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We study longitudinal electric and thermoelectric transport coefficients of Dirac fermions on a simple lattice
model where tuning of a single parameter enables us to change the type of Dirac cones from type I to type
II. We pay particular attention to the behavior of the critical situation, i.e., the type-III Dirac cone. We find
that the transport coefficients of the type-III Dirac fermions behave as the limiting case of neither type I
nor type II. On the one hand, the qualitative behaviors of the type-III case are similar to those of the type-I
case. On the other hand, the transport coefficients do not change monotonically upon increasing the tilting;
namely, the largest thermoelectric response is obtained not for the type-III case but for the optimally tilted type-I
case. For the optimal case, sizable transport coefficients are obtained; for example, the dimensionless figure of
merit is 0.18.
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I. INTRODUCTION

In the past few decades, Dirac fermions in solids have
attracted considerable interest. In particular, two-dimensional
systems hosting Dirac cones have been intensively inves-
tigated, both theoretically and experimentally. Graphene, a
single-layered honeycomb network of carbon atoms, is a
prime example of massless Dirac-fermion systems [1–3].

The organic conductor α-(BEDT-TTF)2I3 [BEDT-TTF is
bis(ethylenedithio)-tetrathiafulvalene] [4–10] is another ex-
ample of massless Dirac-fermion systems in quasi-two
dimensions. An interesting feature of α-(BEDT-TTF)2I3 is
that the Dirac cones are not isotropic in momentum space;
that is, the cones are tilted. Triggered by this finding, the
effects of tilting of Dirac cones have been investigated. It
was revealed that Dirac cones are classified into three types
according to the degree of tilting: The tilted Dirac cone with
the ellipsoidal equienergy surface around the Dirac point is
classified as type I. By further increasing the tilting, Dirac
cones are “overtilted,” and the equienergy surface turns into
a hyperbola; such a Dirac cone is classified as type II. The
critical point between type I and type II is called a type-III
Dirac cone, where one of the bands composing the Dirac cone
has flat dispersion along a certain direction, resulting in a
diverging density of states (DOS) at the Dirac point. Although
the type-III Dirac cone is rare compared with the other two
types because it does not appear as a stable “phase” occupying
a finite region of the parameter space, it has gained attention
recently [11–27].

Along with studies from the viewpoint of electronic struc-
ture, the exotic transport [7,9,28–33] and magnetic properties
[34–38] of Dirac fermions have also been studied. The main
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targets of such studies are type-I and type-II Dirac cones, and
thus, the properties of type-III Dirac cones are less understood
compared with the other two types. Since type III is the critical
point between type I and type II, one may ask the following
question: Can we understand the behavior of type-III Dirac
cones by taking the limit from type I or type II?

So far, electric and thermoelectric transports for tilted
Dirac fermions, both the longitudinal and transverse ones,
have been intensively studied [31,39–44]. However, previous
works were mostly on continuum models, and research on lat-
tice models is limited. (For instance, for the three-dimensional
case, studies on the minimal lattice model [45] were reported
in Refs. [46,47].) In the continuum model, however, there is
a subtlety to the momentum cutoff dependence; namely, for
types II and III, the Fermi surface extends far away from the
Dirac point, where the Dirac-Hamiltonian description breaks
down in actual materials. This hampers the study of the trans-
port coefficients of all three types in an equal-footing manner
within the continuum model, which motivates us to study a
lattice model.

In this paper, we study the longitudinal transport coef-
ficients of a simple lattice model with Dirac cones in two
dimensions. The model is a generalization of a model pro-
posed by one of the authors [48] in which the type-III Dirac
cone is realized. The slight modulation of the Hamiltonian
enables us to control the type of Dirac cones by a single
parameter, as we will show later. Therefore, the model serves
as a minimal model of tilted Dirac cones in two dimensions.

For this model, we calculate the electric and thermoelec-
tric transport coefficients on the basis of the Kubo formula
[49,50]. We consider the effects of nonmagnetic impurities
by using the relaxation time approximation. Our result indi-
cates that the largest thermoelectric response is obtained not
for the type-III case but for the optimally tilted type-I case.
This indicates that the thermoelectric transport coefficients of
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type-III Dirac fermions cannot be regarded as a limiting case
of either type I or type II. To be more specific, the transport
coefficients of the type-III Dirac fermions are qualitatively
similar to those of type I, in that the spectral conductivity
shows a dip rather than a peak at the Dirac point for the
type-I and type-III cases and that the sign of the Seebeck
coefficient for the type-III case is the same as that for the
type-I case. However, the transport coefficients do not behave
monotonically upon increasing the tilting. Quantitatively, for
the optimal case, sizable transport coefficients are obtained;
for example, the dimensionless figure of merit is 0.18 for
temperature of the order of 100 K under a trial setting of
parameters.

The rest of this paper is structured as follows. In Sec. II,
we introduce the model considered in this paper, namely, a
square-lattice model with two internal degrees of freedom.
The main results of this paper are presented in Sec. III. We
first show the chemical potential dependence of the electric
conductivity at zero temperature. Then we argue the tempera-
ture dependence of the Seebeck coefficient, the power factor,
and the dimensionless figure of merit. Finally, we present the
results in the low-temperature region based on the Mott for-
mula, which are helpful for obtaining a deeper understanding
about the comparison among the three types of Dirac cones.
A summary of this paper is presented in Sec. IV.

We remark that, throughout this paper, h̄ represents the
reduced Planck constant, and kB represents the Boltzmann
constant.

II. MODEL: TWO-ORBITAL SQUARE-LATTICE MODEL

To comprehensively study transport coefficients of Dirac
fermions of all three types on a lattice model, we introduce
a simple tight-binding model defined on a square lattice. The
model is an extension of one introduced in Ref. [48], where
the type-III Dirac cones are selectively tailored. The model
considered here is a spinless-fermion model. If we incorpo-
rate the spin degrees of freedom, the spectral conductivity
in Eq. (8) is multiplied by 2; thus, the results in Sec. III
will be modified accordingly. The spinless fermions have two
internal degrees of freedom, labeled 1 and 2, which we will
call “orbitals” henceforth [Fig. 1(a)].

Our tight-binding Hamiltonian is given as

H =
∑
〈i, j〉

∑
η1,η2=1,2

tη1,η2
i, j c†

i,η1
c j,η2 + (H.c.), (1)

where i and j denote the sites and 〈·, ·〉 denotes the nearest-
neighbor pair of sites. The hopping integrals tη1,η2

i, j are depicted
in Fig. 1(b). We note that the hopping integrals in the x direc-
tion are different from those in the y direction. The momentum
space representation is given as

H =
∑

k

ψ†
kH(k)ψk, (2)

where ψk = (ck,1, ck,2)T denotes the annihilation operators of
fermions with crystal momentum k and

H(k) =
(

λak + dk ak

ak λak − dk

)
. (3)

Orbital 1

Orbital 2

(a)

(b)

FIG. 1. Schematic figure of the tight-binding model of Eq. (3).
(a) The lattice structures and (b) the hopping processes in the x and y
directions. The red and blue dots denote orbitals 1 and 2, respectively.

Here we have introduced ak := 2t ′(cos kxa0 − cos kya0) and
dk := 2t (cos kxa0 + cos kya0), with a0 being the lattice con-
stant. The dimensionless parameter λ is real and nonnegative;
the modification from ak to λak in the diagonal matrix ele-
ments is an extension compared with the previous work [48].

For this model, the dispersion relations of two bands εk,±
become

εk,± = λak ±
√

a2
k + d2

k . (4)

In Figs. 2(b)–2(d), we plot the dispersion relation of Eq. (4).
Although the model is a toy model and thus the results will
not apply to specific materials directly, it will be useful to set
actual values of parameters so that we can roughly estimate
the electric and thermoelectric coefficients. Therefore, in the
rest of this paper, we set t = −1 eV and t ′ = −0.3 eV. We
note that, if the hopping amplitude changes, then the other
parameters, μ, �, and T , should be scaled accordingly.

We find from Eq. (4) that, for any λ, the Dirac cones appear
at the momenta where ak = 0 and dk = 0 are simultaneously
satisfied, that is, k = (± π

2a0
,± π

2a0
) and k = (± π

2a0
,∓ π

2a0
). Im-

portantly, the type of Dirac cone can be tuned by a single
parameter λ, as shown in Fig. 2. Clearly, we have type-I
(type-II) Dirac cones for λ < 1 (λ > 1); λ = 1 is the critical
case, i.e., type-III Dirac cones, as pointed out in Ref. [48].
This enables us to study the transport coefficients of three
types of Dirac cones comprehensively in this lattice model.

To further clarify the difference among the three types,
we depict the shape of the Fermi surface for μ = 0 eV in
Figs. 2(e)–2(g). For λ = 0.5, i.e., for the tilted type-I Dirac
cone, the Fermi surface corresponds to the Dirac points. For
λ = 1.5, i.e., for the type-II Dirac cone, the Fermi surface has
a finite area in the Brillouin zone [Fig. 2(g)], and it consists
of two species of surfaces, namely, the electron-type surface
and hole-type surface, which meet each other at the Dirac
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FIG. 2. (a) The first Brillouin zone. The green lines correspond to the high-symmetry lines on which we plot the band structure in (b)–(d).
Band structures for the Hamiltonian in Eq. (3) with t = −1 eV, t ′ = −0.3 eV, and (b) λ = 0.5, (c) λ = 1, and (d) λ = 1.5. The horizontal axis
denotes k. The Dirac cones at k = ( π

2a0
, π

2a0
) are encircled by cyan circles. The Fermi surface at μ = 0 eV for (e) λ = 0.5, (f) λ = 1, and (g)

λ = 1.5. The green dots represent the Dirac points. Red and blue lines are the electron-type surface (i.e., εk,+ = μ) and the hole-type surface
(i.e., εk,− = μ), respectively.

points. For λ = 1 i.e., for the type-III Dirac cone [Fig. 2(f)],
the Fermi surface shrinks compared with that in Fig. 2(g) and
forms straight lines (kx ± ky = π/a0, −π/a0).

In Fig. 3, we plot the DOS, defined as

ρ(ε) = − 1

π

∑
k

Im

[
1

ε + iη − εk,+
+ 1

ε + iη − εk,−

]
, (5)

where η is a small parameter, set to 0.01|t |. For λ = 0.5,
i.e., for the tilted type-I Dirac cone, the DOS drops at ε = 0,
reflecting the fact that the Fermi surface consists of the Dirac
points. For λ = 1.5, i.e., for the type-II Dirac cone, the DOS
becomes finite at ε = 0 since the Fermi surface is no longer
the points. For λ = 1, i.e., for the type-III Dirac cone, a sharp
peak of the DOS at ε = 0 appears due to directionally flat
dispersion at zero energy. Away from ε ∼ 0, we see several
peaks for all cases, e.g., ε ∼ 0.5 and 2 eV for λ = 0.5. They
originate from the quasiflat dispersion near the X and Y
points, as shown in Fig. 2(b).

FIG. 3. Density of states for the model in Eq. (3).

III. RESULTS

A. Longitudinal electric conductivity

We first calculate the electric longitudinal conductivity.
The conductivity tensor ←→σ is defined as

j = ←→σ E, (6)

where j is the current density and E is the electric field.
The longitudinal conductivity corresponds to the diagonal
element of the conductivity tensor, which we write σii (i =
x, y). We have confirmed that the relation σxx = σyy holds (see
Appendix A for the proof), so we focus on σxx henceforth.
Note that the above relation implies that the anisotropy of
the conductivity is not observed in this model, unlike the
case of the continuum model with a single tilted Dirac cone
[28–30,41]. This might originate from the fact that there
are two pairs of Dirac cones, namely, k = (± π

2a0
,± π

2a0
) and

k = (± π
2a0

,∓ π
2a0

), whose tilting directions are perpendicular
to each other.

The longitudinal conductivity can be calculated by using
the Kubo formula:

σxx = −
∫ ∞

−∞
dε f ′(ε − μ)αxx(ε), (7)

where μ is the chemical potential and αxx(ε) is referred to as
the spectral conductivity:

αxx(ε) = h̄e2

2πAd0

∑
k

Tr
{
G(R)(k, ε)vx(k)G(A)(k, ε)vx(k)

− Re
[
G(R)(k, ε)vx(k)G(R)(k, ε)vx(k)

]}
. (8)

Here −e is the charge of an electron, A is the area of the
two-dimensional layer, f (ε) = 1/(eβε + 1) is the Fermi-Dirac
distribution function (β = 1/kBT ), and f ′(ε) is its derivative.
In Eq. (8), we have included an interlayer distance d0 to
make αxx(ε) have the units of the three-dimensional (bulk)
conductivity. This means that, although the tight-binding
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FIG. 4. Longitudinal conductivity for (a) � = 0.02 eV, (b) � = 0.05 eV, and (c) � = 0.1 eV.

model in Eq. (2) is two-dimensional, we consider the quasi-
two-dimensional (quasi-2D) system where the independent
two-dimensional layers are stacked with interlayer distance
d0. Such a quasi-2D nature applies to quasi-2D organic ma-
terials in which the tilted Dirac electrons are realized and the
electric and thermoelectric transport coefficients are measured
for bulk (three-dimensional) samples. Hereafter, we set d0 =
10 Å as a typical value of the quasi-2D materials. Note that we
have neglected the interlayer coupling. In general, depending
on the symmetries, the Dirac cones can acquire a mass gap
due to the interlayer coupling. Nevertheless, regardless of the
existence of such a mass gap, a small interlayer coupling does
not change the following results qualitatively for temperatures
greater than the interlayer coupling.

As for the retarded and advanced Green’s functions,
G(R)(k, ε) and G(A)(k, ε), respectively, we employ the relax-
ation time approximation:

G(R)(k, ε) = [ε + i� − H(k)]−1 (9)

and

G(A)(k, ε) = [ε − i� − H(k)]−1, (10)

with � being the damping rate caused by the impurity scatter-
ing; we do not consider the screening effect of the impurity
potential that causes the momentum and frequency depen-
dence of � [51,52]. We consider three cases, namely, � =
0.02, 0.05, and 0.1 eV. The velocity vx(k) is given as

vx(k) = 1

h̄

∂H(k)

∂kx
. (11)

For the numerical calculations, we set T = 0, where
f ′(ε) = −δ(ε); thus, σxx = α(μ). Then we numerically take
the summation over k with 800 × 800 meshes for � =
0.02 eV, 400 × 400 meshes for � = 0.05 eV, and 200 × 200
meshes for � = 0.1 eV.

In Figs. 4(a)–4(c), we show the μ dependence of σxx. The
three panels are for different values of �. Although � affects
σxx quantitatively, the overall features of μ dependence do
not change. We see that the conductivity sharply drops for
μ → 0 eV for λ = 0.5 (the type-I case) and λ = 1 (the type-
III case), while it has a peak at μ = 0 eV for λ = 1.5 (the
type-II case). In this sense, the conductivity for the type-III
case is similar to that for the type-I case, rather than the type-II
case.

To account for this result, we compare the μ dependence of
σxx with the DOS profile in Fig. 3. In general, the finite DOS

is essential to obtain a sizable conductivity. In this respect,
the results for types I and II coincide with the DOS profile;
namely, the DOS approaches zero (finite) at μ = 0 eV for
type I (II), which is reflected in the μ dependence of σxx. In
contrast, for the type-III case, the conductivity shows a dip
at μ = 0 eV despite the peak in the DOS. This means that
the directionally flat dispersion of the type-III Dirac cone,
which leads to the peak of the DOS, does not contribute the
conductivity, probably because of the momentum dependence
of the velocity operator, which is another key factor for the
determination of the conductivity. Such a subtle interplay
between the DOS profile and the momentum dependence of
the velocity operator may also lead to the peak at μ = 0 eV
for the type-II Dirac cone.

B. Thermoelectric transport coefficients

Next, we calculate the Seebeck coefficient [50,53–55], the
power factor, and the dimensionless figure of merit. The defi-
nitions of these quantities are as follows. We focus on the case
where the electric and thermal currents as well as the electric
field, and the temperature gradients are all in the x direction.
The electric current in the presence of the electric field and the
temperature gradient is given as

jx = L11Ex + L12

(
−∂xT

T

)
, (12)

and the thermal current is given as

jx
Q = L21Ex + L22

(
−∂xT

T

)
, (13)

with ∂xT being the temperature gradient in the x direction.
Note that L11 = σxx and L12 = L21 due to Onsager’s relation.
The Seebeck coefficient S is expressed by using Li j (i, j =
1, 2) as

S = 1

T

L12

L11
. (14)

The power factor (PF) and the dimensionless figure of merit
(ZT ) are defined as

PF = 1

T 2

L2
12

L11
(15)

and

ZT = S2σ

κ
T, (16)
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FIG. 5. Temperature dependence of (a) the conductivity, (b) L12, (c) L22, (d) the Seebeck coefficient, (e) the power factor, and (f) the
dimensionless figure of merit. We set � = 0.02 eV.

respectively, where κ is the thermal conductivity. Generally,
κ is given by κ = κe + κph, and κe (κph) is the electronic
(phonon) contribution to thermal conductivity. In this paper,
we ignore κph and calculate ZT using κe given by

κe = L22 − (L12L21)/L11

T
. (17)

Thus, the obtained results for ZT are the maximum of the
possible ZT . Note that the validity of neglecting the phonon
contribution depends on the actual materials. For instance, in
graphene, the phonon contribution is dominant [56].

In the present model, only the impurity scattering poten-
tials cause the damping rate �. Therefore, L12 is given by
[55,57,58]

L12 = 1

e

∫ ∞

−∞
dε (ε − μ) f ′(ε − μ)αxx(ε), (18)

with αxx(ε) being defined as in Eq. (8). This relation between
L11 and L12 is called the Sommerfeld-Bethe relation [59]. It
should be noted that we consider only the electric contribution
to the Seebeck coefficient and neglect the other contributions
such as the phonon drag deriving from the electron-phonon
interaction [55,60]. Similarly, L22 is calculated as

L22 = − 1

e2

∫ ∞

−∞
dε (ε − μ)2 f ′(ε − μ)αxx(ε). (19)

We perform ε integration in Eqs. (7), (18), and (19) numeri-
cally and calculate S, PF, and ZT by using L11, L12, and L22

thus obtained. In the actual numerical calculation, we limit the
interval of the integration to ε ∈ [−1, 1] (eV) in Eqs. (7), (18),
and (19) and perform the integration numerically, with the
number of meshes of ε being 960. In this section, the damping
rate � is set to 0.02 eV.
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FIG. 7. Seebeck coefficient at T = 1.16 K for (a) � = 0.02 eV, (b) � = 0.05 eV, and (c) � = 0.1 eV.

The results are shown in Figs. 5(a)–5(f). The eight lines
are for the different combinations of λ and μ. Note that we do
not consider the temperature dependence of μ, but we set it
as a parameter. We see that for λ ∼ 1, all three quantities have
peaks at temperatures on the order of 100 K. In fact, for λ � 1,
S, PF, and ZT have a maximum at T ∼ μ/2kB. For S and
ZT , this fact can be accounted for by the linear dependence of
αxx(ε) as a function of ε; see Appendix B for details.

Among the combinations of λ and μ shown in Figs. 5(d)–
5(f), the case with λ = 0.95 and μ = 0.05 eV exhibits the
largest response. The results indicate that there exists an
optimal degree of tilting and carrier density to obtain large
thermoelectric responses. We also see that, deep inside the
type-II case (λ = 1.5), the thermoelectric response functions
are small compared with those for λ ∼ 1. Note that, for the
type-II case, a dominant contribution to the Seebeck coef-
ficient comes from the region near the Dirac points; see
Appendix C for further details.

To further study the optimal tilting for the large ther-
moelectric response, we investigate the λ dependence of S,
PF, and ZT . The results are shown in Figs. 6(a)–6(c). The
temperatures are set to T = 92 and 232 K for μ = 0.0125
and 0.05 eV, respectively, where the peaks are realized in
Figs. 5(d)–5(f). We see that the optimal tilting parameter λ in-
deed exists and is slightly smaller than λ = 1. We also see that,
for all three quantities, their absolute values for μ = 0.05 eV
are larger than those for μ = 0.0125 eV. However, as we will
argue in the next section, they do not increase monotonically
as a function of μ. Rather, an optimal value of μ also exists,
as we will explain in the next section. Therefore, for the large
thermoelectric response, the suitable electronic structure is the
type-I Dirac cone which is very close to the type-III Dirac
cone. The carrier density (or the chemical potential) should
also be tuned at the optimal value. At the maximum within the
present results (μ = 0.05 eV and λ = 0.89), we obtain S ∼
−70 μV/K, PF ∼ 3000 μW/mK2, and ZT ∼ 0.18, which are
sizable values.

C. Low temperatures

To understand the physical origin of the large Seebeck
coefficient and large ZT , it is useful to study their low-
temperature behaviors. To this end, for L12, we apply the
Sommerfeld expansion to Eq. (18). Then, we find that, for low
temperatures, S is given by the Mott formula [61],

S = −π2

3

k2
BT

e

(
d ln αxx(ε)

dε

)
ε=μ

. (20)

In Figs. 7(a)–7(c), we show the μ dependence of S ob-
tained from the Mott formula for μ ∈ [−0.5, 0.5] eV. We set
the temperature to be small but finite, as T = 1.16 K (i.e.,
kBT = 10−4|t |). We see that S is vanishing when μ is right
at the Dirac point for all three types, as S is the odd function
of μ. Comparing the three types, we find that the type-I and
type-III cases have large S, while the type-II case has small S.
This can be accounted for by the fact that the conductivity (or
L11) is large for the type-II case.

We also find that the sign of S in the type-I and type-III
cases is opposite that for the type-II case. For instance, for
positive μ, S is negative for λ = 0.5 and 1, while S is positive
for λ = 1.5. To further clarify the nature of the sign change,
we plot the λ dependence of S at μ = 0.0125 eV in Fig. 8.
As λ approaches 1 from the type-I region, S is negative, and
|S| becomes larger. At λ = 1, i.e., the type-III case, S is still
negative, but |S| decreases. This indicates the nonmonotonic
behavior of S upon increasing the tilting of the Dirac cones
from the type-I side. Then, the sign change of S occurs for
λ = λc, with λc > 1. Note that this behavior is also seen at
finite temperatures, as shown in Fig. 6(a). The result can be
understood as follows. From Eqs. (7) and (20), one finds that
S is proportional to the μ derivative of σ at T = 0. Then, the
sign of S, which is equal to that of L12, is dictated by whether
σ at μ = 0 is a dip or a peak. Clearly, types I and III show
a dip, while type II shows a peak, which coincides with the
resulting sign of S.

Next, we present the results of the power factor. To es-
timate the low-temperature behavior, we again employ the
Sommerfeld expansion to L12. In Figs. 9(a)–9(c), we show the
μ dependence of the PF. As can clearly be seen, a large power
factor is obtained for types I and III for small but finite μ.
In particular, the power factor for the type-III Dirac system
is the largest among the three types for � = 0.02, 0.05 eV

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1

 0.6  0.8  1  1.2  1.4

FIG. 8. λ dependence of the Seebeck coefficient at T = 1.16 K
and μ = 0.0125 eV.
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(type-II)
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-0.4 -0.2  0  0.2  0.410-9
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-0.4 -0.2  0  0.2  0.410-6

10-5

10-4

10-3

10-2

10-1

100

-0.4 -0.2  0  0.2  0.4

FIG. 9. μ dependence of the power factor at T = 1.16 K for (a) � = 0.02 eV, (b) � = 0.05 eV, and (c) � = 0.1 eV.

with |μ| � 0.05 eV due to the subtle competition between L12

and L11.

IV. SUMMARY

In this paper, we have investigated the electric and thermo-
electric transport coefficients of the two-orbital square-lattice
model in Eq. (3). In this model, the type of Dirac cones can be
tuned by a single parameter, λ, and thus, the model serves as
a minimal model for studying transport phenomena.

We have computed the electric conductivity, the Seebeck
coefficient, the power factor, and the dimensionless figure of
merit on the basis of the Kubo formula and the relaxation time
approximation. We have found that the transport coefficients
of the type-III case cannot be regarded as a simple limit of
the type-I or type-II case. Actually, an optimal degree of
tilting and chemical potential to obtain the largest thermo-
electric responses within the type-I regime exists; the type-III
Dirac cone is not the optimal case. Furthermore, the chemical
potential should not be right at the Dirac point. The best chem-
ical potential for the large Seebeck coefficient will be near
μ ∼ 0.05 eV. As for the temperature dependence, the peaks
appear at T ∼ μ/2kB. For the optimal case within our results,
sizable transport coefficients are obtained; for example, the
dimensionless figure of merit is 0.18.

To understand the physical origin of the above behaviors,
we have also studied the low-temperature behaviors using the
Mott formula. We have found that the sign of the Seebeck
coefficient for the type-III case is the same as that for the
type-I case. This originates from the fact that the spectral
conductivity shows a dip rather than a peak at ε = 0.

Finally, we address the possible implications for real
materials. The type-I Dirac cones with large tilting in
quasi-two dimensions are realized in organic conductors
such as α-(BEDT-TTF)2I3 [5,7–10] and α-(BETS)2I3 [BETS
is bis(ethylenedithio)tetraselenafulvalene] [62–64]. For α-
(BEDT-TTF)2I3, the measurements of the Seebeck coeffi-
cients have indeed been reported [65,66]. Further, interest-
ingly, the degree of titling can be tuned by applying pressure
[5,67,68]. Therefore, these materials will be candidates for
testing the tilting dependence of the thermoelectric transport
coefficients.

ACKNOWLEDGMENTS

We thank I. Tateishi and S. Ozaki for fruitful discussions
and comments. T.M. thanks Y. Hatsugai for the collabora-
tion in prior work [48]. This work is supported by JSPS
KAKENHI, Grants No. JP18H01162, No. JP18K03482, No.
JP19K03720, and No. JP20K03802, and by the JST-Mirai
Program, Grant No. JPMJMI19A1. T.M. is supported by JSPS
KAKENHI, Grant No. JP20K14371.

APPENDIX A: PROOF FOR σxx = σyy

In this Appendix, we show a proof of the relation σxx = σyy

in the present model. Note that C4 symmetry is broken in
this model; thus, the above relation is not obtained straight-
forwardly.

Let αyy(ε) be the spectral conductivity for the y direction;
that is, αyy(ε) is obtained by replacing vx(k) with vy(k) in
Eq. (8) as

αyy(ε) = h̄e2

2πAd0

∑
k

Tr
{
G(R)(k, ε)vy(k)G(A)(k, ε)vy(k)

− Re
[
G(R)(k, ε)vy(k)G(R)(k, ε)vy(k)

]}
. (A1)

In the following, we show that αxx(ε) = αyy(ε) holds. For
simplicity, we set a0 = 1 in this Appendix.

To begin with, we show that the spectral conductivity is an
even function of ε; that is, αxx(ε) = αxx(−ε) holds. To this
aim, we first point out that H(kx, ky ) satisfies

H(kx + π, ky + π ) = −H(kx, ky). (A2)

Therefore, we have

vx(kx + π, ky + π ) = −vx(kx, ky) (A3)

and

G(R)(kx + π, ky + π, ε) = [(ε + i�) − H(kx + π, ky + π )]−1

= −[(−ε − i�) − H(kx, ky)]−1

= −G(A)(kx, ky,−ε). (A4)

Substituting Eqs. (A3) and (A4) into Eq. (8) and changing the
variables as kx → kx − π and ky → ky − π , we have

αxx(ε) =
∑
kx,ky

h̄e2

2πAd0
Tr

{
G(R)(kx, ky, ε)vx(kx, ky)G(A)(kx, ky, ε)vx(kx, ky)

− Re
[
G(R)(kx, ky, ε)vx(kx, ky)G(R)(kx, ky, ε)vx(kx, ky)

]}
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=
∑
kx,ky

h̄e2

2πAd0
Tr

{
G(R)(kx + π, ky + π, ε)vx(kx + π, ky + π )G(A)(kx + π, ky + π, ε)vx(kx + π, ky + π )

− Re
[
G(R)(kx + π, ky + π, ε)vx(kx + π, ky + π )G(R)(kx + π, ky + π, ε)vx(kx + π, ky + π )

]}

=
∑
kx,ky

h̄e2

2πAd0
Tr

{
G(A)(kx, ky,−ε)vx(kx, ky)G(R)(kx, ky,−ε)vx(kx, ky)

− Re
[
G(A)(kx, ky,−ε)vx(kx, ky)G(A)(kx, ky,−ε)vx(kx, ky)

]}
= αxx(−ε). (A5)

Note that we have used G(A)(kx, ky, ε) = [G(R)(kx, ky, ε)]∗ and v∗
x (kx, ky) = vx(kx, ky), which lead to

Re[G(A)(kx, ky, ε)vx(kx, ky)G(A)(kx, ky, ε)vx(kx, ky)] = Re[G(R)(kx, ky, ε)vx(kx, ky)G(R)(kx, ky, ε)vx(kx, ky)].
Next, we show that αyy(ε) = αxx(−ε). To show this, we point out that H(kx, ky) satisfies

H(kx, ky) = −τxH(ky, kx )τx, (A6)

where τx is the x component of the Pauli matrix. Then, we have

vy(kx, ky) = 1

h̄

∂H(kx, ky )

∂ky
= −1

h̄
τx

∂H(ky, kx )

∂ky
τx = −τxvx(ky, kx )τx (A7)

and

G(R)(kx, ky, ε) = [(ε + i�) − H(kx, ky)]−1 = −{τx[(−ε − i�) − H(ky, kx )]τx}−1 = −τxG(A)(ky, kx,−ε)τx. (A8)

Substituting Eqs. (A7) and (A8) into Eq. (A1) and changing the variables as kx → ky and ky → kx, we have

αyy(ε) =
∑
kx,ky

h̄e2

2πAd0
Tr

{
G(R)(kx, ky, ε)vy(kx, ky)G(A)(kx, ky, ε)vy(kx, ky)

− Re
[
G(R)(kx, ky, ε)vy(kx, ky)G(R)(kx, ky, ε)vy(kx, ky)

]}

=
∑
kx,ky

h̄e2

2πAd0
Tr

{
τxG(A)(ky, kx,−ε)vx(ky, kx )G(R)(ky, kx,−ε)vx(ky, kx )τx

− Re
[
τxG(A)(ky, kx,−ε)vx(ky, kx )G(A)(ky, kx,−ε)vx(ky, kx )τx

]}

=
∑
kx,ky

h̄e2

2πAd0
Tr

{
τxG(A)(kx, ky,−ε)vx(kx, ky)G(R)(kx, ky,−ε)vx(kx, ky)τx

− Re
[
τxG(A)(kx, ky,−ε)vx(kx, ky)G(A)(kx, ky,−ε)vx(kx, ky)τx

]}
= αxx(−ε). (A9)

To obtain the final line of Eq. (A9), we have used the fact that
the trace is invariant under cyclic permutations.

Combining (A5) and (A9), we find αxx(ε) = αyy(ε), which
leads to σxx = σyy.

APPENDIX B: PEAK TEMPERATURE OF THE SEEBECK
COEFFICIENT AND THE FIGURE OF MERIT FOR THE

TYPE-I AND TYPE-III DIRAC FERMIONS

In this Appendix, we elucidate the origin of the peak tem-
perature of S, using the evaluation method proposed by Mahan
and Sofo [69]. Note that the same argument was presented in
Ref. [70] for the conventional Dirac fermion system. From
Eqs. (7), (18), and (19), we find

L11 =
∫ ∞

−∞
dw g0(w)αxx(w/β + μ), (B1)

L12 = − 1

eβ

∫ ∞

−∞
dw g1(w)αxx(w/β + μ), (B2)

and

L22 = 1

e2β2

∫ ∞

−∞
dw g2(w)αxx(w/β + μ), (B3)

where w := β(ε − μ) and

gn(w) = wnew

(ew + 1)2 . (B4)

Note that gn(w) is an odd (even) function of w if n is odd
(even).

Hereafter, we assume that μ is positive for simplicity. For
analytical estimation of L11, L12, and L22, we assume a simple
analytic form of the spectral conductivity. Specifically, from
the numerical results in Fig. 4, for the type-I and type-III
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Dirac systems, the spectral conductivity around ε = 0 can be
approximated as

αxx(ε) ∼ α0 + α1|ε|, (B5)

where α0 and α1 are coefficients. Substituting Eq. (B5) into
Eqs. (B1) and (B3) and recalling the definition of S in Eq. (14),
we find

S = −kB

e

2α1μh1(−w0) + α1kBT h2(−w0)

α0 + 2α1kBT h1(−w0) + α1μh0(−w0)
. (B6)

Here w0 := −μ/(kBT ), and the functions hn(w) (n = 0, 1, 2)
are given as

h0(w) =
∫ w

−w

dw′ g0(w′) = tanh
w

2
, (B7a)

h1(w) =
∫ ∞

w

dw′ g1(w′) = ln(1 + ew ) − wew

ew + 1
,

(B7b)

and

h2(w) =
∫ w

−w

dw′ g2(w′)

= 2w2ew

ew + 1
− 4w ln(1 + ew ) − 4Li2(−ew ) − π2

3
.

(B7c)

Here, Lis(z) stands for the polylogarithm function of order s.
Note that the integration range of w in Eqs. (B1) and (B3) runs
over w ∈ [−∞,∞], where the approximation of (B5) breaks
down. Nevertheless, using (B5) is valid as long as μ is close
to zero because gn(w) decays rapidly as |w| → ∞.

Further, Fig. 4 indicates that, in the clean limit (i.e., when �

is sufficiently small), α0 in the spectral conductivity becomes
less dominant. Hence, we set α0 → 0 for simplicity. By doing
so, we have

S ∼ kB

e
X (w0),

X (w0) = −h2(−w0) − 2w0h1(−w0)

2h1(−w0) − w0h0(−w0)
, (B8)

which does not depend on α1. Equation (B8) indicates that
the temperature and chemical potential dependence of S is
determined by the single variable w0 = −μ/(kBT ).

0 2 4 6 8 10
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0.20
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0.30

FIG. 10. (a) X (w0 ) from Eq. (B8) and (b) Y (w0) from Eq. (B9)
as a function of −w0. Note that w0 is negative when μ is positive.

Figure 10(a) shows the function X (w0) for positive μ (i.e.,
negative w0). We see that the peak of X (w0) is indeed at
−w0 ∼ 2, i.e., T ∼ μ/(2kB), which coincides with the numer-
ical result shown in Fig. 5(d). We also see that the peak height
of |X (w0)| is almost 1, meaning that the maximal |S| within
this approximation is kB/e ∼ 86 μV/K. In actual numerical
calculations [Fig. 5(d)], the peak height is smaller than the
above value, and it also depends on μ, which might be because
α0 is non-negligible.

The estimation of ZT can be performed in the same way.
Again neglecting α0, we have

ZT = Y (w0), Y (w0) =
[

[2h1(−w0) − w0h0(−w0)][2h3(−w0) − w0h2(−w0)]

[h2(−w0) − 2w0h1(−w0)]2
− 1

]−1

, (B9)

where

h3(w) =
∫ ∞

w

dw′ g3(w′) = w2

[
3 ln (1 + ew ) − wew

ew + 1

]
+ 6wLi2(−ew ) − 6Li3(−ew ). (B10)

Figure 10(b) shows the function Y (w0). We see that the peak
of Y (w0) is −w0 ∼ 2.5. Thus, the peak temperature of ZT
is T ∼ μ/(2.5kB), which is slightly smaller than that for S.
We also see that the maximum of ZT is about 0.27. This
value is greater than the optimal ZT obtained in the numerical
calculation, which might again be due to the effect of α0.

APPENDIX C: ROLE OF DIRAC POINTS IN THE
SEEBECK COEFFICIENT FOR THE TYPE-II CASE

In this Appendix, we clarify how the Dirac points con-
tribute to the Seebeck coefficient. For the type-II case,
the Fermi surface extends far away from the Dirac points
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FIG. 11. (a) Schematic figure of the division of the Brillouin zone into the two regions, (A) and (B). Region (A) is composed of four circles
whose radii are π

4a0
and centers are the Dirac points. The gray lines are the Fermi surface for μ = 0 eV. (b) α(A)

xx (ε), α(B)
xx (ε), and αxx (ε) as

functions of ε. (c) Temperature dependence of S(A), S(B), and S. For (b) and (c), we set � = 0.02 eV.

[Fig. 2(g)]; thus, it is worth investigating the contribution
from the region near the Dirac points and those from the rest
separately.

To do this, we first divide the k space into two regions:
One is the vicinity of the Dirac points, which we call (A), and
the other is the remainder, which we call (B) [see Fig. 11(a)].
Then, the spectral conductivity in Eq. (8) can be divided into
two contributions by restricting the summation over k to either
(A) or (B). We call these contributions α(A)

xx (ε) and α(B)
xx (ε),

respectively. In Fig. 11(b), we plot α(A)
xx (ε) and α(B)

xx (ε). We
see that these two contributions are comparable near ε = 0 eV.
Therefore, as far as the electric conductivity is concerned, the
Dirac points do not have special importance.

As for the Seebeck coefficient, by substituting α(A)
xx (ε) and

α(B)
xx (ε) into Eq. (18), we obtain L(A)

12 and L(B)
12 , respectively.

Using these, we define

S(A)/(B) = 1

T

L(A)/(B)
12

L11
. (C1)

In Fig. 11(c), we plot S(A), S(B), and S as functions of T for
μ = 0.0125 and 0.05 eV. We see that the large contribution
to S comes from region (A) in both cases, which implies that
the Dirac points play an important role in the thermoelectric
transport in this system.
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