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Motivated by recent nuclear magnetic resonance experiments, we calculated the spin susceptibility, Knight
shift, and spin-lattice relaxation rate (1/T1T ) of the single-component molecular conductor [Ni(dmdt)2] using the
random phase approximation in a multi-orbital Hubbard model describing the Dirac nodal line electronic system
in this compound. This Hubbard model is composed of three fragment orbitals and on-site repulsive interactions
obtained using ab initio many-body perturbation theory calculations. We found fragment-orbital-dependent
spin fluctuations with the momentum q = 0 and an incommensurate value of the wave number q = Q at which
a diagonal element of the spin susceptibility is maximum. The q = 0 and Q responses become dominant at
low and high temperatures, respectively, with the Fermi-pocket energy scale as the boundary. We show that
1/T1T decreases with decreasing temperature, but starts to increase at low temperature owing to the q = 0
spin fluctuations, while the Knight shift keeps monotonically decreasing. These properties are due to the
intramolecular antiferromagnetic fluctuations caused by the characteristic wave functions of this Dirac nodal
line system, which is described by an n-band (n � 3) model. We show that the fragment orbitals play important
roles in the magnetic properties of [Ni(dmdt)2].

DOI: 10.1103/PhysRevB.105.205145

I. INTRODUCTION

Dirac electron systems in solids are of interest to many
researchers because of not only their quantum transport phe-
nomena [1–4] and large diamagnetism [5,6], but also their
unusual effects induced by the Coulomb interaction [7–12].

Dirac electron systems in molecular conductors, such as
α-(BEDT-TTF)2I3, provide suitable platforms for studying
the effect of interaction because the electron hopping inte-
grals between neighboring molecules are smaller than the
on-site repulsive interactions reflecting the weak intermolec-
ular coupling [13–19]. At high pressure, α-(BEDT-TTF)2I3 is
a massless Dirac electron system. However, at low pressure,
a charge-ordered state appears presumably due to nearest-
neighbor Coulomb repulsions [20–22], where anomalous
spin-charge separation on spin gaps [23,24] and transport phe-
nomena occur [25–27]. In addition, the long-range Coulomb
interaction reshapes the Dirac cone because of a logarith-
mic velocity renormalization, which induces an anomalous
magnetic response [28–30]. Moreover, ferrimagnetism and
spin-triplet excitonic fluctuations are observed [31,32].

The Dirac electron system in α-(BEDT-TTF)2I3 is two-
dimensional [19] because it is a layered molecular conductor
and the hopping of electrons from one conducting layer to the
neighboring one over the insulating anion layer is incoherent.
By contrast, if the electron hopping perpendicular to the main
conducting layer were coherent, the Dirac point would be
connected and draw lines (rings) in the three-dimensional mo-
mentum space, which are called the Dirac nodal lines (rings)
[33–36].

Such kinds of Dirac nodal line (ring) systems have indeed
been found in graphite [37], transition-metal monophosphates
[38], Cu3N [39], antiperovskites [40], perovskite iridates [41],
and hexagonal pnictides with the composition CaAgX (X =
P, As) [42], as well as in the single-component molecular
conductors [Pd(dddt)2] [43–50], [Pt(dmdt)2] [51–55], and
[Ni(dmdt)2] [54,55].

The Dirac nodal line (ring) systems exhibit not only the
properties in common with two-dimensional Dirac electron
systems, e.g., the in-plane conductivity [51], but also the char-
acteristic electronic properties such as nondispersive Landau
levels [56], the Kondo effect [57], quasitopological electro-
magnetic responses [58], and edge magnetism [54] because
of the three dimensionality. However, the electron correlation
effects on the Fermi surface in the Dirac nodal line systems
have not yet been elucidated.

The prime focus of this study is such a Dirac nodal line sys-
tem in [M(dmdt)2] (M = Pt, Ni), which is a single-component
molecular conductor that consists of the M(dmdt)2 molecules,
where the bracket [· · · ] stands for a crystal. This material is a
triclinic system, as shown in Fig. 1, and has space-inversion
symmetry. One unit cell contains one M(dmdt)2 molecule.
In previous studies, the electronic properties of [M(dmdt)2]
were studied using density functional theory (DFT) and
tight-binding models were constructed on the basis of the ex-
tended Hückel method and DFT [51–54]. These investigations
showed that [M(dmdt)2] is a Dirac nodal line system. Further-
more, electronic resistivity measurements using conventional
four-probe methods were performed and showed that the re-
sistivity of [M(dmdt)2] hardly depends on the temperature
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FIG. 1. (a) Crystal structure in the b–c plane of [M(dmdt)2]. This
material consists of M(dmdt)2 molecules. (b) Crystal structure along
the b-axis. The red, blue, brown, and cyan balls represent Ni, S, C,
and H atoms, respectively. The black frames represent the unit cell.

(T ), which is consistent with the property of the Dirac elec-
tron system [51]. That is the universal conductivity [59]. In
addition, we previously suggested that the nesting between the
Fermi arcs localized at the edge and the electronic correlation
induce a helical spin density wave (SDW) at the edge [54].

Recently, the spin-lattice relaxation rate 1/T1T, probing
the low-energy spin dynamics, and the Knight shift, scaling
to the spin susceptibility, of [Ni(dmdt)2] were observed in a
13C nuclear magnetic resonance (13C-NMR) experiment [60].
At high temperature, 1/T 1T decreases with cooling and is
almost proportional to T 2. However, at low temperature, it
starts to increase with decreasing temperature and exhibits a
peak structure at approximately 30 K. Meanwhile, the Knight
shift is almost proportional to T because of the linear energy
dispersion and does not increase. The mechanism of this
anomalous temperature dependence of the spin fluctuations
has not been elucidated.

In the present study, we theoretically investigate the elec-
tron correlation using the Fermi surface in [Ni(dmdt)2] to
elucidate the mechanism of this anomalous temperature de-
pendence of the spin fluctuations. We calculate the spin
susceptibility, Knight shift, and 1/T1T using the random
phase approximation (RPA) in a three-orbital Hubbard model
describing [Ni(dmdt)2], which is obtained using ab initio
many-body perturbation theory calculations.

The electronic state of a molecular conductor is described
by the molecular orbitals, which are linear combinations of the
atomic orbitals in a molecule. The molecular orbital that has
the highest energy and is fully occupied by electrons is called
the highest-occupied molecular orbital (HOMO), whereas the
one having the lowest energy with no electrons is called the
lowest-unoccupied molecular orbital (LUMO). HOMO and

LUMO are also called frontier orbitals. The electronic states
of single-component molecular conductors, e.g., [M(tmdt)2]
(M = Ni, Au, Cu) and [M(dmdt)2] (M = Pt, Ni), are de-
scribed by multiple molecular orbitals localized in a part of
the molecule [53,54,61–63]. These molecular orbitals are the
energy eigenstates obtained using first-principles calculations
and are called “fragment orbitals.” The fragment orbitals are
transformed into HOMO and LUMO by a high-symmetry
unitary transform.

Based on the band parameters determined from first-
principle calculations, Seo et al. constructed a Hubbard model
of [M(tmdt)2](M=Ni, Au, Cu), which is described by the
fragment orbitals [61,62]. The on-site repulsion acts between
the same fragment orbitals that have spins of opposite signs,
which is similar to the case of the present study. They investi-
gated the ordered state by calculating the electron density and
spin density using mean-field approximation. By contrast, in
this study, we will investigate the spin fluctuations by calculat-
ing the spin susceptibility on the basis of RPA. Furthermore,
we show that the idea of the fragment orbitals is important for
the physical properties of the Dirac nodal line systems in the
single-component molecular conductor. As the other previous
studies of the fragment orbitals, some charge-transfer com-
plexes such as (TTM-TTP)I3 are also modeled by fragment
orbitals [63,64].

We find that the q = 0 spin fluctuations are enhanced in
two out of the three fragment orbitals, while an enhance-
ment at an incommensurate wave number vector develops
in the third orbital. Detailed analysis showed that these q =
0 spin fluctuations do not correspond to simple ferromag-
netic fluctuations; rather, they are linked to intramolecular
antiferromagnetic fluctuations. This implies that the spins of
the fragment orbitals within the same molecule are inversely
correlated. Further, q = 0 implies a direct correlation of the
spins between molecules. Using RPA, we determined that the
1/T1T starts to increase at a low temperature by the q = 0 spin
fluctuations. By contrast, the Knight shift does not increase
upon cooling because of the intramolecular antiferromagnetic
fluctuations.

At high temperature, incommensurate spin fluctuations
dominate the temperature dependence of 1/T1T . These mag-
netic responses are associated with the geometry of the Fermi
surface and the characteristic wave functions of the n-orbital
(n � 3) Dirac nodal line system. Thus, it is expected that other
Dirac nodal line systems described by multiple-orbital models
may have similar magnetic properties.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the spin susceptibility based on RPA
and formulate 1/T1T and the Knight shift. In Sec. III, we
calculate the band structure, spin susceptibility, Knight shift,
1/T1T , and so on in the absence of interaction. In Sec. IV,
we calculate the Stoner factor, Knight shift, and 1/T1T in the
presence of interaction by applying RPA to a Hubbard model.
Section V draws conclusions.

II. FORMULATION

We calculate the spin susceptibility, which incorporates the
electron correlation effect within perturbation theory to inves-
tigate the enhancement of spin fluctuations in [Ni(dmdt)2].
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FIG. 2. Schematic of a Ni(dmdt)2 molecule and the fragment
orbitals A, B, and C. The red, blue, brown, and cyan balls represent
Ni, S, C, and H atoms, respectively. The red dots in orbitals A, B,
and C indicate the location of the Ni atom as a guide to the eye.
(a) Side view of the molecule. The black solid line represents the
Ni(dmdt)2 molecule. (b) Vertical-axis view of the molecule. The red
dashed circles indicate C atoms, which are replaced with 13C in the
13C-NMR experiment [60]. These figures are plotted by VESTA.
Different colors represent different signs of the wave functions. The
cut-off of the normalized wave functions is 0.01.

Furthermore, we calculate the Knight shift and the spin-lattice
relaxation rate 1/T1T , which are the physical quantities ob-
served using NMR. We apply RPA to the Hubbard model to
calculate the spin susceptibility in [Ni(dmdt)2]. Although cal-
culations incorporating the self-energy, e.g., FLEX, are better
approximations than RPA, RPA is more suitable for investigat-
ing spin fluctuations because the self-energy suppresses spin
susceptibility.

The Hubbard Hamiltonian that we employ is given by

H =
∑

〈i,α; j,β〉,σ
ti,α; j,βc†

i,α,σ c j,β,σ +
∑
i,α

Uαni,α,↑ni,α,↓, (1)

where i and j are the unit-cell indices and σ is the spin index.
Here, ti,α; j,β is a transfer integral defined between the orbital
α in the unit cell i and the orbital β in the cell j, and Uα

represents the on-site repulsive interaction on the orbital α,
with α and β standing for one of the three fragment orbitals
in the unit cell (A, B, and C in Fig. 2). The indices α and
β represent the three fragment orbitals A, B, and C.

∑
〈··· 〉

represents a summation that runs only for the hoppings that
have a larger energy scale than the cutoff (set to be 0.010 eV
in this study).

The electronic states of [Ni(dmdt)2] near the Fermi energy
EF are described by three fragment-decomposed Wannier

TABLE I. Transfer integrals and site potential of [Ni(dmdt)2].

Transfer integrals (eV)

t1 −0.2372
t2 −0.1840
t3 −0.2080
t4 0.0302
t5 0.0326
t6 −0.0389
t7 0.0103
t8 −0.0144
t9 −0.0140
t10 −0.0541
t11 −0.0534
t12 0.0116

Site potential (eV)

� 0.0429

orbitals (fragment orbitals) dubbed orbitals A, B, and C as
illustrated in Fig. 2. They are obtained using Wannier fitting
to three isolated energy bands near EF , which were previously
obtained using first-principles calculations [54].

The Wannier fitting and first-principles calculations were
performed using the programs RESPACK [65] and QUANTUM

ESPRESSO [66], respectively [54]. RESPACK was also used for
calculating the Coulomb interaction and other factors. Further,
QUANTUM ESPRESSO was used for first-principles calcula-
tions based on the pseudopotential method. Figures 2(a) and
2(b) show a side and vertical-axis view, respectively, of the
molecule. Orbital B in Fig. 2(a) may look like a d orbital, but
is a p orbital of the S atoms, as is evident from Fig. 2(b). The d
orbital of Ni is localized near the Ni atom, and its contribution
to the orbital B is small. Orbitals A and C have p-orbital-like
shapes and are equivalent because of space-inversion symme-
try. In the present study, we assume that these three fragment
orbitals sit in the same molecule and in the same unit cell.

By performing a Fourier transform, the Hamiltonian
[Eq. (1)] is rewritten as

H =
∑

k,α,β,σ

H0
αβ,σ (k)c†

k,α,σ c,k,β,σ

+ 1

NL

∑
k,k′,q,α

Uααc†
k+q,α,↑c†

k′−q,α,↓ck′,α,↓ck,α,↑, (2)

where k, k′, and q are the wave-number vectors. NL is the
number of the unit cells in the system. The first term cor-
responds to the unperturbed Hamiltonian, and the second
term is treated as a perturbed Hamiltonian. Here, H0

αβ,σ (k) is
defined as

H0
αβ,σ (k) =

∑
〈δ〉

tαβ,σ,δe
ik·δ, (3)

where δ is a lattice vector connecting the neighbor unit cell.
Further, tαβ,σ,δ is the transfer integral between the fragment
orbitals α and β, which are separated by the lattice vector
δ and have the spin σ . We allot tαβ,σ,δ to the transfer inte-
grals t1, t2, . . . , t12 and the site potential � in Table I, where
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FIG. 3. Hopping networks between fragment orbitals in tight-
binding model of [Ni(dmdt)2]. (a) Schematic illustration of the 2D
network of the transfer integrals (shown by double-headed arrows)
in the crystalline bc-plane. The dashed square stands for the unit
cell. (b) Schematic illustration of the 3D hopping network including
the transfer integrals along the a-direction. The black chain lines
and vertical bold lines in (b) are guides to the eyes: The first lines
are parallel to the a-direction, while the second lines connect the
molecules in the same bc-plane.

� ≡ tBB,σ,0 − tAA,σ,0. Note that these transfer integrals were
obtained from the Wannier fitting. In additions, we omit the
small hoppings whose sizes are less than a cutoff energy of
0.010 eV to make the analysis simple (see Fig. 3 for the
schematic illustration of such a hopping network). Note that
t1 connects the nearest-neighbor fragment orbitals within a
molecule, while t2, t3,..., t8 connect those between molecules
in the crystalline b–c plane, which corresponds to the kb–kc

plane in momentum space, where the Dirac cones exist. We
point out that t1, t2, and t3 are the three essential transfer
integrals that are needed to create the Dirac cones, while t9
creates Fermi surfaces, and t10, t11, and t12 wind the Dirac
nodal lines. Previously, we calculated some quantities of
[M(dmdt)2] (M = Pt, Ni) considering the spin-orbit interac-
tion (SOI) as a parameter. There, we found that the SOI can
reduce the Fermi surface in the bulk and induce helical edge
modes [53,54]. However, because the energy scale of SOI in
this material (∼0.0016 eV) seems to be considerably smaller
than the energy scale of the Fermi surface (∼0.01 eV) [54], in
reality SOI should not be large enough to significantly reduce
the size of the Fermi surface. Therefore, we will omit the
influence of SOI on the Knight shift and 1/T1T .

From the definition in Eq. (3), H0
αβ,σ (k) are expressed by

the following equations:

H0
AA,σ (k) = 2t9 cos ka,

H0
AB,σ (k) = t12ei(−ka+kb+kc ) + t1

+ t5ei(kb+kc ) + t4eikc ,

H0
AC,σ (k) = t10ei(−ka+kb+kc ) + t11ei(ka+kc ) + t6

+ t3eikc + t2ei(kb+kc ),

H0
BB,σ (k) = � + 2t7 cos (kb + kc) + 2t8 cos kc,

H0
BC,σ (k) = t12ei(−ka+kb+kc ) + t1

+ t5ei(kb+kc ) + t4eikc ,

H0
CC,σ (k) = 2t9 cos ka. (4)

Here, for simplicity, we set all the lattice constants to be unity.
Two of the three bands for which we performed Wannier fit-
ting are occupied [53]. Thus, the tight-binding model obtained
using the Wannier fitting is also 2/3 filling. The unperturbed
Hamiltonian Ĥ0

σ (k) satisfies the eigenvalue equation

Ĥ0
σ (k) |k, n, σ 〉 = En,σ (k) |k, n, σ 〉 , (5)

|k, n, σ 〉 =
⎛
⎝ dA,n,σ (k)

dB,n,σ (k)
dC,n,σ (k),

⎞
⎠, (6)

where En,σ (k) is the eigenvalue and |k, n, σ 〉 is the eigen-
vector; n is the band index; and dα,n,σ (k) denotes the wave
functions. Ĥ0

σ (k) in Eq. (5) consists of the matrix elements
H0

αβ,σ (k) in Eqs. (2) and (4). Reflecting the 2/3-filling, the
chemical potential μ is determined by

1

NL

∑
k,n,σ

fk,n,σ = 4, (7)

εk,n,σ (k) ≡ En,σ (k) − μ, (8)

fk,n,σ = 1/[1 + exp (εk,n,σ /T )] is the Fermi distribution func-
tion, and we have μ = EF at T = 0.

As to the second term in the Hamiltonian Eq. (2), we
introduce the on-site repulsive interaction Uαα defined on the
fragment orbital α, which is defined as the diagonal element
of the interaction matrix as follows:

Û =
⎛
⎝UAA 0 0

0 UBB 0
0 0 UCC

⎞
⎠

=
⎛
⎝λU 0 0

0 U 0
0 0 λU

⎞
⎠. (9)

Here, because of the inversion symmetry, we have UAA = UCC ,
and we use the relative size of UAA to UBB, λ = UAA/UBB,
as a control parameter of this model. According to RESPACK,
we found U = 6.72 eV and λ = 0.79 in the unscreened case,
and U = 2.68 eV and λ = 0.95 in the screened case. In this
study, we set λ = 0.95 and use a value of U less than 2.68 eV
because Û tends to be overestimated in RPA.

205145-4



FRAGMENT-ORBITAL-DEPENDENT SPIN FLUCTUATIONS … PHYSICAL REVIEW B 105, 205145 (2022)

The longitudinal and transverse spin susceptibilities are
defined as follows [67] :

χ̂ zz(q, iωl ) ≡ 1

2

∫ 1/T

0
dτeiωl τ

〈
Tτ Ŝz

q(τ )Ŝz
−q(0)

〉
, (10)

Ŝz
q = 1

NL

∑
k

(
ĉ†

k+q,↑ĉk,↑ − ĉ†
k+q,↓ĉk,↓

)
, (11)

χ̂±(q, iωl ) ≡
∫ 1/T

0
dτeiωl τ

〈
Tτ Ŝ+

q (τ )Ŝ−
−q(0)

〉
, (12)

Ŝ+
q = 1

NL

∑
k

ĉ†
k,↑ĉk+q,↓, (13)

Ŝ−
−q = 1

NL

∑
k

ĉ†
k+q,↓ĉk,↑. (14)

Here, iωl = 2ilπT (l ∈ N) is the Matsubara frequency and τ

is the imaginary time. Ŝzz
q , Ŝ+

q , and Ŝ−
q are the spin operators.

Ŝzz
q (τ ), Ŝ+

q (τ ), and Ŝ−
q (τ ) are described in the Heisenberg pic-

ture. The spin susceptibility is the proportionality coefficient
of the magnetization to the infinitesimal magnetic field. It
represents the degree of the “spin fluctuations” because spins
in the system sensitively respond to the infinitesimal magnetic
field when spin susceptibility is large.

By performing a perturbation expansion of Eqs. (10) and
(12), we obtain the noninteracting longitudinal spin sus-
ceptibility χ̂ zz,0(q, iωl ) and noninteracting transverse spin
susceptibility χ̂±,0(q, iωl ) as the zeroth-order perturbation
terms. In this study, SU(2) symmetry is protected. Therefore,
we define χ̂ zz,0(q, iωl ) = χ̂±,0(q, iωl ) ≡ χ̂0(q, iωl ). Its ma-
trix elements are written as

χ0
αβ (q, iωl ) = − T

NL

∑
k,m

G0
αβ (k + q, iω̃m + iωl )G

0
βα (k, iω̃m),

(15)

G0
αβ,σ (k, iω̃l ) =

∑
n

dα,n,σ (k)d∗
β,n,σ (k)

1

iω̃l − εk,n,σ

. (16)

Equation (16) expresses the matrix elements of the noninter-
acting Green’s function. iω̃l = (2l + 1)iπT is the Matsubara
frequency of the fermions. The spin index σ is omitted in
Eq. (15) because we have εk,n,↑ = εk,n,↓ in Eq. (16). The
longitudinal and transverse spin susceptibilities in RPA are
represented by the Feynman diagrams shown in Fig. 4. The
first terms in the right-hand sides of Figs. 4(a) and 4(b) cor-
respond to the terms χ̂ zz,0(q, iωl ) = χ̂±,0(q, iωl )= χ̂0(q, iωl )
[Eq. (15)]. Because the interacting longitudinal and transverse
spin susceptibilities are represented by summations of the
series of Û χ̂0(q, iωl ) in RPA, they are written as

χ̂ zz,s(q, iωl ) = χ̂±,s(q, iωl ) ≡ χ̂ s(q, iωl )

= χ̂0(q, iωl )[Î − Û χ̂0(q, iωl )]
−1, (17)

where Î is the unit matrix.
Here we introduce the Stoner factor ξs(q) representing

the degree of enhancement of the spin fluctuations. The
Stoner factor ξs(q) is defined as the maximum eigenvalue of
Û χ̂0(q, 0). The relation between ξs(q) and χ̂ s(q, 0) in the

FIG. 4. (a) Feynman diagram of χ̂ zz,s(q, iωl ). (b) Feynman di-
agram of χ̂±,s(q, iωl ). The solid lines represent the noninteracting
Green’s functions, which describe the quasiparticles. The dashed
lines represent the interactions. The open circles are the vertexes
connecting the noninteracting Green’s functions and the interaction.
The black dots represent the spin operators.

three-orbital model is given by

χ̂ s(q, 0) = 1

[1 − ξs(q)]

χ̂0(q, 0)P̂(q)

[1 − φ1(q)][1 − φ2(q)]
, (18)

where ξs(q), φ1(q), and φ2(q) are the maximum and other
eigenvalues of Û χ̂0(q, 0). P̂(q) is the adjugate matrix of
Î − Û χ̂0(q, 0). The eigenvalues of Û χ̂0(q, 0) are smaller than
1 in the paramagnetic regime. When ξs(q) → 1, the spin
susceptibility χ̂ s(q, 0) diverges and induces a magnetic order,
corresponding to the wave number q.

Within the framework of linear response theory, the Knight
shift, K , and the spin-lattice relaxation rate, (1/T1T ), for the
orbital α are given by

Kα ∝
∑

β

Re
[
χ zz

αβ (0, 0)
]
, (19)

(1/T1T )α ∝ lim
ω→+0

[
1

NL

∑
q

Imχ±
αα (q, ω)

ω

]
. (20)

Here, note that Eq. (17) is satisfied. According to Eqs. (18)
and (20), all the q components for which ξs(q) becomes close
to unity make a dominant contribution to 1/T1T because they
lead to a large value in the spin susceptibility. By contrast, the
Knight shift is solely affected by the q = 0 component that
satisfies ξs(q) ∼ 1 [see Eq. (19)].

Because the spin susceptibility in the real-frequency repre-
sentation χ̂ s(q, ω) is necessary for 1/T1T , we obtain χ̂ s(q, ω)
by performing an analytic continuation of Eqs. (17). In this
way, we use the real-frequency representation depending on
the physical quantities.
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FIG. 5. (a) Energy dispersion of [Ni(dmdt)2] in the kb–kc plane,
where ka = −π/2. Dirac cones exist between each pair of bands.
Those between bands 1 and 2 draw the Dirac nodal line. (b) Fermi
surface in the first Brillouin zone. The electron and hole pockets are
drawn in magenta and green, respectively. The inset shows the Dirac
nodal line in the first Brillouin zone. (c) Schematic of the relationship
among the Dirac nodal line, Fermi surface, and wave number ka. The
red curved line shows the Dirac nodal line. The dotted transverse line
shows EF .

III. RESULT IN THE ABSENCE OF U

In this section, we calculate the electronic state, spin sus-
ceptibility, Knight shift, and 1/T1T in the absence of the
repulsive interaction U . Further, we find that the spin sus-
ceptibility in [Ni(dmdt)2] greatly depends on the fragment
orbitals and will explain the relationship between the spin
susceptibilities and the wave functions.

A. Electronic state and spin susceptibility in the absence of U

We first calculate the energy dispersion of [Ni(dmdt)2] by
diagonalizing the unperturbed Hamiltonian Ĥ0

σ (k) in Eq. (5).
The resulting energy bands are depicted in Fig. 5(a), where
the dispersion seen in the kb–kc plane at ka = −π/2 is shown.
Inside the two-dimensional (2D) first Brillouin zone, two pairs
of gapless Dirac cones appear between the first and second
top bands near EF [the Band 1 and 2 in Fig. 5(a), where EF

is chosen as the energy origin] and between the second and

FIG. 6. The local density of state Dα (ω) for the fragment orbital
α = A, B, and C in the unit cell of [Ni(dmdt)2]. The red dotted and
blue dashed lines show DA(ω)[=DC (ω)] and DB(ω), respectively.
The black solid line shows the total density of states Dtot (ω) =
DA(ω) + DB(ω) + DC (ω). The integral value of Dtot (ω) over ω is
equal to 6 due to the three orbitals and the spins. Its unit is the number
of electrons.

third bands rather beneath EF (the Bands 2 and 3), where
these band-crossing points are protected by space-inversion
symmetry.

Dirac points between bands 1 and 2 in the kb–kc plane
draw the Dirac nodal lines in the ka direction. The inset of
Fig. 5(b) shows the Dirac nodal line in the first Brillouin
zone. Upon changing the momentum along the ka direction,
the positions of the Dirac points near EF move in the kb–kc

plane and eventually form a pair of so-called Dirac nodal lines
in the three-dimensional (3D) Brillouin zone [see the inset
of Fig. 5(b)]. The band-crossing points accordingly move up
and down across EF with changing the value of ka as illus-
trated in Fig. 5(c), which generates electron and hole pockets
around these nodal lines [see Fig. 5(b), where the electron
and hole pockets are illustrated as thin magenta and green
strips, respectively]. Figure 5(b) shows the Fermi surface in
[Ni(dmdt)2]. The energy scale of such Fermi pockets is ap-
proximately 0.010 eV.

The corresponding density of states (DOS), Dtot (ω), was
also calculated, which is given by a sum of a fragment-orbital
dependent DOS, Dα (ω) [α=A(=C) and B], that is given by

Dα (ω) = − 1

πNL

∑
k,σ

ImGR,0
αα,σ (k, ω), (21)

GR,0
αβ,σ (k, ω) =

∑
n

dα,n,σ (k)d∗
β,n,σ (k)

1

ω − εk,n,σ + iη
.

(22)

Here, ĜR,0(k, ω) is the noninteracting retarded Green’s func-
tion, where η = +0. The resulting Dtot (ω) and Dα (ω) are
depicted in Fig. 6. Note that the DOS has linear ω dependence
near EF (corresponding to ω = 0 in Fig. 6) because the energy
dispersion of this system near EF is close to that of a two-
dimensional Dirac electron system, and the three-dimensional
effect is only an addition of a small dispersion along a ka

direction. The finite DOS at EF in this material is ascribed
to the presence of the Fermi pockets induced by that ka-axis
dispersion.
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FIG. 7. Wave function of orbital B in band 2, |dB,2,σ (k)|2, in the
kb–kc plane, where ka = −π/2. The up arrows indicate the corre-
sponding positions of the Dirac points formed between the Bands 1
and 2 in Fig. 5(a), while the down arrows indicate those between the
Bands 2 and 3. The color bar represents the magnitude of |dB,2,σ (k)|2.

Before moving to the analysis of the spin susceptibil-
ity, further comments are needed on the fragment-orbital-
dependent characters of this system. Figure 7 shows the
momentum dependence of the squared wave function for the
orbital B projected onto the second top band [Band 2 in
Fig. 5(a)], |dB,2,σ (k)|2, plotted as a function of kb and kc

at ka = −π/2. Notably, the line segments that connect the
positions of these Dirac points (illustrated with black lines in
Fig. 7) have a vanishing amplitude, |dB,2,σ (k)|2 = 0, which
we call the “zero region” (ZR) in this paper. By contrast, the
wave functions of the orbitals A and C do not have such ZR.
The presence of a similar ZR was previously found in other
n-band (n � 3) Dirac electron systems, such as the organic
conductors α-(BEDT-TTF)2I3 (n = 4) [30].

Second, we calculate the noninteracting spin susceptibility
χ̂0(q, ω) to elucidate spin fluctuations, which can be en-
hanced in this material. Figures 8(a), 8(b), 8(c), and 8(d) show
the diagonal elements of the noninteracting spin susceptibil-
ity χ0

AA(q, 0), χ0
BB(q, 0), Im[χ0

AA(q, ω0)], and Im[χ0
BB(q, ω0)],

respectively, at T = 0.003 eV. These quantities slightly in-
crease with raising temperature for any q = 0 values, while
the magnitude relation χ0

AA(q ∼ 0, 0) < χ0
BB(q ∼ Q, 0) and

Im[χ0
AA(q ∼ 0, ω0)] > Im[χ0

BB(q ∼ Q, ω0)] do not change
with temperature. Here, χ0

αα (q, 0) is a real number. We set
ω0 = 0.001 eV because the imaginary part of the spin sus-
ceptibility at the infinitesimal frequency is essential to solve
Eq. (20). One of qa, qb, and qc must be fixed to show the spin
susceptibilities in the three-dimensional figures. We fix qa = 0
in Figs. 8(a) and 8(c) and qa = 0.2π in Figs. 8(b) and 8(d)
because χ0

AA(q, 0) and χ0
BB(q, 0) have the maximum value

at the commensurate wave number q = 0 and the incom-
mensurate wave number q = Q = (0.20π, 0.73π, 0.58π ) at
T = 0.003 eV, respectively. We define Q as the wave num-
ber at which χ0

BB(q, 0) has the maximum value. Further, Q
varies slightly with temperature. χ0

CC (q, ω) is equivalent to
χ0

AA(q, ω) owing to space-inversion symmetry. In Figs. 8(a)
and 8(c), χ0

AA(q, 0) and Im[χ0
AA(q, ω0)] have their maxi-

mum value at q = 0. In Figs. 8(b) and 8(d), χ0
BB(q, 0) and

Im[χ0
BB(q, ω0)] have their maximum value at q = Q. In addi-

tion, Im[χ0
BB(q, ω0)] has some peaks other than that at q = Q.

The difference between χ0
AA(q, 0) and χ0

BB(q, 0) implies
that [Ni(dmdt)2] has two candidates for magnetic order that

FIG. 8. The momentum dependencies of the diagonal elements
of the spin susceptibility in the absence of U . (a) χ 0

AA(q, 0) in the
qb–qc plane, where qa = 0. (b) χ 0

BB(q, 0) in the qb–qc plane, where
qa = 0.2π . (c) Im[χ 0

AA(q, ω0)] in the qb–qc plane, where qa = 0.
(d) Im[χ 0

BB(q, ω0)] in the qb–qc plane, where qa = 0.2π . The tem-
perature T = 0.003 eV.

can be induced in the bulk. They are the q = 0 magnetic
order and SDW. To explain the mechanism of the fragment-
orbital-dependent spin susceptibility, we calculate the spectral
weights on the Fermi surface. The spectral weight is given by

ρα (k, ω) = − 1

π
ImGR,0

αα (k, ω). (23)

The spin index σ is omitted in Eq. (23), and k = (ka, kb, kc) is
the wave number. Equation (23) with ω = 0 yields the spectral
weight at EF . The spectral weight shows the weights of the
respective fragment orbitals for the energy ω and the wave
number k because GR,0

αα (k, ω) in Eq. (23) contains the absolute
square of the wave function |dα,n(k)|2. Furthermore, the re-
lationship 1

NL

∑
k ρα (k, ω) = Dα (ω) is satisfied. Figures 9(a)

and 9(b) show the spectral weight on the cross-section where
the Fermi surface in Fig. 5(b) is cut on the ka = π plane,
which corresponds to the hole pocket. We set ka = π because

FIG. 9. (a) Spectral weight ρA(k, 0). It is not zero on the Fermi
surface. (b) Spectral weight ρB(k, 0). A part of it is zero because
of a ZR. In the both figures, ka = π , −0.65π < kb < −0.50π , and
0.20π < kc < 0.30π . Color bars represent the magnitude of the
spectral weight ρα (π, kb, kc, 0). The yellow region indicates that the
spectral weight at EF is high.
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FIG. 10. Nesting vector Q in the momentum space. Q connects
the regions where the spectral weight of orbital B is high (in the right
figure). Color bars represent the magnitude of the spectral weight
ρB(π, kb, kc, 0). The electron and hole pockets are drawn in magenta
and green, respectively (in the left figure).

the hole pockets are important for χ0
BB(q, 0), as we discuss

below. Figures 9(a) and 9(b), respectively, show ρA(k, 0) and
ρB(k, 0) in the kb–kc plane. In both figures, −0.65π < kb <

−0.50π and 0.20π < kc < 0.30π . The spectral weight of
A is not zero on the Fermi surface, but that of B has the
appearance of a crescent moon because of a ZR. This
difference in spectral weights results in the fragment-orbital-
dependent spin susceptibilities.

After performing summation over iωm in Eq. (15), the
noninteracting spin susceptibility is written as

χ0
α,β (q, iωl ) = − 1

NL

∑
k,m,n

fk+q,m − fk,n

εk+q,m − εk,n − iωl

× dα,m(k + q)d∗
β,m(k + q)dβ,n(k)d∗

α,n(k),
(24)

where the spin index σ is omitted. The terms in which the
denominator is close to 0 and the numerator is close to 1 in
Eq. (24) contribute to χ0

αβ (q, 0). Such terms are given by the
wave number k + q and k near the Fermi surface. Thus, the
vector q connecting the Fermi surface is important for the
spin susceptibility. This wave number is called the nesting
vector. q = Q in Fig. 8 corresponds to the nesting vector Q
in Fig. 10. q = Q connects the regions where the spectral
weight of orbital B is high on the hole pockets. Q is the
wave number at which χ0

BB(q, 0) has the maximum value. The
nesting between the electron pockets is relatively weaker than
that between the hole pockets. Note that we solved Eq. (15)
using a fast Fourier transform, instead of solving Eq. (24).

Next, we calculate the temperature dependence of the
matrix elements of χ̂0(0, 0) using Eq. (15) because it
is essential to the following calculations. They are real
numbers because q = 0 and ω = 0. χ0

AA(0, 0) = χ0
CC (0, 0),

χ0
AB(0, 0) = χ0

BA(0, 0) = χ0
BC (0, 0) = χ0

CB(0, 0), and
χ0

AC (0, 0) = χ0
CA(0, 0) are satisfied owing to space-inversion

symmetry and time-reversal symmetry. Figure 11 shows
the temperature dependence of the matrix elements of
χ̂0(0, 0). The diagonal element χ0

AA(0, 0) is almost constant.
Furthermore, χ0

BB(0, 0) decreases slowly with decreasing
temperature. However, the off-diagonal elements χ0

AB(0, 0)

FIG. 11. Temperature dependence of χ 0
αβ (0, 0). The red dashed,

blue solid, green dotted, and purple chain lines represent χ0
AA(0, 0),

χ 0
BB(0, 0), χ 0

AB(0, 0), and χ 0
AC (0, 0), respectively. The inset shows the

band-dependent spin susceptibilities χ 0
AB,12(0, 0) and χ 0

AC,12(0, 0) by
the green dotted and purple chain lines, respectively.

and χ0
AC (0, 0) are negative and decrease as the temperature

decreases. To show what determines the sign of χ0
AB(0, 0) and

χ0
AC (0, 0), we define the band-dependent spin susceptibility

as

χ0
αβ,mn(q, iωl ) = − T

NL

∑
k,l ′

G0
αβ,m(k+q, iω̃l ′+iωl )G

0
βα,n(k, iω̃l ′),

(25)

G0
αβ,m,σ (k, iω̃l ) = dα,m,σ (k)d∗

β,m,σ (k)
1

iω̃l − εk,m,σ

, (26)

where m and n are the band indices. Equation (25) satisfies∑
m,n χ0

αβ,mn(q, iωl )= χ0
αβ (q, iωl ), where χ0

αβ (q, iωl ) is given
by Eq. (15). The inset of Fig. 11 shows the temperature depen-
dence of χ0

AB,12(0, 0) and χ0
AC,12(0, 0). They are negative. Such

terms render the off-diagonal elements of spin susceptibility,
χ0

AB(0, 0) and χ0
AC (0, 0), negative.

B. Knight shift and 1/T1T in the absence of U

We calculate the Knight shift in the absence of U using
Eq. (19). The fragment orbital components of the Knight shift
can be given by KA = χ0

AA(0, 0) + χ0
AB(0, 0) + χ0

AC (0, 0) and
KB = χ0

BB(0, 0) + 2χ0
AB(0, 0) using the spin susceptibilities

in Fig. 11 due to the space-inversion symmetry. Figure 12
shows the Knight shift for the fragment orbitals A(=C) and
B in the absence of U . T = T ∗ ∼ 0.01 eV is the energy scale
where the Fermi surface affects the Knight shift and 1/T1T .
T ∗ ∼ 0.01 eV is consistent with the energy scale of the Fermi
surface. For temperatures higher than T ∗, the Knight shift and
1/T1T are affected by the linear energy dispersion. The Knight
shift of the Dirac electron system in the absence of the in-
teraction is given by Kα 
 ∫ ∞

−∞ Dα (ω)(− df (ω)
dω

)dω [67]. f (ω)
is the Fermi distribution function for the energy ω. Because
Dα (ω) ∝ ω near the Femi energy in Fig. 6, Kα is proportional
to T for T � T ∗ in Fig. 12. In the two-dimensional Dirac
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FIG. 12. Temperature dependence of Kα in the absence of U . The
red dotted and blue dashed lines show KA and KB, respectively. The
black solid line shows the total Knight shift Ktotal = KA + KB + KC .
The dotted longitudinal line indicates T = T ∗ ∼ 0.01 eV. The green
thin line which is proportional to T is drawn for the eye guide.

electron system, the Knight shift is proportional to T at low
temperature and becomes zero at T = 0 because DOS is zero
at EF . However, Kα in this material is not proportional to T for
T � T ∗ because Dα (0) �= 0 in Fig. 6. This is the effect of the
Fermi surface. The magnitude relationship KB > KA results
from DB(ω) > DA(ω) near the Fermi energy. Next, we calcu-
late the spin-lattice relaxation rate 1/T1T in the absence of U
using Eq. (20). 1/T1T is determined by

∑
q Im[χ0

αα (q, ω0)].
Im[χ0

AA(q, ω0)] and Im[χ0
BB(q, ω0)] are shown in Fig. 8.

Figure 13 shows the temperature dependence of 1/T1T in the
absence of U . (1/T1T )α is proportional to T 2 for T � T ∗
in Fig. 12 because the 1/T1T of the Dirac electron system
is given by (1/T1T )α 
 ∫ ∞

−∞[Dα (ω)]2(− df (ω)
dω

)dω [67]. For
T � T ∗, (1/T1T )α is not proportional to T 2 because of the
Fermi surface.

FIG. 13. Temperature dependence of (1/T1T )α in the absence
of U . The red solid and blue dotted lines show (1/T1T )A and
(1/T1T )B, respectively. The dashed longitudinal line indicates T =
T ∗ ∼ 0.01 eV. The green thin line which is proportional to T 2 is
drawn for the eye guide.

FIG. 14. Temperature dependence of the Stoner factors ξs(0) and
ξs(Q). The red solid and blue dotted lines show ξs(0) and ξs(Q),
respectively.

IV. RESULT IN THE PRESENCE OF U

In this section, we calculate spin fluctuations, the Knight
shift, and 1/T1T in the presence of U . It is shown that electron
correlation effects are important for explaining the observed
temperature dependence of the Knight shift and 1/T1T re-
ported by 13C-NMR experiments [60]. According to Eq. (18),
the Stoner factor ξs(q) that has a value close to unity gives
major contributions to the spin susceptibility and therefore to
the Knight shift and 1/T1T . Namely, ξs(q = 0) ≈ 1 becomes
predominant for the Knight shift [Eq. (19)], whereas ξs(q =
Q) ≈ 1 contributes for 1/T1T [Eq. (20)].

A. Spin fluctuations

We calculate the temperature dependence of the Stoner
factor ξs(q) because ξs(q) is an important measurement of
spin fluctuations as discussed in Sec. II. Figure 14 shows
the temperature dependence of ξs(q), where U = 0.802 and
λ = 0.95. λ = 0.95 was obtained in the calculation of the
screened Coulomb interaction using RESPACK. In the case
of λ = 0.95, ξs(0) is maximum in the momentum space and
increases as T decreases. The combination of λ = 0.95 and
U = 0.802 yields ξs(0) = 0.999 at T = 0.003 eV. On the
other hand, ξs(Q) decreases slowly with decreasing T and
is less than ξs(0). Q is the wave number at which χ0

BB(q, 0)
has the maximum value. χ s

BB(q, 0) also has the maximum
value at q = Q. The magnitude relationship ξs(0) > ξs(Q)
implies that the q = 0 magnetic order is easier to induce than
SDW at q = Q. At a low temperature of T � 0.003eV, it is
difficult for ξs(q) to converge in the numerical calculation
because enormous Matsubara frequencies and wave numbers
are required.

We explain why ξs(0) increases at low temperature. In
fact, ξs(q) is not directly determined by the DOS because the
maximum eigenvalue of Û χ̂0(q, 0) contains the products of
the χ0

αβ (q, 0). It means that the electron correlation effect is
important. We calculate the first- and second-order perturba-
tion terms in in Figs. 4(a) and 4(b). In this study, Figs. 4(a)
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FIG. 15. First- and second-order perturbation terms of χ s
AA(0, 0)

shown by the brown solid and magenta dotted lines, respectively. The
horizontal axis represents the temperature.

and 4(b) are equivalent. Their matrix elements χ s,1st
αβ (q, iωl )

and χ s,2nd
αβ (q, iωl ) are written as

χ s,1st
αβ (q, iωl ) =

∑
γ

χ0
αγ (q, iωl )Uγ γ χ0

γ β (q, iωl ), (27)

χ s,2nd
αβ (q, iωl ) =

∑
γ ,γ ′

χ0
αγ (q, iωl )Uγ γ χ0

γ γ ′ (q, iωl )

×Uγ ′γ ′χ0
γ ′β (q, iωl ). (28)

They are the first- and second-order perturbation terms in RPA
and correspond to the second and third terms in Figs. 4(a)
and 4(b), respectively. Figure 15 shows the temperature de-
pendence of χ s,1st

AA (0, 0) and χ s,2nd
AA (0, 0). They increase as

T decreases. Note that the zero-order perturbation term is
identical to the red dashed line in Fig. 11. Since the off-
diagonal elements of χ̂0(0, 0) are negative and decrease as
T decreases in Fig. 11, their absolute squares increase as
T decreases. Thus, terms such as χ0

AB(0, 0)UBBχ0
BA(0, 0) in

Eq. (27) and χ0
AC (0, 0)UCCχ0

CC (0, 0)UCCχ0
CA(0, 0) in Eq. (28)

increase χ s,1st
AA (0, 0) and χ s,2nd

AA (0, 0) at low temperature. The
other higher-order perturbation terms behave similarly. There-
fore, ξs(0) increases as T decreases.

Fragment orbitals A and C are sensitive to ξs(0). On
the other hand, fragment orbital B is insensitive to ξs(0)
but sensitive to ξs(Q). We calculate the matrix elements
of χ̂ s(0, 0) and χ̂ s(Q, 0) to exhibit this phenomenon us-
ing Eqs. (15) and (17). Figure 16(a) shows the temper-
ature dependence of χ s

AA(0, 0), χ s
BB(0, 0), χ s

AB(0, 0), and
χ s

AC (0, 0). They are real numbers because q = 0 and ω = 0.
χ s

AA(0, 0) = χ s
CC (0, 0), χ s

AB(0, 0) = χ s
BA(0, 0) = χ s

BC (0, 0) =
χ s

CB(0, 0), and χ s
AC (0, 0) = χ s

CA(0, 0) are satisfied because of
space-inversion symmetry and time-reversal symmetry. The
inset shows an enlarged view of the region around χ s

BB(0, 0)
and χ s

AB(0, 0). χ s
BB(0, 0) and χ s

AB(0, 0) are difficult to increase
at low temperature, whereas χ s

AA(0, 0) sharply increases.
Moreover, χ s

AC (0, 0) is negative and sharply decreases as T
decreases. ξs(0) easily affects fragment orbitals A and C
but not fragment orbital B. The situation of χ s

AC (0, 0) < 0

FIG. 16. (a) Temperature dependence of χ s
AA(0, 0), χ s

BB(0, 0),
χ s

AB(0, 0), and χ s
AC (0, 0) shown by the red dashed, blue solid,

green dotted, and purple chain lines, respectively. The inset shows
an enlarged view of the region around χ s

BB(0, 0) and χ s
AB(0, 0).

(b) Temperature dependence of Re[χ s
AA(Q, 0)], Re[χ s

BB(Q, 0)],
Re[χ s

AB(Q, 0)], and Re[χ s
AC (Q, 0)]. The combination of matrix ele-

ments and lines is the same as in (a).

in Fig. 16(a) implies intramolecular antiferromagnetic fluc-
tuations. The negative off-diagonal elements of the spin
susceptibility are due to the characteristic wave function of
the Dirac nodal line system.

Figure 16(b) shows the temperature dependence
of Re[χ s

AA(Q, 0)], Re[χ s
BB(Q, 0)], Re[χ s

AB(Q, 0)], and
Re[χ s

AC (Q, 0)]. Re[χ̂ s(Q, 0)] reflects ξs(Q) and slowly varies
with temperature. At q = Q, Re[χ s

BB(Q, 0)] is the largest of
all matrix elements and increases with temperature. Fragment
orbital B is sensitive to ξs(Q). Because Re[χ s

AB(Q, 0)] < 0
and Re[χ s

AC (Q, 0)] > 0, the spins of the fragment orbitals B
and A(C) within a molecule are inversely correlated.

Figure 17 schematically illustrates the spin polarization
pictures that we obtained from the calculated results in Fig. 16
for the paramagnetic regime. Figure 17(a) corresponds to the
case in Fig. 16(a), where we find intramolecular antiferro-
magnetic spin fluctuations, which are commensurate(q = 0)
between molecules. The solid arrows in Fig. 17(a) represents
a tendency where an infinitesimally small downward local
magnetic field at the orbital C(A) induces an upward spin
polarization at the orbital A(C) by the linear response relation
MA(C) = χ s

AC(CA)HC(A), respectively [M is the magnetization
and H is the infinitesimal magnetic field]. Figure 17(b), which
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FIG. 17. Schematic illustrations of spin polarization. (a) In-
tramolecular antiferromagnetic spin fluctuations linked to the q = 0
response shown in Fig. 16(a). (b) Spin correlations within a molecule
given by the q = Q response in Fig. 16(b).

is derived from Fig. 16(b), stand for the spin fluctuations
within a molecule that are incommensurate (q = Q) between
molecules. In this case, the spins at the orbitals A(=C) and B
tend to be inversely correlated within a molecule.

Next, we show the diagonal elements of the spin suscep-
tibilities χ s

αα (q, ω) at T = 0.003 eV. Figures 18(a), 18(b),
18(c), and 18(d) show χ s

AA(q, 0), χ s
BB(q, 0), Im[χ s

AA(q, ω0)],
and Im[χ s

BB(q, ω0)] in the qb-qc plane, respectively. χ s
αα (q, 0)

is a real number. We fix qa = 0 in Figs. 18(a) and 18(c)
and qa = 0.2π in Figs. 18(b) and 18(d). Furthermore, ω0 is
equal to 0.001 eV. Re[χ s

AA(q, 0)] and Im[χ s
AA(q, ω0)] have

very large values at q = 0 because ξs(0) = 0.999. However,
the BB component is difficult to be affected by ξs(0) but
easily affected by ξs(Q). Q is the wave number at which
χ0

BB(q, 0) and χ s
BB(q, 0) have the maximum values. χ s

AA(0, 0)
and Im[χ s

AA(0, ω0)] are much larger than χ s
BB(Q, 0) and

Im[χ s
BB(Q, ω0)] because ξs(0) > ξs(Q) and the spin suscep-

tibility obtained using RPA is determined by 1/(1 − ξs(q)).
χ s

AA(0, 0) and Im[χ s
AA(0, ω0)] in Figs. 18(a) and 18(c) de-

crease with temperature. On the other hand, χ s
BB(Q, 0) and

Im[χ s
BB(Q, ω0)] in Figs. 18(b) and 18(d) slowly increase and

FIG. 18. The momentum dependencies of the diagonal elements
of the spin susceptibility in the presence of U (a) χ s

AA(q, 0) in the
qb–qc plane, where qa = 0. (b) χ s

BB(q, 0) in the qb–qc plane, where
qa = 0.2π . (c) Im[χ s

AA(q, ω0)] in the qb–qc plane, where qa = 0.
(d) Im[χ s

BB(q, ω0)] in the qb–qc plane, where qa = 0.2π . The tem-
perature T = 0.003 eV.

FIG. 19. Temperature dependence of the Knight shift Kα for U =
0.802 and λ = 0.95. The red dashed and blue dotted lines show KA

and KB, respectively. The black solid line shows the total Knight shift
Ktot = KA + KB + KC .

the peaks become broad with temperature. These behavior
result from the temperature dependence of ξs(q) in Fig. 14.

B. Knight shift and 1/T1T in the presence of U

In this subsection, we solve Eqs. (19) and (20) to inves-
tigate the effects of the fluctuations on the Knight shift and
1/T1T .

Figure 19 shows the temperature dependence of the Knight
shift, where U = 0.802 and λ = 0.95. KB in the presence of U
is larger than that in the absence of U . However, KA and KC in
the presence of U are smaller than those in the absence of U .
In the case of U = 0.802 and λ = 0.95, KA and KC are nega-
tive, while KB and Ktot(= KA + KB + KC ) are positive. Similar
behavior was previously observed in the organic conductor
α-(BEDT-TTF)2I3 [30].

KA and KC do not increase at low temperature, although
the Stoner factor ξs(0) is almost 1 at T = 0.003 eV. The
behavior of the Knight shift is understood by considering
the off-diagonal elements of χ̂ s(0, 0). Because χ s

AA(0, 0) and
χ s

AC (0, 0) have opposite signs in Fig. 16(a), their cancellation
prevents the increase of the Knight shift in Eq. (19). In other
words, the q = 0 spin fluctuations are not observed in the
Knight shift because of the intramolecular antiferromagnetic
fluctuations.

Next, we solve Eq. (20). The spin-lattice relaxation rate,
1/T1T , is determined by

∑
q Im[χ s

αα (q, ω0)]. Im[χ s
AA(q, ω0)]

and Im[χ s
BB(q, ω0)] are shown in Fig. 18. Figure 20 shows

the temperature dependence of 1/T1T , where λ = 0.95 and
U = 0.802. At high temperature, 1/T1T values for all orbitals
decrease with decreasing T . However, at low temperature,
the (1/T1T )A starts to increase because orbital A is eas-
ily affected by ξs(0). The behavior of (1/T1T )C is identical
to that of (1/T1T )A because of space-inversion symmetry.
Although (1/T1T )B is difficult to be affected by ξs(0) in
Fig. 20, ξs(0) → 1 makes (1/T1T )B → ∞. This is because
ξs(0) → 1 makes 1/[1 − ξs(0)] → ∞ and RPA imposes the
factor 1/[1 − ξs(0)] on the spin susceptibility [Eq. (18)]. For
T � 0.005 eV, (1/T1T )B is more dominant than (1/T1T )A and
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FIG. 20. Temperature dependence of (1/T1T )α for U = 0.802
and λ = 0.95. The red solid and blue dotted lines show (1/T1T )A

and (1/T1T )B, respectively.

(1/T1T )C because ξs(Q) slowly increases with T and orbital
B is easier to be affected by ξs(Q). Q is the wave number at
which χ0

BB(q, 0) and χ s
BB(q, 0) have the maximum values.

In the case of a small λ, such as λ = 0.79, ξs(Q) is larger
than ξs(0), and SDW can be induced. However, the incom-
mensurate spin fluctuations in this material are suppressed at
low temperature in Fig. 14. Similar behavior occurs in the case
of a small λ. If U is sufficiently large, ξs(Q) reaches 1 at low
temperature. However, the magnetic transition to the SDW
phase would have already been induced at a high temperature.
Thus, it is difficult to explain the upturn of the 1/T1T curve
near 30 K, which is observed in the 13C-NMR experiment,
by the incommensurate spin fluctuations. We calculate λ us-
ing the RESPACK program. Because λ = 0.79 is obtained as
the ratio of diagonal elements with the unscreened on-site
Coulomb interaction while λ = 0.95 is obtained as that with
the screened on-site Coulomb interaction, we consider that
λ = 0.95 is the more realistic ratio.

In this subsection, we showed that the Knight shift does
not increase at low temperature because of the intramolec-
ular antiferromagnetic fluctuations. We also showed that the
(1/T1T )A and (1/T1T )C start to increase at low tempera-
ture because of the behavior of ξs(0). They are dominant
in T � 0.005 eV, whereas (1/T1T )B is dominant in T �
0.005 eV because of the temperature dependence of ξs(Q)
and fragment-orbital-dependence of spin susceptibilities.
Figure 21 summarizes the fragment-orbital dependence of
the Fermi surface, noninteracting spin susceptibilities, Stoner
factors, and 1/T1T . Figure 21 shows the important factors for
orbitals A and B. ξs(0) is the main contributor to orbital A and
causes the upturn of the (1/T1T )A curve at low temperature.
However, the contribution of ξs(0) to orbital B is small. Or-
bital B is sensitive to ξs(Q), which dominantly contributes to
(1/T1T )B at high temperature, but does not contribute to or-
bital A as much. These fragment-orbital-dependent magnetic
properties are caused by the presence of ZR because ZR biases
ρB(k, 0) in Eq. (23) to a part of the Fermi surface.

FIG. 21. Correspondence table between the fragment orbitals,
shape of the Fermi surface, momenta at which the noninteracting
spin susceptibilities have peaks, Stoner factors, and 1/T1T .

V. CONCLUSION

In this study, we found that multiple fragment orbitals play
important roles in the magnetic properties of [Ni(dmdt)2]. On
orbitals A and C, which are unevenly distributed toward one
side of a molecule, the q = 0 spin fluctuations are enhanced,
whereas the incommensurate spin fluctuations are enhanced
on orbital B, which is centered on the Ni atom. Because
of the q = 0 spin fluctuations, the A and C components
of 1/T1T start to increase as T decreases at low tempera-
ture. However, the q = 0 spin fluctuations do not affect the
Knight shift because they are incommensurate antiferromag-
netic fluctuations. The reason why the q = 0 spin fluctuations
are enhanced is understood from the perturbation process
and the off-diagonal elements of the noninteracting spin sus-
ceptibility. The incommensurate spin fluctuations dominantly
contribute to the B component of 1/T1T at high temperature.
These fragment-orbital-dependent quantities result from the
presence of ZR. If no ZR exists in the Brillouin zone, the
BB components of the spin susceptibilities do not have the
maximum value at the incommensurate wave number be-
cause the spectral weight of fragment orbital B at EF may
be similar to those of A and C. Because ZR biases ρB(k, 0)
in Eq. (23) to a part of the Fermi surface, the BB com-
ponent of the spin susceptibility has a maximum value at
the incommensurate wave number q = Q. Thus, the wave
number dependence of the spin susceptibilities is different
between the BB component and AA(CC) component. ZR is
a characteristic of materials with a Dirac nodal line system
described by an n-band model(n � 3). Thus, it is expected
that the fragment-orbital-dependent properties due to ZR will
be found in other Dirac nodal line systems. Moreover, it is
predicted that transition-metal substitution in the Ni(dmdt)2

molecule controls spin fluctuations because it changes λ and
U . In the two-dimensional Dirac electron system under the
charge-neutral condition, the spin fluctuations are weak be-
cause the Fermi surface is identical to the Dirac points. On the
other hand, the spin fluctuations are enhanced in [Ni(dmdt)2]
by the Fermi surface. The Fermi surface arises from transfer
integrals in the nodal line direction. This is the three dimen-
sionality of this material.

In the 13C-NMR experiment, 1/T1T has a peak at T ∼
30 K. The experiment was performed for a sample in which C
atoms were replaced with 13C. Figure 2(b) shows a Ni(dmdt)2
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molecule, and the red dashed circles surround 13C atoms.
Therefore, orbitals A and C mainly contribute to the physical
quantities observed in the 13C-NMR experiment. Thus, our
calculation of 1/T1T is almost consistent with the experiment.
Furthermore, we expect that the B component of 1/T1T can be
observed by experiments using a sample in which 12C atoms
near the Ni atom are substituted by 13C. On the other hand,
the A and C components of the Knight shift obtained in our
calculation are negative, but the Knight shift observed in the
13C-NMR experiment is positive. Therefore, we consider the
following possible electronic states at T � 30 K. The first is
the q = 0 magnetic ordered state, which is the intramolecular
antiferromagnetism is realized at T � 30 K. In this case, it is
considered that the Knight shift observed in the experiment
is attributed to the sum of KA and KB, which is positive. In
the second possible electronic state, U is not so large that KA

is negative. In this case, it is considered that another ordered
state is induced at T � 30 K and that the 1/T1T curve is
upturned by the fluctuations corresponding to the order. Ex-
amples of such orders are bond order and topological order.
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