured one in Fig. 1(b) of Ref. [15] [see also
Fig. S5(b) therein].

D. The effective matrix Hamiltonian

In this section we extract from the CI spectra the phe-
nomenological effective matrix Hamiltonian [9,15] that has
played a central role in the experimental dynamical control
of the hybrid cubit. The general form of this 4×4 matrix
Hamiltonian is

HM =

⎛⎜⎜⎜⎝
cL ε̃/2 0 δ1 −δ2

0 cL ε̃/2 + 
EL −δ3 δ4

δ1 −δ3 cR̃ε/2 0

−δ2 δ4 0 cR̃ε/2 + 
ER

⎞⎟⎟⎟⎠,

(9)

where ε̃ = ε − ε0 denotes a renormalized interdot detuning,
and the other elements of the matrix follow the notation used
in Ref. [9] (see the Theory section therein).

A good fit (see Fig. 7) with the CI spectrum in Figs. 1(b)
and 4 is achieved by setting cL = 4.4, 
EL = 15 μeV, cR =
2.7, 
ER = 340 μeV, δ1 = 0.657 μeV, δ2 = 0.090 μeV,
δ3 = 1.207 μeV, δ4 = 0.075 μeV, and ε0 = 1.50 meV.

The effective matrix Hamiltonian in Eq. (9) reflects (within
the plotted window) two properties of the FCI spectrum in
Fig. 1(b) that are instrumental (see, e.g., [9,56]) for the suc-
cessful operation of the hybrid qubit, namely, the quasilinear
dependence of HM on the detuning ε and the quasiparallel
behavior of both the two (2,1) states (states 1 and 2) and the
two (1,2) states (states 4 and 6). We note a difference between
Refs. [9,15] and the CI result for HM . Namely, Refs. [9,15]
assume the values cL = 1 and cR = −1 associated with 45o

and -45o slopes of the associated lines, respectively, while the
CI result produces different slopes associated with cL = 4.4
and cR = 2.7. We note, however, that the topology of the
energy spectrum remains unaltered.

We further note that there are several derivations [8,38] of
the effective Hamiltonian in Eq. (9), starting from approx-
imate many-body Hamiltonians that include the interaction
at the level of a two-site (left and right well) Hubbard-type
modeling. These derivations involve several additional qual-
itative approximations and are not applicable in the case of
strong e − e correlations and Wigner-molecule formation (see
Ref. [42]). Thus the reaffirmation demonstrated above regard-
ing the overall structure of the phenomenological-in-nature
effective matrix Hamiltonian [Eq. (9)], achieved here through
the use of FCI-based ab initio calculations carried out in the
regime of strong correlations and Wigner-molecule formation,
is a notable result.
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FIG. 7. The spectrum of the four hybrid-qubit states |1〉, |2〉, |4〉, and |6〉 (with S = 1/2) as a function of the detuning parameter ε̃ = ε − ε0,
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Note the remarkable agreement between the four-state effective spectrum here and the corresponding one of the four lowest S = 1/2 states in
Figs. 1(b) and 4, which was generated from the FCI calculations.

IV. CI SPECTRA AS A FUNCTION OF THE
DIELECTRIC CONSTANT

Further insights into the effects of the interelectron inter-
action can be gained by an inspection of the CI spectra as
a function of the dielectric constant κ . Figure 8 portrays the
spectrum of the double dot as a function of the dielectric con-
stant κ at a detuning value of ε = 1.50 meV. The numbering
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FIG. 8. Spectrum of the double dot as a function of the dielectric
constant κ at a detuning value of ε = 1.50 meV. The numbering of
the lowest eight states is performed at κ = 30, and this numbering
is maintained for the whole κ range plotted. The vertical dashed
line at κ = 12.7 indicates the neighborhood of the avoided crossing.
Further to the left of the avoided crossing, the ground state is state
no. 3 of (2, 1; 1/2) character; further to the right of the avoided
crossing, the ground state is state no. 1 of (1, 2; 1/2) character. In
the neighborhood of the avoided crossing, the ground state is a mixed
state. In this plot, the ground-state energies were taken at all instances
to coincide with the zero of the energy scale. For the (nL, nR; S)
designations, see Fig. 9.

of the lowest eight states is performed at κ = 30, and this
numbering is maintained for the whole κ range plotted. The
vertical dashed line at κ = 12.7 indicates the neighborhood
of the avoided crossing. Further to the left of the avoided
crossing, the ground state is state no. 3 of (2, 1; 1/2) character;
further to the right of the avoided crossing, the ground state
is state no. 1 of (1, 2; 1/2) character. In the neighborhood of
the avoided crossing, the ground state is a mixed state. In this
plot the ground-state energies were taken at all instances to
coincide with the zero of the energy scale. The (nL, nR; S)
designations are not plotted in this figure, but they can be
traced through Fig. 9, which portrays the associated charge
densities.

From the charge densities in Fig. 9, one sees that at κ = 30
the three excited states 3, 7, and 7 display a 2e WM in the left
dot, with the WM aligned along the x axis. With decreasing
κ (increasing Coulomb repulsion), the energies of this triad
of WM states exhibit a sharp drop in magnitude, and as a
result they become the lowest-energy band for κ < 12.7, a
fact which agrees with the findings in Sec. III A. In addition,
curves 6 (S = 3/2) and 7 (S = 1/2) become quasidegenerate,
and they exhibit a small energy gap (� 3 h GHz) from the
ground state (no. 3 state), again in agreement with the findings
in Sec. III A; see curves 1, 2, and 3 in Fig. 1(b).

Of interest is the fact that the ground state at κ = 30 (no. 1
state) exhibits a charge density that can be understood purely
with the help of three noninteracting electrons [see Fig. 9(a)],
namely, one spin-up and one spin-down electron occupying
the nodeless 1s lowest single-particle state of the circular right
well and one spin-up electron occupying the nodeless 1sx1sy

lowest single-particle state in the asymmetric left well. Natu-
rally, as κ decreases, the intrinsic structure of the associated
wave function transitions smoothly to that of a weak 2e WM
in the right dot aligned along the y axis, namely, the charge
density in Fig. 9(a) transitions to that portrayed in Fig. 1(l).

Of interest also are the intrinsic structures (at κ = 30) of
the remaining four excited states, 2, 4, 5, and 8; they are
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a testament to the variety and complexity of the 3e-DQD
system. Indeed, from Fig. 9(b) one sees that excited state 2 is
a noninteracting 3e state similar to state 1 but with the single
spin-up electron in the left well promoted to the one-node
1px1sy single-particle state. On the other hand, the charge
densities in Figs. 9(d) and 9(e) demonstrate that both states 4
and 5 exhibit a 2e WM in the right well with the WM aligned
along the y axis. Finally, the charge density in Fig. 9(h) reveals
the formation of a 2e WM in the right well but with the WM
aligned along the x axis.

V. SUMMARY

We present extensive FCI numerical results that address
both the energetics and the intrinsic structure of the many-
body wave functions through the calculation of charge and
spin-resolved densities as well as spin-resolved conditional
probability distributions (spin-resolved two-body correlation
functions). Going beyond the two-particle WMs studied with
CI treatments in a single dot [14–17], this paper advances and
enables microscopic investigations of key features appearing
in the low-energy spectrum as a function of detuning of actual
experimentally fabricated GaAs three-electron asymmetric
HDQD qubits. These features include the strong suppression
of level gaps compared to the noninteracting-electron case and
the appearance of a pair of avoided crossings between triad of
levels corresponding to different electron occupancies in the
left and right wells. Treating the HDQD as an integral unit,
we further showed in depth that these features arise from the
emergence of WMs. Away from the avoided crossings, it was
found that the WMs can be associated with molecular config-
urations centered in the individual wells. In the neighborhood
of the avoided crossings, the WMs interact and form more
complex resonating structures.

Earlier experimental observations had suggested that the
qubit’s spectral features could be codified using simple
phenomenological effective matrix Hamiltonians [see, e.g.,
Eq. (9)]. Our double-dot extensive calculations, encompass-
ing both energetic and structural aspects, enabled tracing of
the microscopic origins of such phenomenological treatments.
This phenomenology has been identified here to emerge from
the complex nature of the many-body problem encountered
due to the strong e-e correlations, leading to electron localiza-
tion and formation of Wigner molecules.

Previous tentative derivations [8,38] of matrix Hamilto-
nians [of a similar structure as in Eq. (9)], starting from
approximate two-site Hubbard-type modeling, involve qual-
itative approximations and are not applicable in the case of
WM formation. Consequently, the present CI-based derivation
of the effective matrix Hamiltonian in Eq. (9), achieved here
via analysis using the results of FCI calculations that account
fully for strong-correlation effects within each well and WM
formation, is an unexpected auspicious result.

Our multidot FCI method can be expanded to incorporate
the valley degree of freedom as an isospin in full analogy
with the usual spin. Such an expansion will enable the ac-
quisition of numerical results complete with full spin-isospin
assignments that will reveal the underlying SU(4) ⊃ SU(2) ×
SU(2) group-chain organization of the spectra of Si double-
quantum-dot qubits. This valleytronic CI [57] will be a most
effective tool for analyzing the spectra of qubits and for
providing effective matrix Hamiltonians that differentiate be-
tween cases when the first excited state belongs to the same
or different valleys as a result of the competition [14,16]
between the valley gap and strong e − e interactions. In this
respect, we note the case of a 5e-HDQD Si/SiGe qubit where
more complex spectra, requiring an n × n matrix with n > 4,
have been recently experimentally discovered [58]. An appli-
cation of the valleytronic CI to two-qubit gates appears to be
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feasible [57] in the near future, based on our estimates of the
size of the required Hilbert spaces for an ensemble of N � 6
electrons confined in two interacting DQDs. Finally, beyond
the GaAs-based devices, our method can be directly applied to
similar devices built from other one-band materials, like holes
in germanium [59,60] or silicon [17] qubits.
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APPENDIX A: SOLVING THE
TWO-CENTER-OSCILLATOR EIGENVALUE PROBLEM

For a given interwell separation d , the single-particle levels
of HTCO [Eq. (3)] are obtained by numerical diagonaliza-
tion in a basis consisting of the eigenstates of the auxiliary
Hamiltonian:

H0 = p2

2m∗ + 1

2
m∗ω2

y y2 + 1

2
m∗ω2

xkx′2
k + hk . (A1)

The eigenvalue problem associated with the auxiliary Hamil-
tonian [Eq. (A1)] is separable in the x and y variables, i.e., the
wave functions are written as

ϕi(x, y) = Xμ(x)Yn(y), (A2)

with i ≡ {μ, n}, i = 1, 2, . . . , K , and K specifies the size of
the single-particle basis.

The Yn(y) are the eigenfunctions of a one-dimensional os-
cillator, and the Xμ(x � 0) or Xμ(x > 0) can be expressed
through the parabolic cylinder functions U [γk, (−1)kξk],
where ξk = x′

k

√
2m∗ωxk/h̄, γk = (−Ex + hk )/(h̄ωxk ), and

Ex = (μ + 0.5)h̄ωx1 + h1 denotes the x eigenvalues. The
matching conditions at x = 0 for the left and right domains
yield the x eigenvalues and the eigenfunctions Xμ(x). The n
indices are integer. The number of μ indices is finite; they are
in general real numbers.

APPENDIX B: THE CI METHOD AS ADAPTED TO THE
DOUBLE-DOT CASE

As mentioned previously, we use the method of con-
figuration interaction for determining the solution of the
many-body problem specified by the Hamiltonian (1). In
the CI method, one writes the many-body wave function
�CI

N (r1, r2, . . . , rN ) as a linear superposition of Slater deter-
minants �N (r1, r2, . . . , rN ) that span the many-body Hilbert
space and are constructed out of the single-particle spin
orbitals:

χ j (x, y) = ϕ j (x, y)α, if 1 � j � K, (B1)

and

χ j (x, y) = ϕ j−K (x, y)β, if K < j � 2K, (B2)

where α(β ) denote up (down) spins, and the spatial orbitals
ϕ j (x, y) are defined in Eq. (A2). Namely,

�CI
N,q(r1, . . . , rN ) =

∑
I

Cq
I �N

I (r1, . . . , rN ), (B3)

where

�N
I = 1√

N!

∣∣∣∣∣∣∣∣
χ j1 (r1) . . . χ jN (r1)

...
. . .

...

χ j1 (rN ) . . . χ jN (rN )

∣∣∣∣∣∣∣∣, (B4)

and the master index I counts [61] the number of arrange-
ments { j1, j2, . . . , jN } under the restriction that 1 � j1 <

j2 < . . . < jN � 2K . Of course, q = 1, 2, . . . counts the exci-
tation spectrum, with q = 1 corresponding to the ground state.

The many-body Schrödinger equation,

H�CI
N,q = ECI

N,q�
CI
N,q, (B5)

transforms into a matrix diagonalization problem, which
yields the coefficients Cq

I and the eigenenergies ECI
N,q. Because

the resulting matrix is sparse, we implement its numerical di-
agonalization employing the well-known ARPACK solver [62].
Convergence of the many-body solutions is guaranteed by
using a large enough value for the dimension K of the single-
particle basis; see Appendix A. The attribute “full” is usually
used for such well-converged CI solutions, which naturally
contain all possible np − nh basis Slater determinants.

The matrix elements 〈�I
N |H|�J

N 〉 between the basis de-
terminants [see Eq. (B4)] are calculated using the Slater
rules [44,63]. Naturally, an important ingredient in this respect
are the matrix elements of the two-body interaction,

∫ ∞

−∞

∫ ∞

−∞
dr1dr2ϕ

∗
i (r1)ϕ∗

j (r2)V (r1, r2)ϕk (r1)ϕl (r2), (B6)

in the basis formed out of the single-particle spatial or-
bitals ϕi(r), i = 1, 2, . . . , K [Eq. (A2)]. In our approach
these matrix elements are determined numerically and stored
separately.

The Slater determinants �N
I [see Eq. (B4)] conserve the

third projection Sz but not the square Ŝ2 of the total spin.
However, because Ŝ2 commutes with the many-body Hamilto-
nian, the CI solutions are automatically eigenstates of Ŝ2 with
eigenvalues S(S + 1). After diagonalization, these eigenval-
ues are determined by applying Ŝ2 onto �CI

N,q and using the
relation [48]

Ŝ2�N
I =

[
(Nα − Nβ )2/4 + N/2 +

∑
i< j

�i j

]
�N

I , (B7)

where the operator �i j interchanges the spins of fermions i
and j provided that these spins are different; Nα and Nβ denote
the number of spin-up and spin-down fermions, respectively.
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APPENDIX C: SINGLE-PARTICLE DENSITIES AND
CONDITIONAL PROBABILITY DISTRIBUTIONS FROM CI

WAVE FUNCTIONS

The single-particle density (charge density) is the expecta-
tion value of the one-body operator

ρ(r) = 〈
�CI

N

∣∣ N∑
i=1

δ(r − ri )
∣∣�CI

N

〉
, (C1)

where, as previously, �CI
N denotes the many-body (multide-

terminantal) CI wave function (henceforth, we will drop the
q subscript). For the spin-resolved densities, the expression
above is modified as follows:

ρσ (r) = 〈
�CI

N

∣∣ N∑
i=1

δ(r − ri )δσσi

∣∣�CI
N

〉
, (C2)

where σ denotes either an up or a down spin.
Naturally, several distinct spin structures can correspond to

the same charge density. The spin structure associated with a
specific CI wave function can be determined uniquely with
the help of the spin-resolved densities in conjunction with the
many-body spin-resolved CPDs.

The spin-resolved CPDs (referred to also as spin-resolved
two-point anisotropic correlation functions) yield the condi-
tional probability distribution of finding another fermion with
up (or down) spin σ at a position r, assuming that a given
fermion with up (or down) spin σ0 is fixed at r0. In detail, a
spin-resolved CPD is defined as

Pσσ0 (r, r0) = 〈
�CI

N

∣∣ ∑
i �= j

δ(r − ri )δ(r0 − r j )δσσiδσ0σ j

∣∣�CI
N

〉
.

(C3)
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