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Revisiting excitation gaps in the fractional quantum Hall effect
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Recent systematic measurements of the quantum well width dependence of the excitation gaps of fractional
quantum Hall states in high mobility samples [Villegas Rosales et al., Phys. Rev. Lett. 127, 056801 (2021)]
open the possibility of a better quantitative understanding of this important issue. We present what we believe
to be accurate theoretical gaps including the effects of finite width and Landau level (LL) mixing. While theory
captures the width dependence, there still remains a deviation between the calculated and the measured gaps,
presumably caused by disorder. It is customary to model the experimental gaps of the n/(2n ± 1) states as
�n/(2n±1) = Ce2/[(2n ± 1)εl] − �, where ε is the dielectric constant of the background semiconductor and l
is the magnetic length; the first term is interpreted as the cyclotron energy of composite fermions and � as a
disorder-induced broadening of composite-fermion LLs. Fitting the gaps for various fractional quantum Hall
states, we find that � can be nonzero even in the absence of disorder.
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I. INTRODUCTION

It has been appreciated since the very beginning that the
existence of a gap is a fundamental property of a fractional
quantum Hall effect (FQHE) state [1,2]. Despite the passage
of almost four decades, the quantitative agreement between
the experimentally measured [3–8] and the theoretically pre-
dicted [9–18] values of the gaps is not as good as one might
have hoped. In the idealized limit where electrons are in
a strict two-dimensional (2D) layer and Landau level (LL)
mixing and disorder are absent, comparisons with computer
calculations show that the zeroth-order composite fermion
(CF) theory predicts gaps of the n/(2n ± 1) FQHE states to
within 10%, and the agreement can be further improved by
allowing for CF-LL mixing [9,19]. The discrepancy between
the theoretical and the experimental gaps must, therefore,
originate from features not included in the idealized model.

A recent article by Villegas Rosales et al. has reported on
systematic measurements of the gaps and their quantum well
width dependence in the highest mobility samples available to
date [8]. The modest aim of our work below is to determine
the theoretical values of gaps incorporating, to the best extent
we currently know, the effects of finite width and LL mixing
(LLM), hoping to gain a better quantitative understanding of
this important issue. Our strategy below is first to accurately
calculate the thermodynamic limits of the variational gaps
with the effect of finite width treated through a local density
approximation (LDA); finite width is responsible for the most
significant reduction in the gap for typical experimental pa-
rameters. We then estimate the thermodynamic limits for the
deviation between the variational and the exact gaps in the
lowest LL (LLL) and also for correction due to LLM. The
final theoretical gaps along with the experimental gaps are
shown in Fig. 1. We find that while theory nicely captures the

behavior of the gaps as a function of the quantum well width,
a quantitative discrepancy remains, which is most likely due
to disorder, not included in our calculations.

We mention here some of the previous theoretical studies
of gaps in the FQHE regime. Zhang and Das Sarma [20]
calculated finite width correction for the 1/3 gap modeling the
interaction as 1/(

√
r2 + d2), where r is the interparticle spac-

ing and d is related to the width. Park et al. [14] evaluated gaps
for fractions along the n/(2n + 1) sequence with a variational
Monte Carlo (VMC) method using wave functions from the
CF theory, treating finite width in a LDA; they did not go to
large widths that have been studied in Ref. [8]. Morf et al. [16]
evaluated gaps by performing exact diagonalization (ED);
they used a Gaussian model for the transverse wave function
to simulate the LDA wave function. As for all ED studies, this
work is restricted to small systems. Yoshioka [21] calculated
the effect of LLM on the 1/3 gap by performing ED in the
Hilbert space of the two lowest LLs. Melik-Alaverdian and
Bonesteel [11] studied the effect of LLM on the energy gap
of the 1/3 state. They evaluated the quasiparticle energy by
diagonalizing the Coulomb interaction in a 2 × 2 basis of the
projected and unprojected Jain quasiparticle wave functions;
within this approximation, the energies of the ground state and
the quasihole are not modified by LLM.

II. CALCULATIONAL DETAILS

We work with the spherical geometry [22]. In this ge-
ometry, a magnetic monopole placed at the center of the
sphere generates a uniform radial magnetic flux of strength
2Qhc/e (2Q is an integer) through the spherical surface, on
which N electrons reside. Owing to the rotational symme-
try, states can be characterized by their total orbital angular
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FIG. 1. Comparison between the theoretical and the experimen-
tal gaps for ρ = 1.1 × 1011cm−2 at ν = 1/3 (top) and 2/5 (bottom).
Several different methods are used for the calculation: VMC with
Jain wave functions; VMC gaps corrected for variational error (“ex-
act”), as explained in the main text; LLM corrected gaps (“with
LLM”), as explained in the text. Note that an insulating phase is
observed in the experiment at 1/3 for W = 80 nm.

momentum quantum number L. Incompressible quantum Hall
ground states are uniform, i.e., have L = 0 while their ex-
citations, in general, have L > 0. Compared with the planar
geometry, the flux-particle relationship on the sphere is given
by 2Q = N/ν − S , where S is a topological quantum number
called the shift [23]. The planar momentum k is related to L
as k = L/R, where R = √

Ql is the radius of the sphere and
l = √

h̄c/eB is the magnetic length at the magnetic-field B.
The FQHE of electrons at ν = n/(2pn ± 1) is a manifesta-

tion of the integer quantum Hall effect (IQHE) of CFs [9,24],
which are bound states of electrons and an even number (2p)
of vortices. The ground-state wave function at these fractions
is known to be accurately given by �Jain

n/(2n+1) = PLLL�n�
2
1,

where �n is the IQHE wave function of electrons at filling
factor n and PLLL implements projection to the LLL as is ap-
propriate in the limit that B → ∞. Throughout this work, we
carry out the LLL projection using the Jain-Kamilla method,
details of which can be found in the literature [9,13,25]. The

lowest-energy neutral excitation is obtained by promoting a
CF from the highest occupied 	L to the lowest unoccupied
	L. The wave function for this state, termed the CF exciton
(CFE), is given by �CFE

n/(2n+1) = PLLL�ex
n �2

1, where �ex.
n is the

IQHE wave function of an exciton with a hole in the LL
indexed by n − 1 and a particle in the LL indexed by n. The
constituent quasiparticle and quasihole of the CFE are referred
to as the CF particle (CFP) and CF hole (CFH). The gap mea-
sured in transport corresponds to the energy of a far separated
CFP-CFH pair. In the spherical geometry, at ν = n/(2n + 1)
this state is obtained by placing the CFH and the CFP at the
north and south poles, respectively, which corresponds to the
CFE with the largest Lmax = (N − n2)/n + (2n − 1) [17]. The
detailed form of the above wave functions in the spherical
geometry is given in the Supplemental Material (SM) [26].

To calculate the transport gap accurately, the attractive
interaction between the CFH and the CFP that exists in any
finite system needs to be accounted for. The CFP and CFH
have an extent of only a few magnetic lengths [27], so in the
simplest approximation, we treat them as point particles with
charge (±e)/(2n + 1) [9] separated by a distance of 2

√
Ql ,

which is the diameter of the sphere. The resulting Coulomb
attraction between the CFP and the CFH is thus given by

VCFH-CFP = − 1

(2n + 1)2(2
√

Q)

e2

εl
. (1)

Taking this attractive interaction into account, we define the
transport gap as

� =
√

2Qν

N

(
ELmax

CFE − Egs − VCFH-CFP
)
, (2)

where ELmax
CFE and Egs are the expectation values of the Coulomb

energies of the wave functions corresponding to the largest-L
CFE and ground state, respectively. The expectation values
for the variational wave functions are evaluated using the
Metropolis Monte Carlo method. In Eq. (2) the factor of√

2Qν/N corrects for the density difference between a finite
system on the sphere and that in the thermodynamic limit and
thereby reduces the N dependence of the gaps [28].

To compare the theoretical gaps against the experimental
values, we need to carefully incorporate the effect of the finite
width of the quantum well. To do so we consider the effective
interaction given by

Veff(r) = e2

ε

∫
dξ1

∫
dξ2

|ψ (ξ1)|2|ψ (ξ2)|2√
r2 + (ξ1 − ξ2)2

, (3)

where r is the in-plane distance between two particles, ξ is
the transverse coordinate, and ψ (ξ ) is the transverse wave
function which is obtained from a separate LDA calculation
[29].

III. LLM: PERTURBATIVE APPROACH

One of our objectives is to determine the modification of
the gap due to LLM. The LLM parameter κ , defined as κ =
(e2/εl )/(h̄ωc), characterizes the strength of the Coulomb in-
teraction relative to the cyclotron energy, where ωc = eB/mbc
is the cyclotron frequency of the band electron, where mb is
the band mass. To study the effect of LLM, we carry out ED
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using a perturbative method that incorporates LLM through a
correction to the interaction (including a three-body interac-
tion) [30–33].

The effective Hamiltonian we use is given by V̂c(W ) +
κ[V̂2(W ) + V̂3(W )], where V̂c(W ) is the Coulomb interaction
for a quantum well of width W , κV̂2(W ) is the correction
to the two-body interaction due to LLM, and κV̂3(W ) is the
three-body interaction term generated by LLM. In the disk
geometry, these have the form

V̂c(W ) =
∞∑

m=0

Vc(W, m)
∑
i< j

Pi j (m), (4)

V̂2(W ) =
m2,max∑
m=0

V2(W, m)
∑
i< j

Pi j (m),

V̂3(W ) =
m3,max∑
m=0

V3(W, m)
∑

i< j<k

Pi jk (m),

where Pi j (m) and Pi jk (m) are the projection operators onto a
pair or a triplet of electrons, respectively, with relative angular
momentum m. The pseudopotential Vc(W, m) is given by [34].

Vc(W, m) =
∫ ∞

0
dkk[L0(k2/2)]2Lm(k2)e−k2

V (k) (5)

V (k) = e2l

ε

1

k

3kW + 8π2

kW − 32π4(1−e−kW )
(kW )2[(kW )2+4π2]

(kW )2 + 4π2
, (6)

where k is quoted in units of 1/l . As for V2(W, m) and
V3(W, m), we use the values quoted in Tables I and II of
Ref. [31] {the corrections up to m2,max = 8 and m3,max = 8
are given in Ref. [31] and thus we truncate the sums in Eq. (4)
to these values}. (It is noted that these values are obtained
for a transverse wave function of the cosine form. We make
the simplifying assumption below that the LLM reduction
factor is not strongly sensitive to the form of the transverse
wave function.) Using these planar disk pseudopotentials in
the spherical geometry, we compute the energy gap of a far
separated CFP-CFH pair as defined in Eq. (2) using ED. In the
following calculations, we set κ = 0.70 and 0.76 at ν = 1/3
and 2/5, respectively, as appropriate for the experiments of
Ref. [8], with electron density ρ = 1.1×1011cm−2.

In Fig. 2, we plot the energy gaps at ν = 1/3 and ν =
2/5 for W = 0 as functions of the inverse of the particle
number. The energy gaps for the interaction V̂c + κ[V̂2 + V̂3]
are always smaller than those for V̂c at any N since LLM
screens the interaction. Figure 3 shows LLM reduction factor
r ≡ �Vc+κV2+κV3/�Vc , which is the ratio of the gaps with and
without LLM, as a function of 1/N for several quantum well
widths. We deduce the value in the thermodynamic limit for
each W/l by linear extrapolation. Using these data, we gen-
erate Fig. 4 that plots the reduction factor r as a function
of W . Here we set the magnetic length as l = √

ν/(2πρ)
with ρ = 1.1 × 1011cm−2. Because the interelectron interac-
tion weakens with increasing width, we expect the effect of
LLM to become less prominent, which is consistent with the
finding that the reduction in gap decreases with increasing
quantum well width.

In the SM [26], we discuss an alternative approach for
treating LLM, namely, the fixed-phase diffusion Monte Carlo

FIG. 2. Energy gap [defined in Eq. (2)] incorporating the effect
of LLM [see Eq. (4)] as a function of the inverse of the particle
number at (a) ν = 1/3 and (b) ν = 2/5 obtained from ED in the
spherical geometry.

method, which has proved to be effective in dealing with the
effect of LLM in the context of competition between FQHE
states with different spins and also between liquid and crystal
states [35–39]. We believe that this method may underesti-
mate LLM corrections to gaps because fixing the phase of
the wave function limits the flexibility of the CFP and CFH
wave functions. Also, this method allows a determination of
LLM corrections only for zero width; for finite widths, the
thermodynamic extrapolations are not reliable.

IV. RESULTS AND DISCUSSION

We evaluate the gaps as follows. First, we determine the
thermodynamic limits for the gaps at filling fractions 1/3,
2/5, 3/7, 4/9, and 5/11 from the Jain wave functions for the
ground states and far separated quasiparticle-quasihole pair.
We then estimate the thermodynamic limit of the “variational
error,” namely, the discrepancy between the gaps from trial
wave functions of the CF theory and ED; this can be ac-
complished reliably for 1/3 and 2/5 but not for the other
fractions for which the number of systems on which ED can be
performed is not sufficient for a thermodynamic extrapolation.
Finally, we multiply the gap by the reduction factor obtained
above to include the effect of LLM.

FIG. 3. The reduction factor r as a function of 1/N for (a) ν =
1/3 and (b) ν = 2/5. The reduction factor r is defined as the ratio
of the gap for V̂c + κ[V̂2 + V̂3] (which includes LLM) to the gap for
the bare Coulomb interaction V̂c. The dashed lines represent a linear
approximation.
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( )

FIG. 4. The reduction factor r as a function of W , where r is the
factor by which the gap is reduced due to LLM. The dashed lines
represent a linear approximation.

The resulting gaps for 1/3 and 2/5 states are shown in
Fig. 1 as a function of the quantum well width W for density
ρ = 1.1 × 1011cm−2. The blue symbols show the thermody-
namic limits of the VMC gaps (labeled VMC). Evidently,
finite width causes the largest correction to the gap. The red
symbols are gaps corrected for the variational error. Com-
parisons with ED studies have shown (see overlaps shown
in Refs. [18,26,38]) that the Laughlin and Jain trial wave
functions for the 1/3, 2/5, and 3/7 ground states remain
very accurate even for finite widths; we find that the use of
these trial wave functions overestimates the gaps by ∼10%
(the estimation of this error is primarily responsible for the
uncertainty in the theoretical gaps). The green dashed line is
obtained by multiplying the gaps by the reduction factor r
given in Fig. 4 to include corrections due to LLM. This is the
primary result of our calculation. We note that the theoretical
and experimental gaps behave qualitatively similarly, and the
discrepancy between them, presumably attributable to disor-
der, is only weakly dependent on the quantum well width. For
ν = 2/5 the deviation between theory and experiment is of
the same order as the scatter in the experimental gaps. Given
various approximations in the model and the calculations, we
find this level of agreement to be satisfactory.

We next come to the behavior of gaps as a function of the
filling factor. In the zeroth-order approximation of noninter-
acting CFs, it is natural to interpret the gaps in terms of the
CF cyclotron energy h̄eB∗/m∗c, where B∗ is the effective mag-
netic field sensed by CFs and m∗ is their mass. This suggests
that the gap is proportional to [1/(2n ± 1)](e2/εl ), where ε

is the dielectric constant of the background semiconductor
and l = √

h̄c/eB is the magnetic length. This follows from
the observations that for the ν = n/(2n ± 1) state we have
B∗ = B/(2n ± 1), and that we must have m∗ ∝ √

B for the
gap to be proportional to the Coulomb energy e2/εl , the only
energy scale in the absence of LLM. Experimental gaps can
be fitted, approximately, to

�n/(2n±1) = C

2n ± 1

e2

εl
− �, (7)

where C and � are constants that are determined by the fit-
ting. The quantity � is often interpreted as a disorder-induced
broadening of CF-LLs, known as 	 levels (	Ls). Many ex-
periments have reported values for � [6,8].

Villegas Rosales et al. estimate � in Eq. (7) to be in the
range 0.005 − 0.02 e2/εl [8], with the precise value depend-

FIG. 5. Top panel: Theoretical transport gap � as a function of
1/(2n + 1) for state in the n/(2n + 1) sequence in GaAs quantum
wells at different widths W with density ρ = 1.1 × 1011cm−2. The
gap is calculated using the VMC method. Different markers corre-
spond to different well widths. The solid lines are fits using data
points at all filling factors while the dashed lines are fits of the gaps
at only ν = 1/3, 2/5 and 3/7. Bottom panel: Comparison between
� from the VMC gaps with its experimentally measured value as a
function of the well width for density ρ = 1.1 × 1011cm−2. The blue
solid circles are obtained by linear regression of data points at all fill-
ing factors (ν = 1/3, 2/5, 3/7, 4/9 and 5/11), which correspond to
solid lines in the top plot, while the blue hollow circles are obtained
by linear regression of gaps only for ν = 1/3, 2/5 and 3/7, which
correspond to dashed lines in the top plot. The black stars are directly
taken from Fig. 5 of Ref. [8] and the red squares are obtained from a
linear fit of the experimental data at ν = 1/3, 2/5, 3/7 in Ref. [8].

ing on the quantum well width. Traditionally, a nonzero � has
been attributed to the disorder-induced broadening of the 	

levels [6]. In Fig. 5 we plot the theoretical VMC gaps for 1/3,
2/5, 3/7, 4/9, and 5/11 states without including the effects
of the disorder, LLM, or variational error (which are difficult
to estimate for the higher-order fractions). We find that if we
attempt a linear fit, the gaps are approximately consistent with
Eq. (7) with a nonzero � for typical widths of the quantum
well (a similar behavior was noted in Ref. [14], but with a less
realistic treatment of finite width). This value of � depends on
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FIG. 6. Squared overlaps of the exact ground states with the
Laughlin state at ν = 1/3 for N = 13 (upper panel) and N = 14
(lower panel) electrons in the spherical geometry. The plot for
N = 14 only includes data at ρ = 1.0 × 1011cm−2 and ρ = 1.5 ×
1011cm−2. The exact ground states are evaluated using the pseudopo-
tentials of the finite-width interaction.

the range of fractions used for the fit; we show fits using the
gaps at 1/3, 2/5, and 3/7 (which are known more precisely),
as well as fits using all of the gaps. The resulting � is in the
same range as that seen experimentally [8]. Moreover, in the
experiments of Villegas Rosales et al. [8], there is no clear
correlation between the measured � and the sample mobility
which characterizes the disorder strength further suggesting
that � may not be attributable solely to disorder. The implica-
tions of these results to the CF mass, which is related to the
gaps, are discussed in the SM [26], which also includes many
other details.

One may also ask how robust the FQHE states are as the
width is increased. The ED study in Ref. [38] has shown that
the overlap of the N = 12 exact state with the Laughlin wave
function at 1/3 is very close to unity even in wide quantum
wells. In this paper, we extend their result by calculating the
overlap between the exact ground state and the Laughlin state
for N = 13, 14 at ν = 1/3 for quantum well widths ranging
from 0 to 70 nm and carrier densities ranging from 1010cm−2

FIG. 7. Theoretical transport gap � as a function of 1/(2n + 1)
for states at filling factors |ν| = n/(2n + 1) sequence in the N = 0
and N = 1 LLs of graphene. The solid blue squares and red circles
are activation gaps obtained from the (VMC method without includ-
ing the effects of LLM. The hollow symbols are the experimental
gaps measured by Polshyn et al. [43]. The solid lines are fitted from
the VMC gap data at all filling factors (1/3, 2/5, 3/7, 4/9 and 5/11),
and the dashed lines are fitted from the experimental gaps at all filling
factors (1/3, 2/5, 3/7 and 4/9).

to 3 × 1011cm−2. These overlaps are shown in Fig. 6. We find
that for these larger systems too, the ν = 1/3 Laughlin wave
function provides an almost exact representation of the ground
states for the entire range of widths and densities considered in
our work. This indicates, theoretically, that this state survives
until a first-order transition takes place into a compressible
liquid or crystal bilayer state [40,41] (experimentally to an
insulating state [42]). This is consistent with the rather sud-
den collapse of the 1/3 state observed experimentally as a
function of the quantum well width [8]. We expect that the
same remains true for other prominent FQHE states.

Finally, we ask how these considerations apply to FQHE in
graphene. A similar analysis has been performed for the gaps
in monolayer graphene by Polshyn et al. [43]. They find that
� is larger by a factor of ∼3 than that seen in GaAs quantum
wells. The measured gaps are shown in Fig. 7. [We show
the gaps at ν = −1 + n/(2n + 1) in the N = 0 graphene LL,
and the gaps at ν = −3 + n/(2n + 1) in the N = 1 graphene
LL, because these are the largest experimental gaps.] For the
N = 0 graphene LL, the theoretical gaps are identical to those
in the LLL of GaAs in the zero-width limit, when LLM is
neglected [44]. Earlier studies have demonstrated that the CF
theory is quantitatively accurate in the N = 1 graphene LL
[45,46]. We have evaluated the VMC activation gaps for the
FQHE states at ν = n/(2n + 1) in the N = 1 LL of graphene
using the effective interaction given in Ref. [45] (see SM). The
results are also shown in Fig. 7. It is not known at present how
much LLM and disorder contribute to the observed value of �

in experiments.
In summary, motivated by the recent experimental study

of gaps of various FQHE states in extremely high mobility
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systems, we have evaluated the excitation gaps including the
effects of finite width and LLM. The theoretical gaps are in
qualitative and semi-quantitative agreement with the experi-
mental gaps, but some discrepancy remains, presumably due
to disorder.
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