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The dynamical correlations of a strongly correlated system are an essential ingredient to describe its nonequi-
librium properties. We present a general method to calculate exactly the dynamical correlations of hard-core
anyons in one-dimensional lattices, valid for any type of confining potential and any temperature. We obtain
exact explicit expressions of the Green’s function, the spectral function, and the out-of-time-ordered correlators
(OTOCs). We find that the anyonic spectral function displays three main singularity lines which can be explained
as a double spectrum in analogy to the Lieb-Liniger gas. The dispersion relations of these lines can be given
explicitly and they cross at a hot point (qm, ωm ), which induces a peak in the momentum distribution function
at qm and a power-law singularity in the local spectral function at ωm. We also find that the anyonic statistics
can induce spatial asymmetry in the Green’s function, its spectrum, and the OTOC. Moreover, the information
spreading characterized by the OTOCs shows light-cone dynamics, asymmetric for general statistics and low
temperatures, but symmetric at infinite temperature. Our results pave the way toward studying the nonequilibrium
dynamics of hard-core anyons and experimentally probing anyonic statistics through spectral functions.
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I. INTRODUCTION

Quantum particles can be classified as either bosons
or fermions by their exchange statistics. However, Abelian
anyons characterized by fractional statistics can also emerge
in certain circumstances [1–4] and play an important role in
modern condensed-matter physics, such as fractional quan-
tum Hall effect [5–7], topological quantum computing [8–11],
and spin liquids [12,13]. Although originally proposed for
two-dimensional systems, the concept of fractional statistics
and anyons has been generalized to arbitrary dimensions
[14,15]. Especially, the physics of Abelian anyons in one
dimension (1D) has recently attracted many theoretical in-
terests [16–32]. The exotic properties of 1D (Abelian) anyon
models include dynamical fermionization [31–34], asymmet-
ric momentum distributions in ground state [25–29,35–38],
anyonic symmetry protected topological phases [37], entan-
glement properties [39], and statistics-induced Mott insulator
to superfluid quantum phase transitions [38,40–42]. Several
experimental schemes have been proposed for realizing any-
onic statistics in ultracold atoms [37,38,43–45] and photonic
systems [46] by engineering occupation-number dependent
hopping using Raman-assisted tunneling or periodic modula-
tion.

A recent surge of interest in the nonequilibrium dynam-
ics of these 1D systems has been boosted by the powerful
platform of cold atom systems [47,48] for simulating and
probing nonequilibrium properties of quantum many-body
systems [49–53]. A paradigmatic model in this realm is
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the lattice hard-core anyons (HCAs) [24,28,54], which con-
tinuously interpolate between the noninteracting spinless
fermions and hard-core bosons. Yet, most of the nonequilib-
rium studies to date have focused on the quench dynamics
of equal-time correlations, such as the density profile and
the momentum distribution [31–34,54,55], which can be ob-
tained directly from the many-body wave function of the
HCAs [24]. Only few studies have been devoted to the un-
derstanding of unequal-time (or dynamical) correlations such
as the Green’s function and the out-of-time-ordered correlator
(OTOC) [56,57].

The knowledge of such dynamical quantities has pivotal
importance in characterizing the dynamical properties of the
quantum system. Specifically, the Green’s function and its
spectral function allow one to compute the signal of angle-
resolved photoemission spectroscopy or momentum-resolved
stimulated Raman spectroscopy, which have been performed
in cold atom platforms [58–61]. The OTOC has emerged as
a diagnostic tool for chaos and information scrambling in
quantum many-body systems [57,62–68]. It has also been
applied to study a variety of many-body phenomena, ranging
from quantum phase transitions [69] to many-body localiza-
tion [70–74]. One method of computing the Green’s function
of HCAs is to express it as a Fredholm determinant [75–77].
However, this method is restricted to uniform systems and
is difficult to extend to an arbitrary confining potential. In a
recent Letter [56], a general method has been developed to
calculate the exact spectral function of 1D hard-core bosons
for any type of confining potential, which makes use of the
many-body wave function. However, it is challenging to ex-
tend it to finite temperatures or HCAs with arbitrary statistical
angle.
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In this work, we present an approach to calculate the
dynamical correlations of HCAs in one-dimensional lattices,
without using the concrete form of the many-body wave func-
tion. Specifically, we provide an efficient method to compute
dynamical correlations by using the basic properties of Gaus-
sian operators and apply it to study the Green’s function,
the spectral function, and the OTOC of 1D HCAs. We find
three main singularity lines in the spectral functions and ob-
tain their dispersion relations by fitting the numerical results.
The three lines cross at a common point (qm, ωm) where the
spectral function reaches its largest value and correspond-
ingly the momentum distribution n(q) of anyons exhibits a
peak at qm while the local spectral function Aj j (ω) shows a
power-law singularity at ωm. We also prove that the anyonic
statistics can induce spatial asymmetry in the Green’s function
and its spectral function. Moreover, we diagnose information
spreading by studying the OTOC, which shows asymmetric
light-cone dynamics at low temperatures. However, as the
temperature increases, the left and right butterfly velocities
come close to each other and reach the same value at infi-
nite temperature. Our results allow direct comparison with
state-of-the-art experiments and provide a route to study the
anyon nonequilibrium dynamics, especially to investigate the
competing role of statistics, strong correlation, and external
confining potential.

This paper is organized as follows. In Sec. II we give
the model Hamiltonian of the hard-core anyons and map it
to a spiness fermion model by a generalized Jordan-Wigner
transformation. In Sec. III we obtain explicit expressions for
the Green’s function, the spectral function, and the OTOCs,
and present results of numerical computations. In Sec. IV we
analyze the symmetries of the dynamical correlation functions
observed in the numerical results. We conclude in Sec. V with
a summary of our main results and some discussions. Some
technical details are included in several Appendixes.

II. MODEL HAMILTONIAN

We focus on the model of HCAs, which satisfy the gener-
alized commutation relations [28]

â j â
†
k + e−iθ sgn( j−k)â†

k â j = δ jk,

â j âk + eiθ sgn( j−k)âk â j = 0, (1)

where θ is the statistical parameter, 0 � θ � π , and the
sign function sgn(x) = −1, 0, or 1 depending on whether
x is negative, zero, or positive, respectively. When j = k,
the commutation relations yield the hard-core constraints
â2

j = â†2
j = 0 and {â j, â†

j} = 1. Particularly, θ = 0 and θ = π

correspond to spinless fermions and hard-core bosons, respec-
tively, whereas for 0 < θ < π these commutations interpolate
continuously between the two limiting cases.

We consider the dynamics of anyons confined in an optical
lattice of L sites, described by a tight-binding Hamiltonian

Ĥ = −J
L−1∑
j=1

(â†
j â j+1 + H.c.) +

L∑
j=1

(Vj − μ)n̂ j, (2)

with a harmonic trap potential Vj = 1
2V 2

0 [ j − (L + 1)/2]2,
where V0 denotes the strength of the trap. However, we stress

that this special form of potential is not necessary since our
formalism developed in paper is valid for any type of confin-
ing potential, even random Vj’s. The chemical potential μ is
included to control the filling factor. Hereafter, we work in
units where hopping parameter J = h̄ = 1. By a generalized
Jordan-Wigner transformation [24,28,32]

â j = e−iθ
∑

l< j ĉ†
l ĉl ĉ j, â†

j = ĉ†
j e

iθ
∑

l< j ĉ†
l ĉl , (3)

where ĉ†
j (ĉ j ) are creation (annihilation) operators for spinless

fermions, the hard-core anyon Hamiltonian can be mapped to
a spinless fermion Hamiltonian

ĤF = −
L−1∑
j=1

(ĉ†
j ĉ j+1 + H.c.) +

L∑
j=1

(Vj − μ)n̂ j, (4)

where n̂ j = ĉ†
j ĉ j = â†

j â j . This Hamiltonian is a bilinear form
of the fermion creation and annihilation operators, which can
be written as ĤF = ∑

lm ĉ†
l Hlmĉm, where H is an L × L ma-

trix, with matrix elements Hlm = −δl,m±1 + (Vl − μ)δlm.

III. DYNAMICAL CORRELATIONS

A. Single-particle Green’s function

Now consider the single-particle Green’s functions in
a thermal state described by the density matrix ρ̂ =
e−βĤ/Tr[e−βĤ ], where β is the inverse temperature, β =
1/(kBT ). We define the lesser and greater Green’s functions
of the hard-core anyons as

G<
jk (t ) ≡ −i〈â†

k â j (t )〉, G>
jk (t ) ≡ −i〈â j (t )â†

k〉, (5)

where 〈Ô〉 ≡ Tr[ρ̂Ô]. For θ = 0 and θ = π , these Green’s
functions reduce to that of spinless fermions and hard-core
bosons, respectively. Other types of nonequilibrium Green’s
functions can be expressed in terms of G≷(t ) and hence it
is sufficient to analyze the properties of these two Green’s
functions.

Employing the basic properties of the Gaussian operators
together with the generalized Jordan-Wigner transformation,
we obtain the following explicit expressions for the Green’s
functions, which constitute one of our main results (see Ap-
pendix B for some details):

iG<
jk (t ) = det[B̃

jk
(t )]{e−itH(1 − B0)[B̃

jk
(t )]−1} jk, (6a)

iG>
jk (t ) = det[B jk (t )]{e−itHB0[B jk (t )]−1P

j
−(t )} jk, (6b)

where 1 denotes the L-dimensional identity matrix, B0 =
[1 + e−βH]−1, P j

±(t ) = eitHe±J( j)
e−itH, and

B jk (t ) = B0 + P
j
−(t )Pk

+(0)(1 − B0),

B̃
jk

(t ) = B0 + Pk
+(0)P j

−(t )(1 − B0).

The matrix J( j) is a diagonal L × L matrix with J
( j)
ll equal

to iθ for l < j and 0 for l � j. The matrix B0 is the static
correlation function of the mapped fermions in the thermal
state, with matrix elements (B0) jk = 〈ĉ j ĉ

†
k〉.

Obviously, when θ = 0, P
j
±(t ) = B jk (t ) = B̃

jk
(t ) = 1,

and hence the above expressions for the Green’s function
reduce to the results of the free spinless fermions. The expres-
sion for the lesser Green’s function in Eq. (6a) also contains
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FIG. 1. Real (top panel) and imaginary (bottom panel) part of
the greater Green’s function G>

jk (t ) in real space-time for θ = π (left
panel) and θ = π/2 (right panel). The system parameters: the tem-
perature T = 0, the potential strength V0 = 0, the chemical potential
μ = −1.4, the chain length L = 129, and the site k is fixed at the
middle, k = 65.

as a limiting case the result for the one-body density matrix
at equal times, ρk j = iG<

jk (t = 0). Most importantly, although
the above expressions are given on a finite lattice, they can
also be used to obtain the Green’s functions of HCAs in
continuous space with discrete single-particle spectrum (see
Appendix D). Remarkably, for the special case of θ = π

(hard-core bosons or Tonks-Girardeau gas) and zero temper-
ature, our result is essentially equivalent to the expressions
given in a recent Letter [56]. However, we stress that Eqs. (6a)
and (6b) are valid for any temperature T , any statistical angle
θ , and any trap potential Vj . The expressions for the lesser and
greater Green’s functions [Eqs. (6a) and (6b)] are especially
suitable for numerical computations since only linear algebra
is needed. Figure 1 shows the numerical results of the greater
Green’s function G>

jk (t ) in real space-time for θ = π, π/2
and fixed k = 65 in a lattice with L = 129. We see that the
propagation of the single-particle excitation exhibits a clear
symmetric light cone for θ = π . However, the propagation is
asymmetric for θ = π/2, as shown in Figs. 1(b) and 1(d). This
spatial asymmetry is a general feature for θ �= 0, π , caused by
the statistics of anyons, and can also exist in other dynamical
correlation functions. A symmetry analysis about the dynam-
ical correlations would be given in Sec. IV. We comment here
that both the real and imaginary parts of the Green’s function
are important in real space. This is because (i) both of them are
necessary in analyzing the spatial symmetry (see Sec. IV) and
(ii) the Green’s function in real space reflects the propagation
amplitude of one-particle excitations and hence both the real
and imaginary parts have physical relevance, in analogy to the
physics of a wave function.

FIG. 2. Logarithm of the spectral function, log10 A(q, ω), of the
hard-core anyons on a lattice in the (q, ω) plane for different sta-
tistical angle θ and chemical potential μ. Here V0 = 0, T = 0, and
L = 128. In (d), violet, red, and blue solid lines mark the excitation
singularities εa(q), εb(q), and εc(q), respectively, while the corre-
sponding dashed lines mark −εa(q), −εb(q), and −εc(q).

B. Spectral function

From the above Green’s functions in real space-time one
can define two spectral functions

A±
jk (ω) = i

2π

∫ ∞

−∞
G≷

jk (t ) eiωt dt . (7)

They are related by A−
jk (ω) = e−βωA+

jk (ω) at finite temper-
ature T = (kBβ )−1. Transforming to momentum space, we
have

A±(q, ω) ≡ 1

L

∑
jk

A±
jk (ω)e−iq( j−k). (8)

In Appendix A we prove that both A±(q, ω) and the local
spectral function A±

j j (ω) are nonnegative real numbers and
hence have probability-density interpretation. For example,
A±(q, ω) correspond to the probability density for a particle
(hole) to be excited (filled) at a given momentum q and energy
ω.

Figure 2 shows the total spectral function A(q, ω) =
A+(q, ω) + A−(q, ω) for various chemical potential μ and
statistical angle θ at T = 0 in a finite lattice with V0 = 0.
The ω � 0 (� 0) part of A(q, ω) comes from the greater
(lesser) Green’s functions. Two special values of μ = 0,−1
are chosen in the numerical plot; however, the features dis-
cussed below are quite general. The spectral function strongly
depends on the statistical angle θ and the chemical potential μ

or, equivalently, the filling factor ν = qF /π , with qF being the
Fermi wave vector of the mapped spinless fermion. There are
three pairs of main singularity lines [see Fig. 2(d)], denoted
as ±εa(q), ±εb(q), and ±εc(q). By fitting the numerical
results for various μ and θ , we find that εa(q) = −2 cos(q +
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νθ ) − μ, εb(q) = −2 cos(q + νθ − 2νπ ) − μ, and εc(q) =
4 sin[(q + νθ − νπ )/2]. When θ = 0, the spectral weight lies
completely on the dispersive curve εa(q) = −2 cos(q) − μ,
as it should be for noninteracting fermions. However, as θ

increases, the string operator eiθ
∑

l< j ĉ†
l ĉl in the anyon creation

operator â†
j may induce two effects: (i) the excitation singular-

ity lines are momentum shifted, q → q + νθ ; (ii) the spectral
weight is transferred from εa(q) to other singularity lines, due
to the particle-hole excitations induced by the string operator.

Physically, we can understand these singularity lines as a
double spectrum, similar to that of an interacting Bose gas
[78]. In detail, the first dispersion line εa(q) could be identified
as the anyonic analog of Lieb-I modes of the Lieb-Liniger
gas, corresponding to a particle with momentum qF promoted
to a generic state with momentum q + νθ . The second line
εb(q) corresponds to a particle with momentum qF promoted
to a state with momentum q + νθ − 2qF . The third line εc(q)
corresponds to a symmetric excitation of a particle from an
occupied state at momentum π/2 − (q + νθ − qF )/2 to a free
one with momentum π/2 + (q + νθ − qF )/2, in analogy to
the hard-core boson in a lattice [56], but without any analog
in the homogeneous case.

The momentum shift q → q + νθ observed above can
be understood qualitatively in a mean-field manner. In the
language of the mapped spinless fermion, the anyon excita-
tion is â†

j = ĉ†
j e

iθ
∑

l< j ĉ†
l ĉl . In mean-field approximation, â†

j ≈
ĉ†

j e
iθν( j−1) and hence â†

q ∼ ĉ†
q+νθ , resulting in a momentum

shift q → q + νθ in the dispersion relations.
When θ = π , the two lines εa(q) and εb(q) have the

same weight since A(q, εa) = A(−q, εb) [see Figs. 2(a) and
2(c)], which is a result of the symmetry property A(q, ω) =
A(−q, ω) and εa(q) = εb(−q) for θ = π . However, we should
note that the Green’s function and hence its spectral func-
tion have no spatial inversion symmetry for θ �= 0, π [see
Figs. 2(b) and 2(d)], although the Hamiltonian is invariant
under the reflection about the middle of the chain. We would
show in Sec. IV that A±(q, ω; θ ) = A±(−q, ω; −θ ), where
the spectral function is labeled with the sign of the statistical
parameter for convenience. Then the spectral function has
spatial inversion symmetry only for θ = 0 (spinless fermions)
and θ = π (hard-core bosons). This asymmetry may provide
us a qualitative approach for detecting anyonic statistics by
using dynamical correlations in ultracold atom systems. Since
anyonic statistics have been proposed to be realizable in ul-
tracold atoms [37,38,43–45] and spectral functions could be
measured in cold atom platforms [58–61], we expect that the
spectral function of anyons is accessible to current state-of-
the-art experiments with ultracold atoms.

A remarkable feature of the spectral function A(q, ω) is
that the three dispersion lines cross each other at a “hot point”
(qm, ωm), as shown in Fig. 2(d), near which the spectral weight
is largest in the whole (q, ω) plane. From the explicit expres-
sions of the three lines we obtain

qm = ν(π − θ ), ωm = 0. (9)

This hot point and its linear dependence on ν and θ may
provide us an exact quantitative experimental signature to
probe anyonic statistics through nonequilibrium dynamics.

FIG. 3. Ground-state momentum distribution n(q) of anyons in
a lattice with L = 256 sites and V0 = 0. (a),(b) The distribution as
a function of q and θ for μ = −1.8 (ν ≈ 0.14) and μ = 0 (ν =
0.5). (c) Cut of (a) for several representative statistical angles θ =
0, π/3, π/2, and π . For θ = π , the distribution n(q) shows power
law behavior: n(q) ∼ q−α1 near the central peak, while n(q) ∼ q−α2

in the high-momentum regime, as shown in (d) with fitted values of
the exponents α1,2.

Since our calculation is exact within the numerical accu-
racy at all energy scales, we can check the sum rules satisfied
by the spectral functions A±(q, ω). Especially, integration
over all frequencies of A−(q, ω) gives the momentum dis-
tribution n(q). Therefore, the hot point should correspond to
a peak in the function n(q) for θ �= 0, which is indeed the
case as shown in Fig. 3. Figures 3(a) and 3(b) show that the
momentum qm indeed is a linear function of θ and is exactly
given by Eq. (9). Figure 3(c) plots n(q) for several represen-
tative statistical angles. We see that n(q) is the well-known
Fermi-Dirac distribution for θ = 0, while for 0 < θ � π it has
a peak at qm. For θ = π , n(q) displays power-law behaviors:
n(q) ∼ q−α1 in the small momentum regime (q → 0) [79] and
n(q) ∼ q−α2 in the “high momentum regime” (i.e., the regime
where q is far from both 0 and π ), as shown in Fig. 3(d). The
fitted exponent α2 ≈ 4, consistent with the universal q−4 tail
in the momentum distribution of the Lieb-Liniger gas [80].
We remark that, to show the high-momentum q−4 tail clearly,
the filling factor should be small enough. In Figs. 3(c) and
3(d) we choose μ = −1.8 to give a relatively low filling factor
ν ≈ 0.14.

Furthermore, the local spectral functions A±
j j (ω) are also

important observables in some experiments such as the scan-
ning tunneling microscopy [81,82]. In our formalism they
are even easier to compute than A±(q, ω) since the basic
equations (6a) and (6b) are written in real space and time.
Figures 4(a) and 4(b) show some examples of Aj j (ω) =
A+

j j (ω) + A−
j j (ω) for various statistical parameters and chem-

ical potentials in a lattice with L = 512. The spectrum shows
singularities for θ �= 0 at five critical frequencies: ω0 =
0, ω±

ab = ±2 − μ, and ω±
c = ±4. This could be understood

from the structure of A(q, ω). The singularity at ω0 = 0 comes
from the hot point (qm, ωm), which is strongest for θ = π

and vanishes for θ = 0. The critical frequencies ω±
ab and ω±

c
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FIG. 4. (a),(b) Local spectral function Aj j (ω) for μ = −1, 0 and
j = 256 in a lattice with L = 512. (c) The power law behavior near
ω0 = 0 for μ = 0: Aj j (ω) ∝ |ω − ω0|−α0 . (d) The fitted exponent α0

as a function of θ for two different chemical potentials, μ = 0 and
μ = −1. Other parameters: the temperature T = 0 and the potential
strength V0 = 0.

correspond to the top and bottom of the dispersion curves
εa,b(q) and εc(q), respectively. At ω0 = 0 and ω±

ab the local
spectral function diverges but at ω±

c there is no divergence.
According to the nonlinear Luttinger liquid theory [83,84], the
divergence near ω0 and ω±

ab should show power law behavior,
Aj j (ω) ∝ |ω − ω j |−α j , j = 0 or ab. We analyze this power-
law behavior in detail for the singularity at ω0 in Figs. 4(c) and
4(d). We see that this exponent increases monotonically with
the statistical parameter θ . When θ = 0, α0 = 0 since there
is no divergence at all. On the other hand, when θ = π , α0

should be equal to the exponent of the singularity near the hot
point, which is 1/2 according to the mobile impurity theory
[83–87]. The numerical results shown in Fig. 4(d) are close,
but not exactly coinciding with the predicted value α0|θ=π =
1/2. This difference is expected because we consider a finite
lattice rather than a homogeneous system and go beyond the
approximations used in the phenomenological theory.

So far we have focused on the zero-temperature properties.
However, Eqs. (6a) and (6b) are valid for any temperature
and let us now discuss the impact of temperature briefly.
Figures 5(a)–5(c) show the spectral function A(q, ω) at finite
temperatures for θ = π/2 and μ = 0. Comparing with the
zero-temperature result shown in Fig. 2(b) we can observe
the main effect of finite temperature: the singularities at the
dispersion lines ±εa,b,c are suppressed and broadened as the
temperature increases. This is because the thermal fluctuations
would destroy the coherence of anyonic excitations. The sup-
pression and broadening effect could also be observed in the
momentum distribution function n(q) as shown in Fig. 5(d).
We can check that this is a general feature for arbitrary sta-
tistical parameter 0 < θ � π and chemical potential μ. The
noninteracting fermion (θ = 0) case is special: the spectral
function does not broaden as the temperature increases, but
the momentum distribution function broadens.

FIG. 5. (a)–(c) Logarithm of the spectral function, log10 A(q, ω),
of the hard-core anyons on a lattice in the (q, ω) plane at finite tem-
peratures T . Here θ = π/2, μ = 0, V0 = 0, and L = 128. (d) The
momentum distribution n(q) of anyons at finite temperatures for
θ = π/2, μ = 0, V0 = 0, and L = 256.

C. Out-of-time-ordered correlator

One advantage of our method is that it can be used to
compute not only the two-point Green’s functions but also
any n-point dynamical correlations. Here we study an im-
portant dynamical quantity, the so-called OTOC, which can
characterize the information spreading in an interacting quan-
tum many-body system and has received tremendous interest
[49,57,88–93]. The information spreading usually occurs in
a spatially symmetric way for conventional fermionic or
bosonic systems with translation invariance. However, this is
not generally the case for anyonic systems, where statistics
can induce asymmetric spreading of quantum information
[57,92].

We define the anyonic OTOC as

Fjk (t ) = 〈â†
j (t )â†

k (0)â j (t )âk (0)〉. (10)

Another main result in this work is the explicit expression for
this OTOC (see Appendix C for some details):

Fjk (t )

= det[C jk (t )]{[e−itHe−J(k)
Q jk (t )P j

+(t )] jk[Q jk (t )eitH]k j

− [e−itHe−J(k)
Q jk (t )eitH] j j[Q

jk (t )P j
+(t )]kk}, (11)

where C jk (t ) ≡ B0 + M jk (t )(1 − B0), Q jk (t ) ≡ (1 −
B0)[C jk (t )]−1, and M jk (t ) ≡ P

j
+(t )eJ

(k)
P

j
−(t )e−J(k)

are
all L × L matrices.

Figures 6(a)–6(c) show numerical results for θ = π/2 and
various temperatures. For free spinless fermions (θ = 0) and
hard-core bosons (θ = π ), the OTOCs map out a symmet-
ric light cone, which can be proved by symmetry analysis.
However, for anyons (θ �= 0, π ) and low temperatures the
information propagation is spatially asymmetric, as shown
in Figs. 6(a) and 6(b). This asymmetry is suppressed as the
temperature increases and vanishes at infinite temperature, as
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FIG. 6. (a)–(c) OTOC growth |Fjk (t )| for statistical angle θ =
π/2 and three different temperatures. Here V0 = 0, μ = 0, L =
129, and k = 65. (d) Left (V l

b ) and right (V r
b ) butterfly velocities’

dependence on the statistical angle θ for three different temperatures:
T = 0, 1, and infinity.

shown in Fig. 6(c). Physically, this is because the asymmetry
varies with the eigenstates of the Hamiltonian and hence at
finite temperatures the thermal fluctuations would average the
OTOC Fjk (t ) among different eigenstates and suppress the
asymmetry. At infinite temperature the asymmetry would be
averaged to zero (see Sec. IV for a proof based on symmetry
analysis). In addition, we comment here that the OTOCs can
be observed using state-of-the-art technologies in the ground
state [57] or at finite temperatures [94], and hence our discus-
sions are experimentally relevant.

To further illustrate the OTOC’s growth for right and left
propagation directions, we plot the butterfly velocities in
Fig. 6(d). We define a butterfly velocity Vb by the boundary
of the space-time region where |Fjk (t )| is suppressed by at
least 1% of its initial value [57]. As shown by the results, the
left information propagation velocity is always larger than the
right one for T = 0 and 0 < θ < π . However, as the tempera-
ture increases, the two velocities come close to each other and
finally converge to the same value at infinite temperature.

IV. SYMMETRY ANALYSIS

We have seen that the Green’s function [Figs. 1(b) and
1(d)], the spectral function [Figs. 2(b) and 2(d)], the mo-
mentum distribution function [Figs. 3(a)–3(c)], and the low
temperature OTOC [Figs. 6(a) and 6(b)] do not have spatial
inversion symmetry for θ �= 0, π , although the Hamiltonian is
invariant under spatial reflection about the middle of the chain.
This is in sharp contrast to the properties of conventional
fermions or bosons. To understand this problem we focus on
the symmetry properties of the mapped free fermion model,
i.e., ĤF given by Eq. (4). We would label physical quantities
with the statistical parameter θ for convenience.

Consider the spatial inversion I under which the site j is
mapped to j′ = L + 1 − j and ĉ j → ĉ j′ , ĉ†

j → ĉ†
j′ . Then it is

straightforward to show that the Green’s functions satisfy

G≷
jk (t ; θ ) = G≷

j′,k′ (t ; −θ ), (12)

G≷(q, t ; θ ) = G≷(−q, t ; −θ ), (13)

with the corresponding spectral functions A±(q, ω; θ ) =
A±(−q, ω; −θ ). Similarly the OTOC satisfies Fjk (t ; θ ) =
Fj′k′ (t ; −θ ). Therefore, the Green’s function, the spectral func-
tion, and the OTOC are asymmetric except for the two special
cases θ = 0 and θ = π .

The Hamiltonian is also invariant under the time-reversal
operator T , which acts by complex conjugating a state or
operator written in the fermionic Fock basis. Using this time-
reversal symmetry we can show that G≷

jk (t ; θ ) = G≷
k j (t ; −θ )

and Fjk (t ; θ ) = Fk j (t ; −θ ). By combining the two operators I
and T , we have

G≷
jk (t ; θ ) = G≷

k′ j′ (t ; θ ), (14)

Fjk (t ; θ ) = Fk′ j′ (t ; θ ). (15)

From the first equation we can conclude that the local Green’s
function G≷

j j (t ) [and the local spectral function A±
j j (ω)] is

symmetric in real space, i.e., G≷
j j (t ) = G≷

j′ j′ (t ). This is in
contrast to the property of anyons with finite interaction [57].

At infinite temperature, additional symmetries of the dy-
namical correlations may arise due to the fact that the density
matrix commutes with all operators. For example, by mak-
ing the particle-hole transformation ĉ j ↔ ĉ†

j , the Hamiltonian

ĤF → const − ĤF , and we can show that

Fjk (t ; θ ) = 1

2L
Tr[â†

j (t )â†
k (0)â j (t )âk (0)] = Fjk (−t ; θ ). (16)

Combining this with Eq. (15) and the complex conjugation
property [Fjk (t ; θ )]∗ = Fk j (−t ; θ ), we have

[Fjk (t ; θ )]∗ = Fk j (−t ; θ ) = Fk j (t ; θ ) = Fj′k′ (t ; θ ). (17)

When k = k′ is fixed at the middle of the chain, the above
equation tells us that |Fjk (t )| is spatially symmetric as a func-
tion of the site j, as shown in Fig. 6(c).

V. CONCLUSIONS AND DISCUSSION

We have analyzed the dynamical properties of HCAs in
one-dimensional lattices by developing a general method
to calculate any n-point dynamical correlation functions of
HCAs. Our method is valid for any temperature, any statis-
tical angle, and any type of trap potentials. We have used
this method to give explicit expressions of the lesser and
greater Green’s functions and the OTOCs. We find three
main singularity lines in the spectral functions and give their
dispersion relations, which can be considered as a double
spectrum. These lines cross at a hot point, which induces a
peak in the momentum distribution function and a power-
law divergence singularity in the local spectral function. The
momentum position of this hot point linearly depends on the
filling factor ν and statistical angle θ , and hence can be taken
as an experimental signature to probe θ . We also show that the
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anyonic statistics can induce spatial asymmetry in the Green’s
function, its spectral function, and OTOC. In addition, the
OTOCs display light-cone dynamics which is asymmetric at
low temperatures but symmetric at infinite temperature.

Our results provide a way to study the dynamics of anyons
in terms of the nonequilibrium Green’s functions and an ex-
act quantitative signature to probe the anyonic statistics. Our
method can be extended to calculate any n-point dynamical
correlation functions and provide useful information for rel-
evant experiments. It is exact at all energy and momentum
scales, and hence can also be used to benchmark other approx-
imate or phenomenological theories, such as the nonlinear
Luttinger liquid theory [83,84]. We hope this study could
motivate future investigations of nonequilibrium dynamical
properties of Abelian anyons in atomic, photonic, and con-
densed matter systems.
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APPENDIX A: ANALYTIC PROPERTIES
OF THE GREEN’S FUNCTIONS

The Green’s functions have the following analytic proper-
ties:

G<
jk (t ) = −i

Z

∑
m,n

〈�n|â j |�m〉〈�m|â†
k |�n〉

×e−βEm e−i(Em−En )t , (A1)

G>
jk (t ) = −i

Z

∑
m,n

〈�n|â j |�m〉〈�m|â†
k |�n〉

×e−βEn e−i(Em−En )t , (A2)

where {|�m〉} are the eigenstates of the many-body Hamilto-
nian Ĥ . Using these analytic properties it is easy to show that

the spectral functions defined by Eq. (7) satisfy the relation
A−

jk (ω) = e−βωA+
jk (ω) and the sum rules

∫ ∞

−∞
A+

jk (ω)dω = 〈â j â
†
k〉,

∫ ∞

−∞
A−

jk (ω)dω = 〈â†
k â j〉. (A3)

Now we prove that both the local spectral functions A±
j j (ω)

in real space and the momentum-space spectral functions
A±(q, ω) are nonnegative real numbers. From the analytic
properties we have

A+
j j (ω) = 1

Z

∑
m,n

〈�n|â j |�m〉〈�m|â†
j |�n〉

×e−βEnδ[ω − (Em − En)]

= 1

Z

∑
m,n

|〈�n|â j |�m〉|2e−βEnδ[ω − (Em − En)].

Obviously [A+
j j (ω)]∗ = A+

j j (ω) � 0. Similarly we can prove
that [A−

j j (ω)]∗ = A−
j j (ω) � 0. On the other hand, the

momentum-space spectral function

A+(q, ω) = 1

Z

∑
m,n

1

L

∑
jk

e−iq( j−k)〈�n|â j |�m〉〈�m|â†
k |�n〉

×e−βEnδ[ω − (Em − En)].

Define operators

ãq ≡ 1√
L

∑
j

e−iq j â j, ã†
q ≡ 1√

L

∑
k

eiqkâ†
k .

Then

A+(q, ω) = 1

Z

∑
m,n

〈�n|ãq|�m〉〈�m|ã†
q|�n〉

×e−βEnδ[ω − (Em − En)]

= 1

Z

∑
m,n

|〈�n|ãq|�m〉|2e−βEnδ[ω − (Em − En)].

Obviously, [A+(q, ω)]∗ = A+(q, ω) � 0. Similarly we can
prove that [A−(q, ω)]∗ = A−(q, ω) � 0.

APPENDIX B: DERIVATION OF THE GREEN’S FUNCTION

We will denote ĉ† = (ĉ†
1, ĉ†

2 . . . , ĉ†
L ) and ĉ = (ĉ1, ĉ2 . . . , ĉL )T . A general bilinear form of the fermion operators can be written

as ĉ†Jĉ, where J is an L × L matrix. The matrix J is usually Hermitian or anti-Hermitian, but this is not necessary in general. A
Gaussian operator is defined as an operator of the form eĉ†Jĉ. Two important properties of such operators are

eĉ†J1 ĉeĉ†J2 ĉ = eĉ†Jĉ, with eJ1 eJ2 = eJ, (B1)

eĉ†Jĉ ĉ e−ĉ†Jĉ = e−Jĉ, eĉ†Jĉ ĉ† e−ĉ†Jĉ = ĉ†eJ. (B2)

Now let us define a series of diagonal L × L matrices J(m), m = 1, 2, . . . , L, whose diagonal matrix elements J(m)
ll equal iθ

for l < m and 0 for l � m:

〈â j (t )â†
k〉 = Tr[eiĤt â je

−iĤt â†
kρ0]

= 1

Z
Tr[eiĤt e−ĉ†J( j) ĉ ĉ je

−iĤt ĉ†
keĉ†J(k) ĉe−βĤ ]

205143-7



QING-WEI WANG PHYSICAL REVIEW B 105, 205143 (2022)

= 1

Z
Tr[ĉ je

−ĉ†J( j) ĉ e−iĤt eĉ†J(k) ĉ ĉ†
ke−βĤ eiĤt ]

= 1

Z

∑
l

(e−J( j)
e−itHeJ

(k)
) jlTr[ĉl ĉ

†
ke−βĤ eiĤt e−ĉ†J( j) ĉ e−iĤt eĉ†J(k) ĉ]

= 1

Z

(
e−J( j)

e−itHeJ
(k) det[1 + e−βHeitHe−J( j)

e−itHeJ
(k)

]

1 + e−βHeitHe−J( j) e−itHeJ(k)

)
jk

.

After some straightforward simplification we can obtain the final result, Eq. (6b). Similarly we can obtain expressions for
〈â†

k â j (t )〉.

APPENDIX C: DERIVATION OF THE OTOC

The OTOC takes the form

Fjk (t ) ≡ 〈â†
j (t )â†

k (0)â j (t )âk (0)〉 = 1

Z
Tr[â†

j (t )â†
k (0)â j (t )âk (0)e−βĤ ]

= 1

Z
Tr[eitĤ ĉ†

j e
ĉ†J( j) ĉe−it Ĥ ĉ†

keĉ†J(k) ĉeitĤ e−ĉ†J( j) ĉ ĉ je
−it Ĥ e−ĉ†J(k) ĉ ĉke−βĤ ]. (C1)

To derive the final result, let us use some notations to simplify the formulas:

M
j
± ≡ e±J( j)

, M̂ j
± ≡ e±ĉ†J( j) ĉ,

Mt
± ≡ e±itH, M̂t

± ≡ e±it ĉ†Hĉ,

M
j,t
±,± ≡ e±J( j)

e±itH, M̂ j,t
±,± ≡ e±ĉ†J( j) ĉe±it ĉ†Hĉ,

M
j,t,k
±,±,± ≡ e±J( j)

e±itHe±J(k)
, M̂ j,t,k

±,±,± ≡ e±ĉ†J( j) ĉe±it ĉ†Hĉe±ĉ†J(k) ĉ,

. . . , . . . .

Obviously these matrices and operators are all unitary. Then

Fjk (t ) = 1

Z
Tr[eitĤ ĉ†

j e
ĉ†J( j) ĉe−it Ĥ ĉ†

keĉ†J(k) ĉeitĤ e−ĉ†J( j) ĉ ĉ je
−it Ĥ e−ĉ†J(k) ĉ ĉke−βĤ ]

= 1

Z
Tr[ĉ†

l (M̂t, j,t
+,+,−)ĉ†

k (M̂k,t, j
+,+,−)ĉ j (M̂

t,k
−,−)ĉke−βĤ ](Mt

+)l j

= 1

Z
Tr[ĉ†

l ĉ†
m(M̂t, j,t,k,t, j

+,+,−,+,+,−)ĉ j (M̂
t,k
−,−)ĉke−βĤ ](Mt, j,t

+,+,−)mk (Mt
+)l j

= 1

Z
Tr[ĉ†

l ĉ†
m(M̂t, j,t,k,t, j

+,+,−,+,+,−)ĉ j (M̂
t,k
−,−)e−βĤ ĉn](Mt, j,t

+,+,−)mk (Mt
+)l j (e

−βH)kn

= 1

Z
Tr[ĉ†

l ĉ†
m(M̂t, j,t,k,t, j,t,k

+,+,−,+,+,−,−,−)e−βĤ ĉr ĉn](Mt, j,t
+,+,−)mk (Mt

+)l j (e
−βH)kn(Mt,k

−,− e−βH) jr

= 1

Z
Tr[(M̂t, j,t,k,t, j,t,k

+,+,−,+,+,−,−,−)e−βĤ ĉr ĉnĉ†
l ĉ†

m](Mt, j,t
+,+,−)mk (Mt

+)l j (e
−βH)kn(Mt,k

−,− e−βH) jr,

where Einstein’s summation rule has been used for indices l, m, r, n. Then using Wick’s theorem we have

1

Z
Tr[(M̂t, j,t,k,t, j,t,k

+,+,−,+,+,−,−,−)e−βĤ ĉr ĉnĉ†
l ĉ†

m]

= det[1 + (Mt, j,t,k,t, j,t,k
+,+,−,+,+,−,−,−)e−βH]

det[1 + e−βH]
[〈ĉr ĉ†

m〉〈ĉnĉ†
l 〉 − 〈ĉr ĉ†

l 〉〈ĉnĉ†
m〉]

= det[1 + Me−βH]

det[1 + e−βH]
{[1 + Me−βH]−1

rm [1 + Me−βH]−1
nl − [1 + Me−βH]−1

rl [1 + Me−βH]−1
nm},

where M ≡ M
t, j,t,k,t, j,t,k
+,+,−,+,+,−,−,−. The final expression Eq. (11) can be obtained after some algebra.

APPENDIX D: FROM LATTICE TO CONTINUOUS SPACE

The formulas for the Green’s function on a lattice can also be used to obtain the Green’s function in continuous space. Suppose
that in continuous space the one-particle eigenfunctions are φn(x) = 〈x|φn〉, n = 1, 2, 3, . . ., with corresponding eigenenergies
εn. In ground state only the lowest N levels are occupied, where N is the particle number. In the above expressions we should
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replace the lattice sites j and k by corresponding spatial coordinates x j and xk . The diagonal matrix J(k) should be replaced by a
function of x in the coordinate representation. We have

B0 =
∑
n>N

|φn〉〈φn|, 1 − B0 =
N∑

n=1

|φn〉〈φn|, (D1)

(eJ
(k)

)(x) = 1 + (eiθ − 1)�(xk − x), (e−J(k)
)(x) = 1 + (e−iθ − 1)�(xk − x), (D2)

where �(x) is the step function. The matrix elements of P j
−(t ) in the energy representation are

〈φm|P j
±(t )|φn〉 = ei(εm−εn )t 〈φm|e±J( j) |φn〉

= ei(εm−εn )t
∫ ∞

−∞
dz φ∗

m(z)φn(z)(e±J( j)
)(z)

= δmn + (e±iθ − 1)ei(εm−εn )t
∫ x j

−∞
dz φ∗

m(z)φn(z)

= e±iθ δmn − (e±iθ − 1)ei(εm−εn )t
∫ ∞

x j

dz φ∗
m(z)φn(z). (D3)

It is convenient to separate the total Hilbert space H into two subspaces, H = Ha
⊕

Hb, where

Ha = span{|φ1〉, . . . , |φN 〉}, Hb = span{|φN+1〉, |φN+2〉, . . .}.
Then any matrix (operator) A can be expressed in a block form,

A =
(
Aaa Aab

Aba Abb

)
.

For example,

B0 =
(

0 0
0 1bb

)
, 1 − B0 =

(
1aa 0
0 0

)
.

Furthermore,

B jk (t ) =
(

[P j
−(t )Pk

+(0)]aa 0
[P j

−(t )Pk
+(0)]ba 1bb

)
, (1 − B0)[B jk (t )]−1 =

(
{[P j

−(t )Pk
+(0)]aa}−1 0
0 0

)
.

Therefore,

det[B jk (t )] = det{[P j
−(t )Pk

+(0)]aa}, (D4)

i.e., the determinant of the infinite matrix B jk (t ) can be expressed as a determinant of a finite N × N matrix.
Let us denote �(x) = [φ1(x), φ2(x), . . .]T as the column vector of the single-particle orbitals and �(x, t ) =

[e−iε1tφ1(x), e−iε2tφ2(x), . . .]T . Then

{e−itH} jk = �(x j, t )T �(xk )∗ = �(xk )†�(x j, t ),

{e−itHPk
+(0)(1 − B0)[B jk (t )]−1P

j
−(t )} jk =

N∑
m,n=1

[�(x j, t )TPk
+(0)]m{[P j

−(t )Pk
+(0)]aa}−1

mn[P j
−(t )�(xk )∗]n.

Then the greater Green’s function reads

iG>
jk (t ) = 〈â j (t )â†

k〉 = det{[P j
−(t )Pk

+(0)]aa}a>(x j, xk, t ), (D5)

where

a>(x j, xk, t ) = �(x j, t )T �(xk )∗ −
N∑

m,n=1

[�(x j, t )TPk
+(0)]m{[P j

−(t )Pk
+(0)]aa}−1

mn[P j
−(t )�(xk )∗]n. (D6)

This result is essentially equivalent to the expressions given in a recent Letter [56]. Similarly we can extend the expression for
the lesser Green’s function, which is simpler, and that for the OTOC, which is more complicated, to continuous space. We would
not elaborate to give the details here.
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