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Negative magnetoresistance and sign change of the planar Hall effect due to negative off-diagonal
effective mass in Weyl semimetals
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We theoretically investigated the magnetoresistance (MR) and planar Hall effect (PHE) in Weyl semimetals
based on the semiclassical Boltzmann theory, focusing on the fine structure of the band dispersion. We identified
that the negative longitudinal MR and sign change in the PHE occur because of the negative off-diagonal effective
mass with no topological effects or chiral anomaly physics. Our results highlight the important role of the off-
diagonal effective mass, which can cause anomalous galvanomagnetic effects. We propose that the PHE produces
a dip in the temperature dependence, which enables the experimental detection of the singularity of effective
mass, i.e., the Weyl point.
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I. INTRODUCTION

The galvanomagnetic effect has played a crucial role in
solid state physics for many years. For example, the Hall
effect is used to determine charge-carrier densities, and the
transverse magnetoresistance (TMR) is used to calculate mo-
bilities [1–3]. Extremely sensitive magnetic sensors have been
fabricated using the planar Hall effect (PHE) [4,5]. The mi-
croscopic origin of the galvanomagnetic effect is the Lorentz
force, which is solely a classical effect. Hence, one would an-
ticipate that the theoretical investigation of galvanomagnetic
effects is straightforward without any difficulty. In reality,
however, this is not the case. For example, it is often ex-
plained that the longitudinal magnetoresistance (LMR), where
the electric current and magnetic field are parallel, cannot be
realized because the Lorentz force does not exist under this
condition. By contrast, many materials are known to exhibit
LMR [6–8]. The same phenomenon also occurs under the
PHE. Although the microscopic origin of the phenomena is
clearly understood as the Lorentz force, accurately predicting
how the macroscopic galvanomagnetic effect is altered in
actual materials remains challenging.

Recently, anomalous galvanomagnetic effects, which can-
not be interpreted by the conventional theory, have been
observed in various materials [9–17] and have attracted re-
newed interest from the viewpoint of the chiral anomaly
[18–23], the Berry curvature [24–26], or other mechanisms
[27,28]. In Weyl electron systems, the charge conservation
is violated between different chiralities under a magnetic
field that is parallel to the electric field; this phenomenon
is referred to as chiral anomaly [18]. The consequence of
the chiral anomaly is a negative LMR [19,21]. Moreover, a
secondary consequence of the chiral anomaly is angular os-
cillation with a period π in the PHE where the magnetic field
is rotated in the plane parallel to the current [22,23]. Several
experimental studies have suggested the possibility of de-
tecting chiral anomaly based on the aforementioned negative
LMR [9–12] and PHE [11,13–17]. These anomalous behav-
iors cannot be interpreted on the basis of simple semiclassical

theory, and thus, they are believed to be evidence of chiral
anomaly.

However, another possibility exists. The simple semiclas-
sical theory fails to explain the anomalous LMR and PHE
because most semiclassical formulas assume a spherical or
an ellipsoidal Fermi surface and do not consider the fine
structure of the band dispersion of carriers [29–31]. A detailed
evaluation of the characteristic band structure may yield a
correct solution. The formula derived by Chambers accounts
for the arbitrary shape of the Fermi surface in terms of the
velocity, i.e., up to the first-order derivative of energy disper-
sion for k [1,32]. Recently, the semiclassical formula provided
by Mackey-Sybert was extended to account for the arbitrary
shape of the Fermi surface through the k-dependent effective
mass, i.e., up to the second-order derivative of energy disper-
sion [Eq. (2)] [33]. The extended Mackey-Sybert formula can
explain the LMR even with a single closed Fermi surface [33],
which is experimentally well known but has never been the-
oretically obtained based on the simple semiclassical theory.
The key to explain the LMR with a single closed Fermi sur-
face lies in the off-diagonal effective mass, which reflects the
detailed geometrical characteristics of the Fermi surface. The
k-dependent effective mass can yield galvanomagnetic effects
that cannot be predicted based on the simple semiclassical
theory [33].

Herein, we show that the negative LMR and the sign
change in the PHE are realized in Weyl semimetals based on
the extended Mackey-Sybert formula, even without topologi-
cal effects, the Berry curvature, or the chiral anomaly. Among
these anomalous galvanomagnetic effects, the off-diagonal
effective mass, which is singular in Weyl semimetals, plays
a crucial role.

II. THEORY

We employ the standard model of Weyl semimetals, which
is expressed using the following Hamiltonian [34,35]:

H = A(kxσx + kyσy) + M
(
k2
w − k2

)
σz, (1)
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where σx,y,z are the Pauli matrices, M and kw are the model
parameters, and k2 = k2

x + k2
y + k2

z . A represents the strength
of the Weyl nature, which couples the electron and hole
bands. M denotes the inverse mass of the electron and
hole bands. The eigenenergy of this Hamiltonian is E (k) =
±

√
M2(k2

w − k2)2 + A2(k2
x + k2

y ). Equation (1) is termed the
“Weyl semimetal” model because the first term corresponds
to two-dimensional Weyl electrons and the second term cor-
responds to the ordinary semimetals with free electrons and
holes, the extrema of which are located at the � point (k = 0).
The energy dispersions for M = 16 eV Å2 and kw = 0.01 Å−1

are shown in Fig. 1(a). The bands cross linearly at the Weyl
point, k = (0, 0,±kw ). The gap opens at k = (±kw,±kw, 0)
with increasing A. Although the energy dispersion changes
continuously as a function of A, the shape of the Fermi surface
changes discontinuously as shown later. The charge neutrality
is maintained only when the Fermi energy EF is located at
the Weyl point. In practice, EF rarely coincides with the Weyl
point. Therefore, hereinafter, we assume EF to be located
slightly above the Weyl point, EF = 1 meV, where the elec-
tron carriers are slightly larger than the hole carriers. The
conclusions are independent of the sign of EF in our model.

The Fermi surfaces are shown in Fig. 1 for A = 0.02,
0.105, 0.11, and 0.24 eV Å. For small A values, a large
electron and a small hole spherical Fermi surface appear con-
centrically. In other words, the system is semimetallic. As A
increases, the electron Fermi surface becomes dented around
the equator, whereas the hole Fermi surface swells. The
electron surface touches the hole surface along the equator
at A0 = [2M2k2

w − 2
√

M2(M2k4
w − E2

F )]1/2 (�0.106 eV Å in
the present case). For A > A0, the Fermi surface is separated
into two electron pockets. Specifically, the shape of the Fermi
surface changes qualitatively (the Lifshitz transition) from a
semimetal (A < A0) to two electron valleys (A > A0). This
Lifshitz transition in Weyl semimetals is often overlooked
because it is difficult to imagine it only from the perspective
energy dispersion. Details about the correspondence between
the dispersion and Fermi surface is shown in the Supplemental
Material [36].

First, we estimate the MR and PHE using the classical
formula of magnetoconductivity [1–3,36]. In the semimetal
region (A < A0) [Fig. 1(a)], the isotropic electron and hole
carriers exhibit sizable TMR and no LMR. Accordingly, the
π -period PHE appears because the PHE is generally ρPHE =
−�ρdiff sin θ cos θ, where �ρdiff = ρ⊥ − ρ‖. (ρ⊥ and ρ‖ are
the resistivity under the magnetic field perpendicular and
parallel to the electric current, respectively.) By contrast, in
the two-electron-valley region A > A0 [Fig. 1(d)], the Fermi
surfaces can be approximated to two parallel ellipsoids, which
are equivalent to a double-size single ellipsoid. In such a
case, both TMR and LMR (and so PHE) will vanish. Thus,
it is naively expected that the amplitude of TMR and PHE
would decrease as A increases and that LMR would remain
vanishingly small.

Now, we accurately calculate the magnetoconductiv-
ity tensor based on the semiclassical Boltzmann the-
ory. The semiclassical formula derived by Mackey and
Sybert [31] has been extended to consider the ar-
bitrary shape of the Fermi surface in the following
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FIG. 1. (a) Band dispersion in the Weyl semimetal model,
Eq. (1), for A = 0.02, 0.105, 0.11, 0.24 eV Å. (b)–(e) Cross sec-
tions of the Fermi surface of a Weyl semimetal for EF = 1 meV:
(a) semimetal, (b) semimetal near the Lifshitz transition A = A0,
(c) two electron valleys near A = A0, and (d) two electron valleys.

form [33]:

σλ,μ = e〈vλ{v · [(eτ )−1 − B̂ · α̂k]−1}μ〉F , (2)

where e (>0) is the elementary charge, τ is the re-
laxation time, vk = ∇kE/h̄ is the velocity, and αkμν =
h̄−2∂2E/∂kμ∂kν is the inverse of the k-dependent effective-
mass tensor, which represents the curvature of the equienergy
surface. B̂ is the magnetic field tensor given as Bλμ =
−ελμνBν (ελμν : the Levi-Civita symbol) [31]. 〈· · · 〉F =
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∫
(dk/4π3) · · · (−∂ f0/∂E ) corresponds to integration along

the Fermi surface at low temperatures, where f0 is the Fermi
distribution function without the magnetic field.

Based on the extended Mackey-Sybert formula, Eq. (2), the
coefficient of the magnetic field is generally an effective-mass
tensor, i.e., the electron’s orbital motion is coupled with the
magnetic field through the effective mass. Importantly, this
formula does not include any topological effects, such as the
Berry curvature and the chiral anomaly. Although the semi-
classical equation of motion can include the Berry curvature
term [37], in this study, we focus only on the orbital origin of
galvanomagnetic effect by considering the detailed structure
of the Fermi surface. The unusual behaviors of galvanomag-
netic effects, as discussed subsequently, are simply due to the
nonuniform effective mass in Weyl semimetals. Moreover, our
calculation is restricted at the low magnetic fields where the
Landau quantization is not prominent. Oppositely, the chiral
anomaly would clearly appear in the quantum limit, where
the lowest Landau level dominates the electron transport, in
the sense of the Nielsen and Ninomiya theory [18].

III. RESULTS AND DISCUSSION

The results obtained using Eq. (2) are shown in Fig. 2. (In
Figs. 2 and 3, we show the results with τ = 1.0 ps.) In the
present study, the current orientation was fixed along the x
direction, and the magnetic field was rotated in the x-y plane
as B = (B cos θ, B sin θ, 0). We thus obtained the LMR and
TMR for θ = 0 and π/2. In the semimetallic region (A =
0.02 eV Å), a sizable TMR is achieved. Its field dependence
is �ρ⊥ ∝ B2, which is a typical MR property in semimetals.
Near the Lifshitz transition (A = 0.10 eV Å), �ρ⊥ is almost
unchanged, although the saturation field is rather low. Thus
far, the properties of �ρ⊥ are consistent with our classical
estimation. In the two-valley region, however, �ρ⊥ exhibits
a significant negative MR, contradicting the classical estima-
tion. The behavior of LMR is almost the same as that of
TMR, i.e., �ρ‖ ∝ B2 in the semimetallic region and near the
Lifshitz transition, whereas �ρ‖ < 0 in the two-valley region.
(Note that |�ρ‖| < |�ρ⊥|.) The observations regarding the
LMR contradict the classical theory, which predicts �ρ‖ = 0
for the entire range of A. The PHE exhibits an angular de-
pendence of − sin 2θ in the semimetallic region (A � A0),
whereas the sign of the angular oscillation is inverted in
the two-valley region (A � A0). The angular dependence for
small A can be explained by the concept of multiple carrier
conduction [36]. The origin of this sign change can be easily
explained by plotting �ρdiff , as shown in Fig. 3(a). The re-
duction in ρ⊥ is larger than ρ‖; hence, ρ⊥ becomes smaller
than ρ‖ near A = 0.14 eV Å, resulting in the sign change
in �ρdiff .

The negative LMR and TMR in the two-valley region is
rather surprising. The simple semiclassical theory does not
predict a negative MR even if anisotropy or multicarrier ef-
fects are considered [3,38,39]. This negative LMR and TMR
in the two-valley region can be attributed to the off-diagonal
effective mass, which have not been considered in the simple
semiclassical theory. The best approach for understanding the
significance of the off-diagonal effective mass is to find the
Jones-Zener expansion of the extended Mackey-Sybert for-
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FIG. 2. Magnetic field dependence of (a) transverse and (b) lon-
gitudinal MR for A = 0.02, 0.10, 0.24 eV Å. (c) Angular depen-
dence of the PHE at B = 0.5 T. The PHEs for A = 0.02, 0.10 eV Å
are amplified fivefold. The temperature is fixed at T = 0.2 K for
(a) and (b).

mula, Eq. (2) [40]. By expanding [1/eτ − B̂ · α̂k]−1 in terms
of B, the second-order term of LMR for B = (B, 0, 0) can be
expressed as

ρ (2)
xx = τ�2

x〈vzvx(αzxαyy − αxyαyz )

+ vxvy(αxyαzz − αyzαzx )〉F B2, (3)

where �μ = 1/〈v2
μ〉F . The first term in the parentheses, which

includes one off-diagonal and one diagonal effective mass,
αλμανν , dominates the second term, which includes two off-
diagonal effective masses. This is because the diagonal term
is usually larger than the off-diagonal one. Equation (3) shows
that negative LMR can appear when the off-diagonal effective
mass becomes negative. Such a situation does occur in Weyl
semimetals.

The off-diagonal effective mass αzx in the Weyl semimetal
model is plotted for A = 0.02, 0.105, 0.11, and 0.24 eV Å
in Fig. 4. Although αzx is an odd function with respect to
kz and kx, it appears in Eq. (3) as vzvxαzx, which is an even
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shows the A dependence of ρ⊥,‖ at 0.5 T. (b) Temperature dependence
of �ρdiff at B = 0.5 T for A = 0.06-0.14 eV Å. The inset shows the
T dependence of ρ⊥,‖.

function. Thus, in Fig. 4, we plot α̃zx = αzxvzvx/|vz||vx|,
which reveals the unusual sign change of the off-diagonal
effective mass. The dashed lines indicate the corresponding
Fermi surfaces. The blue region corresponds to negative α̃zx.
For the semimetallic region (a), the negative-α̃zx portion is
narrow, and the α̃zx on the Fermi surface is positive for the
entire region. The negative-α̃zx region grows as A increases.
Around the Lifshitz transition (b),(c), a part of the Fermi
surface has the negative α̃zx, but the positive region remains
dominant. In the two-valley region (d), almost the entire Fermi
surface has negative α̃zx, which is the dominant contributor
to the MR. These results explain the negative LMR in the
two-valley region.

In the case of the TMR, B = (0, B, 0), the second-order
term is

ρ (2)
xx = [

τ�2
x

〈
v2

x

(
αxxαzz − α2

zx

)〉
F

− τ�2
x�z

〈
vxvzαzx − v2

x αzz
〉2
F

]
B2, (4)

where the first term originates from the diagonal conductiv-
ity, σxx, and the second one originates from the off-diagonal
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FIG. 4. Off-diagonal effective mass α̃zx (kx, 0, kz ) for A =
0.02, 0.105, 0.11, 0.24 eV Å. The blue regions correspond to α̃zx <

0. The dashed white lines indicate the Fermi surface. The Weyl points
are located at (kx, kz ) = (0, ±0.01 Å−1).

Hall conductivity, σzx. The large negative αzx increases σzx

and reduces σxx. When σzx dominates σxx, the negative TMR
emerges. Such a condition can actually be satisfied in the case
of Weyl semimetals, as shown in Fig. 4.

Some previous studies suggest that negative LMR is evi-
dence of the chiral anomaly [9–12]. In contrast, the present
calculation shows that the negative off-diagonal effective
mass can cause a negative LMR, which is inherent in Weyl
semimetals. In the present model, where the effective mass is
isotropic in the x-y plane, the negative LMR is accompanied
by the negative TMR. This is due to the oversimplification
of the model of Weyl semimetals. �ρ⊥ > 0 and �ρ‖ < 0
can be obtained by considering the detailed band structure
of Weyl semimetals. For example, �ρ⊥ > 0 and �ρ‖ < 0
were obtained for the model of SrTiO3 using the extended
Mackey-Sybert formula [33].

Finally, we discuss the temperature T dependence of the
MR. The T dependence of �ρdiff is depicted in Fig. 3(b).
To observe the effects of the Weyl dispersion as transpar-
ently as possible, we assumed τ to be constant for T (note
that the anomalous T dependence shown below remains even
if we consider the T dependence of τ , which should be a
monotonic function of T ). �ρdiff is generally expected to be
a monotonically decreasing function. However, as shown in
Fig. 3(b), �ρdiff exhibits a dip near T = 5 K. The origin of
this dip also lies in the negative off-diagonal effective mass.
As shown in Fig. 4, the off-diagonal effective mass is singular
and changes its sign around the Weyl points. Therefore, the
region around the Weyl point hinders the MR when the tail
of the Fermi distribution function reaches the Weyl point with
kBT ∼ EF /2; this produces the aforementioned dip. Because
the Fermi energy is measured from the Weyl point, this ther-
mal energy corresponds to |EF − EW |/2, where EW is the
energy of the Weyl point. As A increases, the dip becomes

205207-4



NEGATIVE MAGNETORESISTANCE AND SIGN CHANGE OF … PHYSICAL REVIEW B 105, 205207 (2022)

deeper because the impact of the negative off-diagonal ef-
fective mass is amplified. For a sufficiently large A, the dip
becomes sufficiently deep for �ρdiff to be negative, even at
the zero-temperature limit. The temperature at which �ρdiff

attains its maximum value approximately corresponds to the
energy difference between the Weyl point and EF . The dip can
be seen more clearly in �ρdiff than in TMR or LMR, where
the anomaly is masked by the background T dependence,
as shown in the inset of Fig. 3(b). Based on this distinctive
property, the energy scale of the Weyl point can be determined
by measuring the T dependence of �ρdiff .

IV. CONCLUSIONS

In conclusion, we investigated galvanomagnetic effects on
the basis of the Boltzmann theory, focusing on the geomet-
rical characteristics of the Fermi surface. We identified that
the negative off-diagonal effective mass, which is inherent in
Weyl semimetals, causes the negative MR and a sign change
in the PHE. Our results highlight the critical role played
by the off-diagonal effective mass in the galvanomagnetic
effects. The results of this study will help obtain a more
intuitive understanding of the anomalous galvanomagnetic
effect. For example, one can expect anomalous behavior in
the galvanomagnetic effect including negative MR and PHE
by calculating the effective mass, which is easily obtained
from the band calculations. Another direct consequence of the
negative off-diagonal effective mass is the anomalous dip in
the T dependence of �ρdiff or the amplitude of the PHE. By
measuring the dip structure, we can evaluate the energy dif-
ference between EF and the singularity in the effective mass,
i.e., between EF and the Weyl point for Weyl semimetals.

Because the effective mass can be singular even when the two
bands are gapped out, the dip can appear in other systems. For
example, in gapped Dirac materials, the dip structure would
correspond to the energy difference between EF and the band
edge, where the effective mass is the most singular. Nonmono-
tonic T dependence (including the dip and sign change) has
been observed in actual materials [13–15,17]. This depen-
dence can originate from the negative off-diagonal effective
mass.

Distinguishing the effective-mass origin from others is still
a challenge. An immediate identification cannot be obtained
from a qualitative discussion so far. However, our theory can
extract the MR from the shape of Fermi surface without am-
biguity. It would be ideal to combine MR calculations based
on the effective mass and first-principle calculations in real
materials. When the observation in Dirac and Weyl materials
cannot be explained quantitatively by the effective mass, it
can be explained based on nontrivial physics including chiral
anomaly or Berry curvature.

Our theory is not restricted to the ideal Weyl semimetals.
The results at low temperatures remain the same even when
the Weyl point is gapped and chirality is not conservative
[28]. Moreover, the arguments in terms of the effective mass
are applicable to various materials whose energy dispersion is
determined.
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