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Continuous phase transition from a chiral spin state to collinear magnetic order
in a zigzag chain with Kitaev interactions
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Quantum spin systems can break time-reversal symmetry by developing spontaneous magnetization or spin
chirality. However, collinear magnets and chiral spin states are invariant under different symmetries, implying
that the order parameter of one phase vanishes in the other. We show how to construct one-dimensional
anisotropic spin models that exhibit a “Landau-forbidden” continuous phase transition between such states. As
a concrete example, we focus on a zigzag chain with bond-dependent exchange and six-spin interactions. Using
a combination of exact solutions, effective field theories, and numerical simulations, we show that the transition
between the chiral and magnetic phases has an emergent U (1) symmetry. The excitations governing the transition
from the chiral phase can be pictured as mobile defects in a Z2 flux configuration which bind fermionic modes.
We briefly discuss extensions to two dimensions and analogies with deconfined quantum criticality. Our results
suggest new prospects for unconventional phase transitions involving chiral spin states.
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I. INTRODUCTION

The most familiar type of spontaneous symmetry breaking
in quantum spin systems is magnetic long-range order. A
paramount example is the Néel order in the ground state of
the antiferromagnetic Heisenberg model on bipartite lattices
[1]. While magnetic order breaks spin rotation as well as time-
reversal symmetry, chiral spin states (CSSs) [2] epitomize the
possibility of breaking the latter while keeping a vanishing
expectation value for the spin operator. For SU(2)-invariant
systems, the scalar spin chirality 〈Si · (S j × Sk )〉 for three lat-
tice sites defines an order parameter for CSSs. This large class
of states includes, in particular, topologically nontrivial chiral
spin liquids with anyonic excitations [2–10]. For anisotropic
exchange interactions, the generalizations of the scalar spin
chirality are three-spin operators which remain invariant un-
der discrete spin rotations. For instance, the operator Sx

i Sy
j S

z
k ,

invariant under global π rotations about the x, y, and z axes,
appears in models with Kitaev-type interactions [11–15].

Spontaneous chirality and magnetization are not neces-
sarily competing orders, since they coexist in noncoplanar
phases of frustrated magnets [16–18]. On the other hand, the
order parameter of a collinear magnetic phase such as the
Néel state vanishes in a CSS and vice versa. While a CSS
preserves spin-rotation symmetries, a collinear magnetic state
is usually invariant under a combination of time reversal and
spatial or spin rotation that constitutes a broken symmetry in
the CSS. As a result, in the absence of a coexistence region,
the Landau-Ginzburg-Wilson (LGW) paradigm dictates that a
generic phase transition from collinear magnetism to a CSS
should be of first order [19,20].

Continuous phase transitions beyond the LGW paradigm
have been discussed in the context of deconfined quantum

criticality (DQC) [21–24]. The most studied example is the
continuous transition from the Néel state to a valence bond
solid (VBS) on the square lattice [25,26]. Such an exotic
transition can be described by effective field theories with a
rich phenomenology that includes order-parameter fraction-
alization, dualities, and emergent higher symmetries leading
to noncompact gauge fields and deconfined spinons at the
quantum critical point. Unambiguous numerical demonstra-
tions of DQC in lattice models [27,28] have been hindered
by logarithmic corrections to finite-size scaling, which make
it difficult to rule out a weakly first-order transition [29–31].
This challenge has motivated the study of Landau-forbidden
transitions with analogies to DQC in one-dimensional (1D)
models [32–36], for which more controllable analytical and
numerical methods are available. In fact, it has been known
for a while that the same operator that gives rise to Néel order
in the field theory for anisotropic spin-1/2 chains can also
generate spontaneous dimerization [37]. The staggered mag-
netization and dimerization operators can be combined into a
single order parameter, associated with the SO(4) symmetry
of the SU(2)1 Wess-Zumino-Witten conformal field theory
(CFT) at the Heisenberg point [38], and the continuous tran-
sition from the Néel to the dimerized phase in the frustrated
XYZ chain has an emergent U (1) symmetry [32,33].

In this work we extend the set of Landau-forbidden phase
transitions by constructing lattice models which exhibit a
continuous transition from a CSS to a collinear magnetic
phase. We start by unveiling a local mapping of the Hilbert
space on a four-site unit cell that allows us to represent
the chirality and the magnetic order parameters as two
components of the same pseudospin. As the main example of
our construction, we consider a zigzag spin chain with Kitaev
interactions in addition to six-spin interactions that couple
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the chiralities on triangular plaquettes. For a particular choice
of the parameters, our model reduces to the one proposed by
Saket et al. [13] and becomes exactly solvable in terms of
Majorana fermions and a static Z2 gauge field. The six-spin
interaction stabilizes a chiral phase as it lifts the exponential
ground state degeneracy of the model of Ref. [13]. In the
regime of strong intercell Kitaev interactions in the chain
direction, we find a collinear magnetic phase analogous to the
stripe phase of the Kitaev-Heisenberg model on the triangular
lattice [39–43]. Thus, our work also fits in the context of
recent studies of quasi-1D extended Kitaev models aimed at
offering insight into two-dimensional (2D) phases [44–51].
We demonstrate the continuous transition between the CSS
and the collinear magnetic phase using a combination of solv-
able effective Hamiltonians, bosonization of the low-energy
theory, and numerical density matrix renormalization group
(DMRG) simulations [52,53]. We show that the transition has
an emergent U (1) symmetry and is described by a CFT with
central charge c = 1. We also analyze the transition from the
point of view of a U (1) gauge theory with fermionic partons
and discuss analogies with DQC in higher dimensions.

The paper is organized as follows. In Sec. II we present the
pseudospin mapping and apply it to the zigzag chain model. In
Sec. III we focus on the parameter regime in which the model
is exactly solvable by a Majorana fermion representation. In
this case, we obtain a chiral ground state and we classify the
excitations in terms of fermionic modes and chirality domain
walls. Section IV contains our analytical results for the transi-
tion between chiral and magnetic phases. We point out another
exactly solvable limit of the model and use it as starting point
for the effective field theory, uncovering some analogies with
DQC. Our DMRG results which support the prediction of a
c = 1 CFT at criticality are presented in Sec. V. Section VI
serves as an outlook, in which we offer some remarks about
possible connections with 2D models that harbor chiral spin
liquid ground states. Finally, we summarize our findings in
Sec. VII.

II. CHIRALITY PSEUDOSPINS
AND ZIGZAG CHAIN MODEL

In this section we present a pseudospin mapping that
will prove useful in studying chiral phases of spin systems
with bond-dependent anisotropic exchange interactions, as in
quantum compass models [54]. We note in passing that a
remarkable duality between the scalar spin chirality and the
staggered-dimer order parameter has been applied to interpret
the chiral phase of the isotropic two-leg ladder with four-spin
interactions [55–57].

Consider Pauli spin operators σ a
n , with a = x, y, z, de-

fined on four sites, n = 1, . . . , 4, represented as a square in
Fig. 1(a). We choose the diagonal bond between sites n = 2
and n = 3 to divide the square into two triangles, and label the
bonds as x, y, and z so that each triangle contains one bond of
each type. We then define the anisotropic spin chiralities on
the triangles as the three-spin operators

τ x
1 = σ x

2 σ
y
3 σ z

1 , τ x
2 = σ x

3 σ
y
2 σ z

4 . (1)

The spin indices in σ a
i σ b

j σ
c
k obey the mnemonic rule that, in

the triangle formed by sites (i, j, k), site i corresponds to the

FIG. 1. Four-site unit cell and zigzag chain model. (a) The
anisotropic chirality pseudospins on the triangular plaquettes are
defined according to the bond labels x, y, and z as written in Eq. (1).
(b) In the zigzag chain, spins are coupled by Kitaev interactions. In
addition, there is a six-spin interaction that couples the chiralities of
triangles with the same orientation (up-pointing or down-pointing)
on nearest-neighbor unit cells.

vertex opposite to an a bond, site j is opposite to a b bond,
and site k is opposite to a c bond. We define the z components
of the pseudospins as

τ z
1 = σ x

1 , τ z
2 = σ x

2 . (2)

The operators in Eqs. (1) and (2) square to the identity and
obey [τ a

1 , τ b
2 ] = 0, {τ x

1 , τ z
1} = {τ x

2 , τ z
2} = 0. A duality transfor-

mation that exchanges the chiralities with one-spin operators
can be obtained by applying the unitary U = e−iπ (τ y

1 +τ
y
2 )/4,

where τ
y
1 = iτ x

1 τ z
1 = −σ x

2 σ
y
3 σ

y
1 and τ

y
2 = iτ x

2 τ z
2 = σ x

3 σ z
2σ z

4 .
To complete the mapping, we define another pair of Pauli

operators which commute with τ1 and τ2. The first ρ pseu-
dospin is defined by

ρx
1 = σ x

2 σ
y
3 , ρ

y
1 = σ x

1 σ x
2 σ z

3 , ρz
1 = σ x

1 σ x
3 , (3)

and the second one by

ρx
2 = σ x

2 σ
y
4 , ρ

y
2 = σ z

4 , ρz
2 = σ x

2 σ x
4 . (4)

In both cases the x and z components are time-reversal-
invariant two-spin operators, whereas the y components are
time-reversal odd. In contrast, all components of τ1 and τ2 are
time-reversal odd. Note that we do not refer to the three-spin
operator ρ

y
1 as a spin chirality because it is not invariant under

π rotations about the x or y axes.
In order to illustrate the spin-chirality duality, we consider

a spin model defined on a zigzag chain, given by the Hamilto-
nian

H = HK + HQ, (5)

where

HK =
∑

a=x,y,z

Ka

∑
〈i, j〉a

σ a
i σ a

j + K ′
x

∑
〈i, j〉x′

σ x
i σ x

j (6)

contains the bond-dependent Kitaev interactions. Here y and z
bonds couple sites on different legs of the zigzag chain and
x bonds lie in the chain direction. We distinguish between
two types of x bonds. The bonds with Kitaev coupling Kx

lie within a unit cell and are represented by solid red lines in
Fig. 1(b). The x bonds between sites in neighboring unit cells
have coupling K ′

x and are represented by dashed red lines. We
focus on the regime of antiferromagnetic Kitaev couplings,
Ka, K ′

x � 0. The zigzag chain with Kx = K ′
x = Ky = Kz can

be viewed as a strip of the Kitaev model on the triangular
lattice, whose ground state has been controversial [40–43].
Besides the Kitaev interactions, we also add terms coupling
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the chiralities in different unit cells. The six-spin interaction
preserves time-reversal symmetry and can be written in terms
of the pseudospins in Eq. (1) as

HQ = −Q
∑

r

(
τ x

1,rτ
x
1,r+1 + τ x

2,rτ
x
2,r+1

)
, (7)

where τ1,r and τ2,r denote the pseudospins for the unit cell
at position r. This interaction is analogous to the coupling
between the scalar spin chiralities on plaquettes of the square
lattice proposed in Ref. [2]. Physically, this type of multispin
interaction can be associated with orbital currents in chiral
magnets [58,59]. We focus on Q � 0, favoring uniform chi-
rality. The reason for the particular choice of coupling only
triangles with the same orientation, see Fig. 1(b), will become
clear in Sec. IV.

The relevant symmetries of the model are: time-reversal
T : i �→ −i, σn,r �→ −σn,r for n = 1, . . . , 4; a C2 rota-
tion symmetry about the center of a z bond R : σ1,r ↔
σ4,−r, σ2,r ↔ σ3,−r ; and two discrete spin rotation symme-
tries K1 and K2 generated by U1 = ∏

r τ x
1,r and U2 = ∏

r τ x
2,r ,

respectively, which can be understood as π rotations about a
different spin axis for each sublattice [60]. Their combined
action is known as the Klein symmetry because it is iso-
morphic to the Klein group, K = K1 × K2 � Z2 × Z2 [39].
The Klein symmetry is found in the Kitaev model on several
lattices that obey a certain geometrical condition, including
the triangular lattice, but is explicitly broken by more gen-
eral interactions such as Heisenberg exchange. The product
U1U2 = ∏

r

∏4
n=1 σ z

n,r generates the usual global π rotation
about the z spin axis.

In terms of the pseudospins, the Hamiltonian becomes

H =
∑

r

[∑
l=1,2

(
Kxρ

z
l,r + K ′

xρ
z
l,rτ

z
l,rτ

z
l,r+1 − Qτ x

l,rτ
x
l,r+1

)
+ Ky

(
ρx

1,rρ
x
2,r − ρ

y
1,rρ

y
2,rτ

x
1,rτ

x
2,r

)
+Kz

(
ρx

1,rρ
y
2,rτ

x
2,r + ρ

y
2,rρ

x
1,r+1τ

x
1,r+1

)]
. (8)

This Hamiltonian is equivalent to a two-leg ladder with l =
1, 2 playing the role of a leg index. There are two pseudospins
1/2, namely τ and ρ, on each effective site specified by (l, r).
In the following sections we will analyze special limits of
the model to establish the existence of a continuous phase
transition from a CSS in which 〈τ x

l,r〉 	= 0 to a magnetic phase
in which 〈τ z

l,r〉 	= 0.

III. CHIRAL SPIN STATE IN THE EXACTLY
SOLVABLE MODEL

In this section we discuss the exact solution of the model
with K ′

x = 0. In this case, the local operators τ x
l,r commute

with the Hamiltonian in Eq. (8), generating an extensive
number of conserved quantities. For Q > 0, the ground state
has the same eigenvalue for all τ x

l,r , corresponding to a uni-
form spin chirality that spontaneously breaks the T symmetry
and preserves the C2 rotation and Klein symmetries. Setting
τ x

l,r = 1, we obtain the effective Hamiltonian for the remain-

ing pseudospins:

Hρ =
∑

r

[
Kx

∑
l=1,2

ρz
l,r + Ky

(
ρx

1,rρ
x
2,r − ρ

y
1,rρ

y
2,r

)

+Kz
(
ρx

1,r + ρx
1,r+1

)
ρ

y
2,r − 2Q

]
. (9)

The model is now equivalent to a single chain with anisotropic
exchange couplings in the xy plane and an effective field in the
z direction. We apply the Jordan-Wigner transformation:

ρz
l,r = 1 − 2d†

l,rdl,r,

ρ+
1,r = d1,r

∏
l

∏
r′<r

(1 − 2d†
l,r′dl,r′ ), (10)

ρ+
2,r = d2,r (1 − 2d†

1,rd1,r )
∏
r′<r

(1 − 2d†
l,r′dl,r′ ),

where dl,r are complex spinless fermions and ρ±
l,r = (ρx

l,r ±
iρy

l,r )/2. The Hamiltonian becomes

Hρ =
∑

r

[
−2Kx

∑
l=1,2

d†
l,rdl,r + 2Ky(d†

1,rd†
2,r + H.c.)

+ iKz(d†
1,r − d1,r )(d†

2,r − d2,r )

− iKz(d†
1,r+1 + d1,r+1)(d†

2,r + d2,r )

]
+ const. (11)

It is then clear that the model admits an exact solution in terms
of free fermions.

The solution for K ′
x = Q = 0 was discussed in Ref. [13]

using a Majorana fermion representation. The key observation
is that in this case the zigzag chain reduces to a tricoordinated
1D lattice, called the tetrahedral chain, and the model can be
solved by the same methods as Kitaev’s honeycomb model
[11]. Using Kitaev’s representation, we write the original
spin operator at site j = (n, r) as σ a

j = iba
jc j , where ba

j and
c j are Majorana fermions subjected to the local constraint
bx

jb
y
jb

z
jc j = 1. The tetrahedral-chain Hamiltonian can be writ-

ten as

H0 = lim
K ′

x→0
HK =

∑
a=x,y,z

Ka

∑
〈 j,l〉a

iua
jl c jcl , (12)

where ua
jl = −iba

jb
a
l are locally conserved Z2 gauge fields

defined on the 〈 j, l〉a bonds, satisfying ua
jl = −ua

l j and
[ua

jl , H0] = [ua
jl , ub

j′l ′ ] = 0. The chirality operators can be
identified with the Z2 fluxes in the triangles:

τ x
1 = ux

13uz
32uy

21, τ x
2 = ux

42uz
23uy

34. (13)

Fixing a gauge with ua
jl = ±1 so that τ x

1,r = τ x
2,r = 1 for

all unit cells, we find that the remaining c-type Majorana
fermions move freely in the background of the static gauge
field. Importantly, the spectrum also contains excitations
which correspond to changing the Z2 flux configuration. Start-
ing from the state with uniform chirality τ x

l,r = 1 ∀l, r, we
refer to an excitation with a single τ x

l,r = −1 as a type-l vortex
of the Z2 gauge field. In the solvable model, type-1 and type-2
vortices are localized in up-pointing and down-pointing trian-
gles, respectively, and they can be created by changing the
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sign of a single ux
jl . Note, however, that physical states must

respect a global fermion parity constraint [61].
For Q = 0, the exactly solvable model suffers from a

ground state degeneracy that grows exponentially with sys-
tem size [13]. The reason is that the energies of the exact
eigenstates only depend on the total Z2 flux in each unit
cell, i.e., on the product τ x

1,rτ
x
2,r , rather than the individual

chiralities τ x
l,r . This degeneracy can be associated with a local

symmetry as follows. For Q = K ′
x = 0, flipping the sign of

both chiralities in unit cell r0 in Eq. (8) only affects the Kz

term that couples d1,r0 to d2,r0 and d2,r0−1 in the quadratic
Hamiltonian Eq. (11). The sign change can be removed by
applying a gauge transformation d1,r0 �→ −d1,r0 . Thus, all
eigenstates with τ x

1,r0
= τ x

2,r0
= −1 have the same energy as

the corresponding eigenstates with τ x
1,r0

= τ x
2,r0

= 1. In the
Kitaev representation, this means that pairs of vortices located
in the same unit cell cost zero energy for Q = 0. The role of
the chirality-chirality coupling that we introduced in Eq. (7)
is therefore to impose an energy cost proportional to Q for
vortex pairs. For Q > 0, there are only two ground states with
uniform chirality τ x

l,r = ±1.
Let us now discuss the excitations in the exactly solvable

model. First, consider the vortex-free sector with uniform
chirality τ x

l,r = 1. Fixing the set of ua
jl in a translationally

invariant ansatz and taking a Fourier transform in Eq. (12),
we cast the Hamiltonian in the form H = i

∑
k>0 C†

kA(k)Ck +
const., where C†

k = (c†
1,k, c†

2,k, c†
3,k, c†

4,k ) is a four-component

spinor in the sublattice basis, with c†
n,k = cn,−k , and A(k) is a

matrix obeying At (k) = −A(−k). The dispersion relations of
the bands can be calculated analytically for arbitrary values of
the Kitaev couplings. The single-fermion energy gap is given

by �c =
√

K2
x + K2

y + K2
z − 2Kz

√
K2

x + K2
y and vanishes for

K2
z = K2

x + K2
y [13]. In the fermionic representation, the gap

closing involves a change in the Z2 topological invariant
ν = sgn{Pf[A(0)]Pf[A(π )]} for class D in one dimension
[62]. The phase for K2

z > K2
x + K2

y corresponds to the non-
trivial value ν = −1. However, in the spin representation
this transition can be associated with local order parame-
ters. According to the Hamiltonian in Eq. (9), the limit of
dominant Kz corresponds to the ρ pseudospins ordering in
the xy plane. Importantly, nonzero expectation values of ρx

l,r

and ρ
y
l,r break spin-rotation symmetries. Since time-reversal

symmetry is already broken by the spontaneous spin chirality,
we obtain 〈σ z

1,r〉 ∼ 〈τ x
1,r〉〈ρx

1,r〉 	= 0. Thus, for K2
z > K2

x + K2
y

we encounter a phase with spontaneous magnetization in the
z spin direction coexisting with the spin chirality. Since this
phase breaks more symmetries than the pure chiral phase for
K2

z < K2
x + K2

y , this is a conventional Ising transition and we
do not discuss it further. Note that the gap for c fermions
closes at the critical point, but vortex excitations remain
gapped across this transition.

We now turn to vortex excitations. In this case we compute
the energies numerically by diagonalizing the Hamiltonian on
a finite chain with open boundary conditions because the lo-
calized vortex breaks translational invariance. The energy of a
single vortex behaves as �v = �(0)

v + 2Q, where �(0)
v denotes

the vortex gap for Q = 0. In particular, for Kx = Ky = Kz we
obtain �(0)

v ≈ 0.29Kx. The vortex gap vanishes if any of the
Kitaev couplings Ka approach zero since the broken bonds

FIG. 2. Two types of chirality domain walls. The signs indicate
the chirality τ x

l,r for each triangle. (a) In the nonintegrable model with
K ′

x � Ka, Q, an intracell domain wall can hop one unit cell to the
right by applying the K ′

x interaction on the x′ bond indicated by the
dashed line. (b) An intercell domain wall moves two unit cells to
the right when the perturbation acts on the two bonds indicated by
the dashed lines.

make the Z2 fluxes ill defined. For Ky = Kz � Kx we find
�(0)

v ≈ K2
y /(2Kx ).

In the pseudospin representation it may be more conve-
nient to picture the elementary excitations in the flux sector
as domain walls between regions of opposite chiralities. We
distinguish between two types of domain walls as illustrated
in Fig. 2. We call an intracell domain wall the situation in
which the two domains are separated by a unit cell r0 with
τ x

1,r0
τ x

2,r0
= −1; see Fig. 2(a). By contrast, in an intercell do-

main wall the chirality switches between two adjacent unit
cells so that τ x

1,rτ
x
2,r = 1 for all unit cells in the vicinity of the

domain wall; see Fig. 2(b). Starting from a ground state with
uniform chirality, we create an intercell domain wall at po-
sition r0 by applying the string operator Vr0 = ∏

r<r0
τ z

1,rτ
z
2,r ,

with energy cost 2Q. An intracell domain wall with energy �v

is created by Vr0τ
z
1,r0

or Vr0τ
z
2,r0

. A Z2 charge for the domain
walls can be defined as the eigenvalue of

∏
r τ x

1,rτ
x
2,r = U1U2;

recall that this is the generator of π rotations about the z
axis. The intracell domain wall is the one which transforms
nontrivially under this Z2 symmetry.

The creation of chirality domain walls affects the fermionic
spectrum. Here we restrict the parameters to the domain Ky =
Kz � Kx. This condition puts the system in the pure chiral
phase with ν = 1. We observe numerically that in the presence
of an intercell domain wall the fermionic spectrum only com-
prises a continuum of extended states, as in the vortex-free
case. On the other hand, the creation of an intracell domain
wall gives rise to a midgap state in which a c fermion is bound
near the unit cell with τ x

1,rτ
x
2,r = −1. The energy of the bound

state is not pinned at zero, but varies with the ratio Ky/Kx as
shown in Fig. 3. In particular, the bound state has zero energy
for Kx = Ky = Kz. We expect the transition from the chiral
phase to a nonchiral magnetic phase to be associated with the
condensation of domain walls which carry the magnetization
degree of freedom in the form of a bound state of a c-type
matter fermion and a b-type flux fermion. This transition will
be discussed in the next section.

IV. TRANSITION TO THE MAGNETIC STATE

For K ′
x > 0 the local chirality operators are no longer

conserved because the operator τ z
l,rτ

z
l,r+1 in Eq. (8) flips the

chirality of two triangles with the same orientation in neigh-
boring unit cells. Nevertheless, the parity of the number of
type-l vortices, encoded in the eigenvalues of Ul = ∏

r τ x
l,r ,

205144-4



CONTINUOUS PHASE TRANSITION FROM A CHIRAL … PHYSICAL REVIEW B 105, 205144 (2022)

FIG. 3. Fermionic spectrum calculated from the Hamiltonian in
Eq. (12) for an open chain containing a single intracell domain wall.
Here we set Kz = Ky. The shaded region represents the continuum
of extended states. The blue line represents the energy of the bound
state.

are still good quantum numbers. Clearly the existence of
two separately conserved parities is associated with the Klein
symmetry. In the regime K ′

x � Ka, Q we can treat the K ′
x term

as a perturbation to the solvable model discussed in Sec. III
and focus on a subspace with a fixed number of vortices or
domain walls. Figure 2 shows the processes that generate an
effective hopping amplitude for the domain walls. While the
intracell domain wall moves at first order in K ′

x, the intercell
domain wall only moves at order (K ′

x )2. As a result, both
types acquire a dispersion, but the intracell domain wall has
a larger bandwidth. We then expect that, as we increase K ′

x in
the regime Q � �(0)

v , the gap for intracell domain walls will
eventually close first, driving a phase transition. Below the
critical value of K ′

x, the mobile domain walls remain gapped
and the system is in a CSS characterized by 〈τ x

l,r〉 	= 0. In
the Kitaev representation, the gauge variables uy

jl and uz
jl still

commute with the Hamiltonian, but ux
jl become fluctuating,

and the chiral phase corresponds to 〈ux
jl〉 	= 0.

To examine the phase transition, let us consider the limit of
highly anisotropic Kitaev interactions. For Ky, Kz → 0, the ρ

pseudospins are fully polarized with ρz
l,r = −1 in the ground

state. This condition imposes strong antiferromagnetic corre-
lations in the x spin direction between two spins on the same
leg and in the same unit cell; see Eqs. (3) and (4). In the regime
Ky, Kz � Kx, we can safely assume that the ρ pseudospins are
gapped out. We derive an effective Hamiltonian in the low-
energy subspace by applying perturbation theory to second
order in Ky and Kz. We obtain

Heff = −
∑

r

∑
l=1,2

(
K ′

xτ
z
l,rτ

z
l,r+1 + Qτ x

l,rτ
x
l,r+1

)

− K⊥
∑

r

τ x
1,rτ

x
2,r + const., (14)

where K⊥ ≈ K2
y /(2Kx ). This Hamiltonian describes a two-

leg ladder with weakly coupled XY chains. Note that the
interchain coupling only involves the x components of the
pseudospins. The interactions τ a

1,rτ
a
2,r with a = y, z are forbid-

den by the Klein symmetry.

(+,+) (−,−)

(−, +)(+,−)

T

K2

T

K2

FIG. 4. Four ground states in the magnetic phase. The up and
down arrows represent the magnetization in the x spin direction. The
symmetries that connect the different states are also indicated.

This analysis reveals that the model with Ky = Kz = 0
and Kx, K ′

x, Q > 0 is also exactly solvable. Setting K⊥ = 0,
we see that the Hamiltonian reduces to two identical and
decoupled XY chains, even though spins on different legs
of the original zigzag chain are coupled by the six-spin in-
teraction. The exact excitation spectrum can be calculated
by performing a Jordan-Wigner transformation. The critical
point occurs at K ′

x = Q. The chirality vanishes continuously
as we approach the critical point from K ′

x < Q. For K ′
x > Q,

the system enters another ordered phase characterized by
〈τ z

l,r〉 	= 0. Since ρz
l,r = −1, this implies 〈σ x

1,r〉 = −〈σ x
3,r〉 	= 0

and 〈σ x
2,r〉 = −〈σ x

4,r〉 	= 0. Thus, we find a collinear magnetic
phase with spontaneous magnetization in the x spin direction.
There are four ground states, labeled by (sgn〈σ x

1,r〉, sgn〈σ x
2,r〉)

and represented in Fig. 4. The magnetic order in the zigzag
chain is analogous to the stripe phase of the antiferromagnetic
Kitaev model on the triangular lattice as obtained in Ref. [43].
The pair of states (+,+) and (−,−) are conjugated by T
symmetry, and likewise for the pair (+,−) and (−,+). The
(+,+) and (−,−) states break the R spatial rotation sym-
metry, but preserve RT . The degeneracy between (+,+) and
(+,−) is protected by the K2 symmetry; both K1 and K2 are
spontaneously broken in this phase. All four ground states are
invariant under the combination of time reversal and global
π rotation about the z spin axis, a symmetry broken in the
CSS. Remarkably, the T symmetry is broken on both sides
of the transition, but restored at criticality. In the magnetic
phase, the elementary excitations are kinks or domain wall in
the staggered magnetization. The magnetization domain walls
are mobile for any Q > 0 and condense when we approach the
phase transition from K ′

x > Q.
We determine the universality class of the transition by

taking the continuum limit in the effective Hamiltonian. Start-
ing from K⊥ = 0, we bosonize the pseudospins in the XY
chains following the standard procedure [63] and then add
the interchain coupling K⊥ as a perturbation. We obtain the
Hamiltonian density

Hbos =
∑

l

[
vκ

2
(∂xθl )

2 + v

2κ
(∂xφl )

2 + λ cos(
√

4πθl )

]

− λ⊥ cos(
√

πθ1) cos(
√

πθ2), (15)
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where the bosonic fields satisfy [φl (x), ∂x′θl ′ (x′)] =
iδll ′δ(x − x′), v is the velocity of the pseudospin excitations,
κ is the Luttinger parameter, and λ, λ⊥ > 0 are the
coupling constants of the relevant operators with scaling
dimensions 1/κ and 1/(2κ ), respectively. In the vicinity of
the transition we have v ∼ K ′

x, λ ∼ K ′
x − Q, λ⊥ ∼ K⊥, and

|κ − 1| ∼ (K⊥/K ′
x )2. The bosonized pseudospin operators

can be written as τ x
l,r ∼ cos(

√
πθl ) and τ z

l,r ∼ sin(
√

πθl ).
For λ⊥ = 0, the bosonic Hamiltonian reduces to two de-

coupled sine-Gordon models. The critical point at λ = 0
contains two massless bosons and is described by a CFT
with central charge c = 2. The continuous symmetry θl �→
θl + const. of the effective field theory at the critical point
can be traced back to the lattice model. For Ky = Kz = 0 and
Q = K ′

x > 0, the operators Yl = ∑
r τ

y
l,r with l = 1, 2 become

conserved charges in the sector with ρz
l,r = −1. Away from

the critical point, the relevant cosine perturbation flows to
strong coupling under the renormalization group. The chiral
phase corresponds to λ < 0, with λ → −∞ at low energies
pinning the θ field at θl = 0 or θl = √

π . For λ > 0, the
flow to λ → ∞ pins the bosonic fields at θl = √

π/2 or θl =
3
√

π/2, corresponding to the magnetic phase. For λ⊥ = 0,
both phases have a fourfold degenerate ground state. The
extra ground state degeneracy of the chiral phase is due to
the decoupling of the chiralities with different l for K⊥ = 0 in
Eq. (14).

When we switch on λ⊥ > 0, the bosonic fields on dif-
ferent legs are coupled by a strongly relevant operator.
According to the c theorem [64], the central charge of the
CFT must decrease. Since the cosine operators commute
with each other, we can proceed with a semiclassical analy-
sis of the effective potential V (θ1, θ2) = λ

∑
l cos(

√
4πθl ) −

λ⊥ cos(
√

πθ1) cos(
√

πθ2). For λ⊥ > 0, the potential only be-
comes flat in the directions θ2 = ±θ1 (mod 2

√
π ) of the

(θ1, θ2) plane when λ = λ⊥/4 > 0, as opposed to a com-
pletely flat potential when λ = λ⊥ = 0. This means that the
interchain coupling leaves out only one gapless boson at the
transition, either θ+ = (θ1 + θ2)/

√
2 or θ− = (θ1 − θ2)/

√
2.

As a consequence, the generic transition for λ⊥ > 0 has cen-
tral charge c = 1, associated with a single emergent U (1)
symmetry. This result is similar to the Néel-VBS transition
in frustrated spin chains [32,33]. At criticality, the correlation
functions for both order parameters decay as power laws with
the same exponent. Note that the transition at a critical value
of λ > 0 enlarges the region occupied by the chiral phase in
comparison with the result for λ⊥ = 0.

We can understand the ground state degeneracy by pin-
ning the bosonic fields in the presence of the λ⊥ interaction.
Assuming that λ⊥ gaps out θ−, we fix θ2 = θ1. In the chi-
ral phase, this condition implies θ1 = θ2 = 0,

√
π ; the two

choices correspond to the ground states with either sign of
〈τ x

1,r〉 = 〈τ x
2,r〉 	= 0. If we assume instead that λ⊥ gaps out

θ+ and fix θ2 = −θ1, we find precisely the same expectation
values for the local physical operators. Thus, the ground state
of the chiral phase is twofold degenerate for λ⊥ > 0. On
the other hand, the choice of gapping out θ+ or θ− affects
the expectation value of the magnetization when we pin the
bosonic fields at θ1 = ±θ2 = √

π/2, 3
√

π/2. In this case,
there are still four possibilities labeled by the signs of 〈τ z

1,r〉

and 〈τ z
2,r〉. Provided that the Hamiltonian preserves the Klein

symmetry, the ground state of the magnetic phase remains
fourfold degenerate. In fact, the effective field theory allows us
to analyze the effects of breaking the Klein symmetry, which
in the bosonic representation acts as Kl : φl �→ −φl , θl �→
−θl . Adding the perturbation λ′

⊥ sin(
√

πθ1) sin(
√

πθ2) to the
Hamiltonian density in Eq. (15), we find that the total potential
still pins θ2 = ±θ1 and leaves out one gapless boson with
c = 1 at the transition. However, the ground state degeneracy
of the magnetic phase is reduced to twofold, as the new inter-
action selects either (+,+) and (−,−) or (+,−) and (−,+),
depending on the sign of λ′

⊥.
In the bosonic Hamiltonian Eq. (15), we dropped the

symmetry-allowed cosine operators such as cos(
√

16πφl ) be-
cause they are highly irrelevant for κ ≈ 1. Vertex operators
of the form exp(im

√
πφl ) with m ∈ Z create or annihilate

domain walls, which in the bosonic theory correspond to kinks
and antikinks in the field configuration, θl (x → ∞) − θl (x →
−∞) = ±√

π . In a semiclassical picture for the chiral phase,
to go from the ground state with θl = 0 to θl = ±√

π , the
bosonic fields have to go through θl = ±√

π/2, which can be
interpreted as the magnetization 〈τ z

l,r〉 ∼ 〈sin(
√

πθl )〉 residing
at the topological defect of the CSS. The same argument can
be used to see how domain walls in the magnetic phase must
carry spin chirality. Near the transition, the processes that
change the number of domain walls in either picture become
irrelevant.

Similar phenomenology is generally found in effective
field theories for DQC [21–24]: topological defects in one
phase nucleate the order parameter of the other phase. If the
order parameters are written in terms of fractionalized excita-
tions, the resulting constraints lead to an emergent gauge field
on which the topological defects are charged. One can then
understand both phases as distinct confined regimes, merging
in a critical region corresponds to a gapless phase in the gauge
theory.

In our model, the domain wall description can be ob-
tained by a refermionization of the bosonic fields, defining the
chiral fermions ψR/L,l ∼ exp[−i

√
π (2φl ∓ θl/2)]. The phys-

ical spin operators are then given by fermion bilinears. In
terms of the two-component spinors �

†
l = (ψ†

L,l , ψ
†
R,l ), we

have τ x
l,r ∼ �

†
l σ x�l and τ z

l,r ∼ �
†
l σ y�l , with σ a the Pauli

matrices acting in the internal space. The effective Hamilto-
nian includes density-density interactions which arise from
the cosine operators as well as quadratic terms in Eq. (15).
The emergent symmetry at the critical point is manifested
as Noether charges of the fermions, preventing pairing terms
from appearing in the Hamiltonian. A mean-field decoupling
of the quartic interactions generates mass terms for the chiral
fermions in the ordered phases. Solitonic configurations in
the mass terms support fermion bound states via the Jackiw-
Rebbi mechanism [65], confirming the previous interpretation
in terms of domain walls. Note that this mechanism applies
to smooth domain walls in the low-energy theory for the
transition, as opposed to the sharp domain walls deep in the
chiral phase discussed in Sec. III. For a smooth domain wall,
a zero-energy bound state is formed even if the phase is
topologically trivial [66].

205144-6



CONTINUOUS PHASE TRANSITION FROM A CHIRAL … PHYSICAL REVIEW B 105, 205144 (2022)

To describe the transition in the fermionic picture, we start
from the assumption of an emergent U (1) × U (1) symmetry,
which can then be gauged. The coupling to a U (1) gauge
field can be obtained by noticing that the representation of
the physical operators has a gauge redundancy, �l (x) �→
eiel �l (x)�l (x), where el play the role of gauge charges. We then
impose a constraint on the fermion densities �

†
l �l ∼ ∂xθl ,

as usual in parton constructions [67]. The resulting gauge-
invariant lagrangian has the form

L =
∑
l=1,2

�̄l iγ
μ(∂μ − ielaμ)�l + 1

4g2
( fμν )2 + · · · , (16)

where we introduced the Maxwell tensor fμν = ∂μaν − ∂νaμ,
the parameter g in the Maxwell term controls the fluctuations
of the gauge field, and we omitted quartic terms associ-
ated with short-range interactions. The terms highlighted in
Eq. (16) comprise the Nf = 2 Schwinger model in 1 + 1 di-
mensions, known to reduce to a single massless boson at low
energies [68–70]. The gauge charges can be chosen arbitrarily
as el = ±1. The relative sign between e1 and e2 selects sym-
metric or antisymmetric modes with respect to exchanging the
leg index, and is analogous to pinning either θ+ or θ− in the
bosonic theory. The critical point corresponds to fine tuning
the quartic interactions so that the bosonic mode remains
gapless, as described by Eq. (15) after we fix θ2 = ±θ1. Once
again we come to the conclusion that the transition between
the chiral and magnetic phases is described by a c = 1 CFT.
At the fixed point, the two chiral sectors of the gapless boson
decouple, and the CFT has an enlarged U (1) × U (1) symme-
try [71].

V. NUMERICAL RESULTS

In this section we present our DMRG results for the phase
transition between the CSS and the collinear magnetic state.
To investigate the phases and the nature of the phase transi-
tion, we consider the zigzag chain with six-spin interactions
described by the Hamiltonian in Eq. (5), equivalent to Eq. (8),
and the two-leg XY ladder defined in Eq. (14). In particular,
we show results for the expectation values 〈τ x,z

l,r 〉, the suscepti-
bility of the ground state energy density, and the entanglement
entropy (EE).

To compute the physical properties of interest, we have
considered open chains with a maximum length of L = 400.
Keeping up to 400 states to represent the truncated DMRG
blocks, we find that the largest truncation error acquired is
smaller than 10−9 at the final sweep. As discussed in Secs. III
and IV, both chiral and magnetic phases exhibit degener-
ate ground states. Thus, to avoid linear combinations of the
ground states in the numerical simulations, we have included
weak and suitable perturbations that couple to the order pa-
rameters at the chain edges and select one ground state for
a given phase. These small local perturbations do not affect
the bulk properties, probed by observables computed near the
middle of the chain.

Let us first focus on the zigzag chain model with six-spin
interactions given by Eq. (5). In Fig. 5 we show the bulk values
for the chiral and magnetic order parameters as a function
of K ′

x for Ka = Q = 1, with a = x, y, z. While the CSS is

Ky = Kz = 1

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Kx

O
P

s

σx
2 σy

3σz
1 bulk

σx
1 bulk

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Ky = Kz = 0.2

Kx

O
P
s

FIG. 5. Anisotropic spin chirality and local magnetization for the
zigzag chain model, see Eqs. (5)–(7), as a function of K ′

x for Kx =
Q = 1 and Ky = Kz = 1. The inset shows the same order parameters
for Ky = Kz = 0.2.

characterized by a finite anisotropic spin chirality, the magnet-
ically ordered phase displays an antiferromagnetic alignment
along the x spin direction (see Fig. 4). Note that there is a
single phase transition at a critical value of K ′

x. We have also
considered the regime Ky = Kz < Kx and found that the chiral
phase becomes narrower as we decrease the ratio Ky/Kx, but
the behavior is qualitatively the same as for Kx = Ky = Kz.
No other transitions are observed as we vary Ky/Kx for fixed
Q = Kx; see the inset in Fig. 5.

To pinpoint the location of the phase transition, we have
analyzed the energy susceptibility, defined as

χe = − ∂2e0

∂K ′2
x

, (17)

where e0 is the ground state energy per site. In d dimensions,
the energy susceptibility diverges at the critical point as a
power law with exponent α = (2/ν) − (d + z), where ν and
z are the correlation and the dynamical critical exponents
[49,72]. In Fig. 6 we show χe as a function of K ′

x for Ka =
Q = 1. Note that χe exhibits a prominent peak, whose position
in the K ′

x domain determines the critical point K ′
x = K ′

x,crit.
For the set of couplings shown in Fig. 6, we obtain K ′

x,crit ≈
0.312. To verify the accuracy of the critical points extracted
from χe, we have also estimated K ′

x,crit from the analysis of
the inflection point of the order parameters and the highest
Schmidt eigenvalue. The latter was proposed in Ref. [49] as
a sensitive measure to detect phase transitions. Altogether we
found excellent agreement among the estimates obtained from
these distinct procedures.

We now turn to the effective Hamiltonian in Eq. (14),
valid in the regime Ky, Kz � Kx. This model describes two
weakly coupled XY chains with interchain coupling along
the x direction. In comparison with the original zigzag chain
in Eq. (5), the dimension of the local Hilbert space in the
effective ladder model is reduced by a factor of 2, providing
a significant advantage for numerical simulations. Since we
observed the same qualitative behavior for the original model
with Kx = Ky = Kz as for small Ky,z/Kx, see Fig. 5, we expect
the effective XY ladder model in Eq. (14) to capture the
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Kx = Ky = Kz = Q = 1

0 0.2 0.4 0.6
0
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χ
e

FIG. 6. Susceptibility of the ground state energy density as a
function of K ′

x for Kx = Ky = Kz = Q = 1. The dashed lines rep-
resent the order parameters shown in the main plot of Fig. 5. The
divergent behavior of χe at K ′

x ≈ 0.312 determines the critical point.

essential characteristics of the phase transition. Carrying out
the same analysis as for the zigzag chain, we again find only
one transition for fixed Q and different values of K ′

x. In agree-
ment with the analysis in Sec. IV, the transition for K⊥ > 0
shifts to larger values of K ′

x as compared to K ′
x = Q in the ex-

actly solvable case K⊥ = 0. Setting Q = 1, we determined the
critical point K⊥ = K⊥,crit for K ′

x = 1.2 and 1.4. The acquired
values are K⊥,crit ≈ 0.187 and 0.49, respectively.

We investigate the universality class of the transition by
extracting the central charge from the EE. Consider a chain
composed of two partitions A and B with � and L − � sites, re-
spectively. The EE is then defined as S(�) = −Tr(ρA ln ρA),
where ρA is the reduced density matrix of partition A. For
critical 1D systems, the asymptotic behavior of S(�) predicted
from CFT is given by [73]

S(�) = c

3η
ln

[
L

π
sin

(
π

L
�

)]
+ b, (18)

where c is the central charge, b is a nonuniversal constant,
and η = 1(2) for periodic (open) chains. In Fig. 7 we show
the EE as a function of � for (K ′

x, K⊥,crit ) = (1.2, 0.187) and
(1.4,0.49). We consider values of � corresponding to partitions
with an even number of rungs in an open chain. Fitting our
DMRG results using Eq. (18), we obtain c ≈ 1.05 and 1.03,
respectively. Considering different fitting intervals and system
sizes, we have checked that our estimates are robust and the
maximum deviation from c = 1 is about 9%. The logarithmic
scaling of the entanglement entropy with the subsystem size
is clear evidence of critical behavior at the transition. More-
over, our results show remarkable agreement with the central
charge predicted in Sec. IV. Finally, we have also investigated
the effects of an explicit Klein-symmetry breaking by adding
the interaction K ′

⊥
∑

r τ z
r,1τ

z
r,2 to the Hamiltonian in Eq. (14).

While the values of the critical couplings shift with the per-
turbation, no further transitions are observed and the central
charge remains the same. Therefore, the Klein symmetry does
not affect the universality class of the transition.

c = 1.03

c = 1.05

(Kx, K⊥)

20 30 40 50 60 70 80 90 100
1.3

1.4

1.5

1.6

1.7

S
(

)

(1.2, 0.187)

(1.4, 0.49)

Fit

FIG. 7. Entanglement entropy as a function of partition size � for
the critical two-leg XY ladder model, see Eq. (14), with (K ′

x, K⊥) =
(1.2, 0.187) and (1.4,0.49). The symbols represent the DMRG results
for chain length L = 200 and open boundary conditions. The solid
red lines are fits to our numerical data using Eq. (18). The estimates
for the central charge are indicated in the plot.

VI. FUTURE DIRECTIONS IN 2D

The local pseudospin mapping of Eqs. (1)–(4) can be used
to fabricate Hamiltonians with six-spin interactions that re-
duce to known spin-1/2 models in two dimensions once we
freeze-out the ρ pseudospins. The phase with long-range order
in τ x would then correspond to a CSS. However, it is unclear if
this approach can lead to deconfined transitions between chi-
ral and magnetic phases in 2D compass models. The existence
of a robust continuous transition between competing ordered
phases is conjectured to be connected to nontrivial symmetry
properties of topological defects [21–24]. Therefore, if the τ

pseudospin is defined envisioning the defects of τ x and τ z or-
dered phases on a given lattice, it may be possible to engineer
a spin Hamiltonian in which gapping out the ρ pseudospin
results in an effective model with a deconfined transition. An
effective field theory description would then be described by
a parton decomposition consistent with the defects [24,32].

A more interesting question is whether a continuous phase
transition from a CSS to a collinear magnetic state or another
ordered phase can be found in models that do not require
six-spin interactions. Like the solvable model discussed in
Sec. III, the Yao-Kivelson model on the star lattice [12] ex-
hibits spontaneous time-reversal-symmetry breaking and two
chiral phases separated by a phase transition at which the
gap for dynamical matter fermions closes. In this case, the
phases are topologically trivial and nontrivial chiral spin liq-
uids distinguished by the Chern number. In the exact solution
using the Kitaev representation, the topological excitations are
vortices of the emergent Z2 gauge field, which bind Majorana
zero modes in the nontrivial phase. One may then wonder if
closing the vortex gap by adding integrability-breaking per-
turbations to the Yao-Kivelson model could drive an uncon-
ventional transition to a magnetic phase. In a parallel devel-
opment, the dynamics of Z2 flux excitations and the relation
to phase transitions in the extended Kitaev honeycomb model
at zero magnetic field has been discussed based on parton
mean-field theories [74,75] and a variational approach [76].
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Moving on to SU(2)-invariant models, the situation be-
comes less clear. Here new dualities involving the scalar spin
chirality [55] may prove instrumental. Numerically, a chiral
spin liquid with spontaneous time-reversal-symmetry break-
ing has been found in the extended Heisenberg model on the
kagome lattice [7,8]. DMRG results on cylinder geometries
suggest that the quantum phase transition from the chiral spin
liquid to the q = (0, 0) Néel state is at least not strongly first
order [8]. The same can be said about transitions out of the
chiral spin liquid phase in the triangular lattice Hubbard model
[77].

VII. CONCLUSIONS

In this work we introduced a Kitaev-type model defined
on the zigzag chain and showed the presence of two phases
separated by a transition. On one side, we have a chiral spin
state stabilized by coupling three-spin chiralities. On the other
side, there is a collinear magnetic state also found in the
natural extension of our model to two dimensions, the Kitaev
model on the triangular lattice [43]. Numerical analysis and
field theory arguments indicate a continuous phase transition,
which would be forbidden by the traditional LGW paradigm
due to the competing nature of the order parameters. Further-

more, a low-energy parton construction suggests an emergent
symmetry along with the condensation of topological defects
(domain walls) in the transition, similar to the phenomenology
found in deconfined quantum criticality in two dimensions.
Our work then provides an example of the recently found
deconfined transitions in one dimension [32,33,36].

Further numerical investigation of this transition is also
warranted. Critical exponents in correlation functions vary
continuously for a c = 1 (Gaussian) transition, and it would
be interesting to see this behavior as one tunes the microscopic
parameters. Moreover, our model may host other phases and
transitions for a different range of parameters. We leave the
complete mapping of the ground state phase diagram and the
study of correlation functions at criticality for future work.
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