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Interplay of the Jahn-Teller effect and spin-orbit coupling: The case of trigonal vibrations
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We study an interplay between the orbital degeneracy and the spin-orbit coupling (SOC) giving rise to spin-
orbital entangled states in concentrated systems (cooperative Jahn-Teller [JT] effect). As a specific example,
we analyze the interaction of electrons occupying triply degenerate single-ion t2g levels with trigonal vibrations
(the t ⊗ T problem). A more general problem of the electron–lattice interaction involving both tetragonal and
trigonal vibrations is also considered. It is shown that the result of such interaction crucially depends on the
occupation of t2g levels leading to either the suppression or the enhancement of the JT effect by the SOC.
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I. INTRODUCTION

The effects related to spin-orbit coupling (SOC) have re-
cently become quite topical especially due to their decisive
role in the physics of topological insulators and other topo-
logical materials. These effects are also important in such
strongly correlated electron systems as 4d and 5d transition
metal compounds. In contrast with 3d compounds, the large
SOC characteristic of 4d and 5d transition metal ions can
play a dominant role in the formation of electron structure
determining the sequence and multiplet characteristics of the
energy levels. Therefore, in such systems, we are dealing with
the spin-orbit entangled electron states [1]. This means that
the spin and orbital degrees of freedom become intermixed
leading to a more pronounced contribution of magnetism to
the orbital characteristics.

Indeed, the orbital degeneracy, leading in particular to the
Jahn-Teller (JT) effect, is quite common in many transition
metal compounds. Until recently, it was predominantly stud-
ied in 3d systems containing such well-known JT ions as
Mn3+ and Cu2+. Currently, however, the attention is gradually
shifting to the study of 4d and 5d compounds. In this case, the
SOC starts to play a more and more important role. Therefore
a question arises: What is the concerted outcome of the JT
effect and strong SOC? The most natural expectation is that
SOC would suppress the JT effect. Indeed, due to JT distor-
tions, the orbital degeneracy is lifted, and it becomes favorable
to put an electron at the state with a real wave function, with
a particular quadrupole moment. At the same time, the SOC
rather prefers the states with complex wave functions. Note
here that even the first, rather old treatment [2] has revealed
that in the simplest case of one electron per site the JT effect
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is gradually suppressed with increasing SOC (characterized
by the SOC constant λ).

In 3d systems we usually deal with the high-spin state
(satisfying the first Hund’s rule stabilizing the state with max-
imum possible spin), in which case we often have a situation
with partially filled eg states (like those in Mn3+ or Cu2+).
However, for eg electrons, the SOC is in the first approx-
imation quenched. In contrast, for 4d and 5d systems, we
typically have low-spin states with very often partial filling
of triply degenerate t2g orbitals, but for these, the SOC is not
quenched, and just in this case, the most realistic for 4d and
5d systems, one should expect an important role of SOC.

At the same time, in many cases, there still remains an
orbital degeneracy even if the SOC is very strong. The orbital
degeneracy typically manifests itself in the involvement of the
crystal lattice occurring in the form of vibronic interactions,
i.e., those related to the JT effect [3–7].

Such a strong interplay of electronic and lattice character-
istics in the systems with spin-orbit entangled states should
lead to a plethora of novel quantum phenomena, the analysis
of which now seems to be only at the initial stage. In this
connection, let us note some early [2,8–12] and several recent
[13–20] papers but particularly mention an unduly rarely cited
paper by K. D. Warren [21]. Using the so-called angular over-
lap model, Warren was able to treat limiting situations of small
and very large SOC for all possible occupations of d electrons.
It was shown that this interaction may substantially modify JT
coupling constants. In a recent study, a more general situation
of the SOC of arbitrary strength was considered by a very dif-
ferent approach [22] for E = {Q2, Q3}-type distortions inthe
case of a static JT problem.

The main results of Ref. [22] can be summarized as the
following: Vibronic and SOC interactions can either enhance
or suppress each other depending on a particular situation,
first of all, on the number of electrons per site. For one
electron at triply degenerate t2g states, for which the SOC is
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not quenched, an increase in SOC gradually suppresses the JT
effect, which, however, remains nonzero even for very strong
SOC. For the d2 configuration, the JT effect is also suppressed
by SOC. In the case of d4 and d5 configurations (with all
electrons in t2g states, which is the case for the low-spin states
typical of 4d and 5d systems), the JT effect also vanishes as
the strength of SOC grows. However, in contrast with the d2

case, the JT effect disappears at finite value of λcr in an almost
abrupt way, and it is strictly zero above λcr . Nevertheless,
there may also be an opposite effect: The SOC may enhance
rather than suppress the JT distortions. This is the situation for
the d3 configuration for which the SOC does not impede but
activates the JT effect, which for this configuration is absent
for λ = 0.

These results were obtained in Ref. [22] by considering
the JT coupling of t2g electrons with doubly degenerate E
(tetragonal and orthorhombic) distortions—the so-called t ⊗
E problem. However, the t2g states can be also split by trigonal
distortions—the t ⊗ T problem and moreover JT coupling
constant for T vibrations can be as large as for E phonons
[23].

It is both interesting scientifically and important practically
to know how the SOC would affect such trigonal distortions,
which are often present in real situations. Theoretically it is
even more interesting: For very strong SOC, the states of t2g

electrons are split into the j = 3/2 quartet and the j = 1/2
doublet, with j = 3/2 states lying lower. Such quartet is ac-
tually formed by two Kramers doublets, i.e., the situation in
this sense resembles that of the usual eg states and sometimes
indeed these doublets are regarded as an effective eg orbitals,
see, e.g., Ref. [1], but how far does this analogy go? In par-
ticular, eg levels are not split by the trigonal deformation, i.e.,
there is no interaction with trigonal T phonons. However, the
situation with t2g electrons in the case of strong SOC might
be very different from the e ⊗ E case, just because of a strong
spin-orbit entanglement introduced by SOC. And indeed, it
is known that for d1 configuration in the case of infinitely
strong SOC, where we are dealing with the j = 3/2 quartet,
JT coupling to T2 vibrations still survives [8,12]. The case
of intermediate JT coupling, not considered in the previous
literature, present a special interest because real 4d and 5d
systems usually belong to this category. This is what is done
in the present paper. Another question we concentrate on is
what the situation is with the t ⊗ T problem in the case of
strong SOC for other electron configurations—d2, d3, etc. In
these cases, besides a purely JT electron–phonon interaction,
an electron–electron interaction, especially the Hund’s rule
exchange, plays a crucial role and can strongly modify the
behavior of a system, in particular the manifestations of JT
effect in those.

Finally, one important comment has to be made. In
Ref. [22] and in the present paper we mainly have in mind
concentrated systems, especially those with 4d and 5d tran-
sition metal ions, such as Kitaev magnets containing, e.g.,
Ru3+ (RuCl3) or Ir4+ (Li2IrO3), or double perovskites like
Na2BaOsO6 or Sr2CaIrO6. Interplay of strong SOC and JT
effects in these systems presents an interesting and important
problem both theoretically and experimentally [17,22,24–29].
To treat it, one has to start from the case of single transition
metal ions, as we do in the present paper. In treating the

single-site case some extra complications can enter the game,
such as vibronic effects connected with treating not only
electrons but also the lattice (nucleus) quantum mechanically.
These effects can lead to certain modifications, for example,
to the well-known Ham’s reduction of different nondiagonal
matrix elements [30]. In concentrated systems such as those
we have in mind, the vibronic effects are practically always
neglected, and the lattice is treated (quasi-) classically; see,
e.g., Refs. [31,32]. Keeping in mind this situation and aiming
at application to concentrated system, we in our calculations
do not also take into account vibronic effects, leaving the
study of their possible effects for the future.

II. MODEL

The model Hamiltonian used in the present paper includes
three components,

Ĥ = ĤSOC + ĤJT + ĤU , (1)

where the first, second, and third terms correspond to the
SOC, the JT electron-lattice coupling, and the Hubbard on-site
electron–electron interaction, respectively. The SOC is taken
in a full vector form

ĤSOC = −ζ
∑

α

l̂α · ŝα, (2)

where l̂α and ŝα are orbital and spin operators of the αth
electron, ζ is the SOC constant, and the minus sign appears
because we deal with the t2g orbitals with effective orbital
moment le f f = 1 [33]. In the LS coupling scheme (for SOC
weaker than the Hund’s rule coupling), one can also write
this part of the Hamiltonian as HSOC = −λL̂ · Ŝ, where L̂ =∑

α l̂α , Ŝ = ∑
α ŝα are the total orbital and spin moments of a

particular configuration, and λ = ζ/2S.
The interaction part is written in the standard rotationally

invariant form [34]

ĤU = (U − 3JH )
N̂ (N̂ − 1)

2
− 2JH Ŝ2 − JH

2
L̂2 + 5

2
JH N̂, (3)

where U is the Hubbard repulsion (not important here since
we consider a single site), JH is the Hund’s rule intra-atomic
exchange, and N̂ is the operator for the total number of elec-
trons.

The JT term includes the elastic energy contribution and
the linear coupling of the electron subsystem with the corre-
sponding vibrations. In Sec. III, where the t ⊗ T problem is
considered, we use the following form of the JT Hamiltonian

ĤT
JT = − g((l̂y l̂z + l̂z l̂y)Q4 + (l̂x l̂z + l̂z l̂x )Q5

+ (l̂y l̂x + l̂x l̂y)Q6) + B2

2

(
Q2

4 + Q2
5 + Q2

6

)
, (4)

where Q4, Q5, and Q6 are the phonon modes, illustrated in
Fig. 1, with the corresponding coefficients g and B [11].
For simplicity, in most of numerical calculations, we assume
that g = B = 1. Positive Q4, Q5, and Q6 in the combination
Q4 + Q5 + Q6 would give trigonal distortion corresponding
to the elongation of an octahedron in the [111] direction; see
Fig. 2. A more general form of the JT term used in Sec. IV is
presented in Eq. (5).
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FIG. 1. Sketch demonstrating distortions of metal–ligand octa-
hedron by trigonal Q4, Q5, and Q6 modes.

It has to be stressed that here we consider not a lattice of
JT ions but a single JT center. Nevertheless, we keep in mind
the situation of concentrated systems.

It has to be noted that the present approach differs from
conventional ones used to treat the JT effect. It is not per-
turbative, but it is based on numerically exact solution of the
many-electron problem including all the necessary interac-
tions (electron–lattice, Hund’s rule exchange, and SOC) for
an arbitrary distortion with subsequent global minimization of
the total energy with respect to all possible phonon modes. In
this scheme, different specific electronic states correspond to
each particular nuclear configuration, i.e., all vibronic effects,
such as the Ham’s reduction [30,33], can be included if one
would use this scheme for calculating dynamical properties of
isolated JT impurities as investigated, e.g., by paramagnetic
resonance spectroscopy.

III. THE t ⊗ T PROBLEM

In this section, we not only study how the SOC affects
the JT effect in the case of the t ⊗ T problem but also pay
attention to the role of intra-atomic Hund’s rule exchange. It
is assumed here that the t2g − eg crystal-field splitting, 10Dq,
is very large (always larger than the SOC constant λ).

A. The d1 configuration

The situation in the case of d1 configuration without SOC
is well documented, and the JT effect results in the trigonal
compression, i.e., distortion along one of four possible vec-
tors: [−1,−1,−1], [−1, 1, 1], [1,−1, 1], or [1, 1,−1] in the
Q4, Q5, Q6 space. This leads to the level splitting such that the

FIG. 2. Energy-level splitting and distortions in the t ⊗ T prob-
lem without the SOC in the case of t1

2g (a) and t2
2g (b) configurations.

FIG. 3. Amplitude of the JT distortion (compression) defined as
Q = √

Q2
4 + Q2

5 + Q2
6 as a function of the SOC constant ζ in the

case of d1 electronic configuration for different ratios of the g and
B parameters. The inset shows the constant energy surface for λ = 0
corresponding to E (Q4, Q5, Q6) ≈ −1.3 g2

2B , which is close to the

absolute energy minimum E = − 4
3

g2

2B .

a1g orbital turns out to be lower than eπ
g and a single electron

occupies this a1g orbital; see Fig. 2(a). These four minima are
clearly seen in the inset of Fig. 3, where the constant energy
surface E (Q4, Q5, Q6) corresponding to 99% of global energy
minimum E = − 4

3
g2

2B is presented. In the (Q4, Q5, Q6) space,
these minima are located along four [111] directions with the
total tetrahedral symmetry. These minima would be located
at other ends of these [111] axes for the opposite sign of the
coupling constant g in Hamiltonian (4).

The account taken of the SOC results in the gradual sup-
pression of the JT distortions as shown in Fig. 3. In agreement
with previous studies the system retains trigonal minima in
the presence of not very strong SOC [2,10]. However, one
might see that the SOC tends to stabilize an electron at very
different orbitals (as compared with those favorable with re-
spect to the JT effect) and this results in the suppression
of the amplitude of the distortion and JT coupling constant
as was noted in Ref. [21]. However, the SOC cannot lift
the degeneracy completely—we still have an electron at the
doubly degenerate (without taking into account the Kramers
degeneracy) j = 3/2 subshell. Therefore the JT effect will
never be suppressed completely.

The results of these calculations also answer the question
formulated in the Introduction: To which extent does the
ground-state quartet j = 3/2 (two Kramers doublets), reached
for strong SOC, resemble the eg quartet (also two Kramers
doublets) for the usual d electrons in cubic crystal field with-
out SOC? We remind that for the usual d electrons with one
electron (as, e.g., in Mn3+) or one hole (as in Cu2+) at eg

levels, the JT effect leading to the lifting of this degeneracy
exists for tetragonal and orthorhombic distortions but not for
trigonal ones. In our case, however, for one electron at the
j = 3/2 quartet, not only tetragonal [22] but also trigonal
distortions lead to the JT effect; see Fig. 3. Thus we see
that the j = 3/2 quartet is in this sense not equivalent to the
usual eg case. A different character of the corresponding wave
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FIG. 4. Evolution of the energy isosurface E (Q4, Q5, Q6) as a
function of the SOC constant λ in the case of d1 configurations.
(a) λ = 0; (b) λ = 5g2/B; (c) λ = 50g2/B. To calculate the iso-
surface the Hamiltonian (4) is rewritten in spherical coordinates
Q4 = r sin θ cos φ, Q5 = r sin θ sin φ, and Q6 = r cos θ and then it
is minimized in r for each (θ, φ) point.

functions in this case, with the strong spin-orbit entanglement,
leads to different characteristics of the JT effect for strong
SOC. The study of the coupling to trigonal modes (the t ⊗ T
problem) thus allows us to reveal the role of spin-orbit entan-
glement for the JT effect.

In fact, we see that for the d1 configuration, the situation
for trigonal distortions is actually similar to that for tetrag-
onal ones [22]: The strong SOC reduces JT distortions but
not completely. Similarly to the t ⊗ E case, for the strong
SOC, different trigonal distortions (elongation and compres-
sion along different [111] axes) become equivalent, so that any
linear combination thereof has the same energy, which is the
situation of the “Mexican hat” (continuous manifold of degen-
erate states, which for the e ⊗ E problem indeed has a form
of a Mexican hat; see, e.g., Refs. [4,5,7]). Thus in this case
for very strong SOC, we also have the manifold of degenerate
states forming a Mexican hat, but in the four-dimensional (4D)
space; see Appendix A. The fact that in the limit of λ → ∞
the JT effect for the case of one electron at the j = 3/2 quartet
(in the Bethe notation, the �8 quartet) leads to the continuum
of degenerate states (1D manifold, the trough in the Mexican
hat in the t ⊗ E problem, 2D manifold—the “Mexican globe”
for the t ⊗ T case) is well known in the JT literature [8,11,12].
We demonstrated how this state is reached with increasing λ,
i.e., how the energy surface evolves from that of λ = 0 to
the limiting solution of the Mexican hat in the t ⊗ E or the
Mexican globe for the t ⊗ T case for infinite SOC.

Analysis of the energy surface of the t ⊗ T problem is
quite difficult compared with that for the t ⊗ E and e ⊗ E
problems, since E (Q4, Q5, Q6) is a 4D function. The energy
isosurfaces E (Q4, Q5, Q6) = const can be plotted (e.g., see
Fig. 4) but they are difficult to compare with the Mexican
hats in the t ⊗ E and e ⊗ E problems. However, one can
decrease dimensionality of E (Q4, Q5, Q6) if we make some
cut of the Mexican globe by combining two phonon modes
(e.g., Q4 and Q5) into one Q = (Q4 + Q5)/

√
2 (where 1/

√
2

is normalization factor). It corresponds to cutting the “globe”
by the corresponding meridian. Then we can plot the energy
surfaces of the trigonal and tetragonal modes.

The cuts of the Mexican globe along the φ = 45◦ meridian
at the various values of the SOC constant λ are shown in
Fig. 5. Two global minima of the energy cut correspond to the
[−1,−1,−1] and [1, 1,−1] minima in the Q4, Q5, Q6 space.
Other minima of the Mexican globe (Fig. 4) can be obtained
if the cut is made along other directions. The last (local)

FIG. 5. Cuts of the Mexican globe along the φ = 45◦ meridian
in the case of d1 configurations at the SOC constant λ = 0 (a), λ =
5g2/B (b), and λ = 50g2/B (c). Q = (Q4 + Q5)/

√
2 is a normalized

distortion along the φ = 45◦ meridian.

minimum is in fact a saddle point in the Q4, Q5, Q6 space;
its energy is equal to the energy of the saddle point between
the global minima. The energy difference between the global
minima and the saddle point (with the local minima) becomes
smaller with increasing SOC (see Fig. 6). Thus the cut of
the Mexican globe turns into the well-known Mexican hat at
λ � EJT [Fig. 5(c)].

The cuts in Fig. 5 are generally similar to the Mexican
hats of the t ⊗ E and e ⊗ E problems. Both such “hats” have
conical points at (0,0). The cuts have three minima in Fig. 5(a)
and Fig. 5(b); however, whereas in the t ⊗ E and e ⊗ E prob-
lems all three minima are equal, here in this cross-section we
get two global and one local minima. Also, we obtain the
continuous set of minimum points in Fig. 5(c). Except for the
presence of the local minimum, the evolution of the cuts of
the Mexican globe in the t ⊗ T problem and the Mexican hat
of the t ⊗ E problem as the function of λ is very similar. Note
that in the e ⊗ E problem the Mexican hat gets corrugated
due to higher-order JT coupling. Here, however, we get some
corrugation already for the linear JT coupling but for finite
SOC; so, instead of the continuous set of minimum points,
only four minima exist for finite λ.

B. The d2 configuration

In the case of d2 electronic configuration, one needs to
take into account the intra-atomic exchange interaction, JH .
Here we assume that the energy gain due to the JT distor-
tions is always smaller than JH , but the strength of the SOC,

FIG. 6. Corrugation energy δεcorrug as a function of the SOC
constant λ in the case of d1 configurations; δεcorrug is the absolute
difference of the energy minimum and a saddle point.
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FIG. 7. Amplitude of the JT distortion defined as Q =√
Q2

4 + Q2
5 + Q2

6 as a function of the SOC constant λ in the case of
d2 and d3 electronic configurations for g = B = 1.

λ, can be larger or smaller than the Hund’s rule energy JH

and g2/2B.
Having two electrons in the absence of the SOC, we gain

more energy by elongating the metal–ligand octahedron in
[111] direction and by putting two electrons with parallel
spins onto eπ

g orbitals, as shown in Fig. 2(b). This results
in the trigonal elongation along one of four possible [111]
directions discussed above (in solids, the exchange interaction
or electron–phonon coupling could choose one of these direc-
tions). The SOC in turn favors the occupation of very different
orbitals. These are j = 3/2 spin-orbitals; see Eq. (B6) in
Appendix B.

Therefore by increasing the strength of SOC, we reduce
the maximum possible energy gain (and the distortion as
a result) due to the vibronic coupling; see the upper panel
of Fig. 7. This is exactly what is observed in our nu-
merical calculations—the JT distortion amplitude decreases
with λ.

Moreover, formally as λ → ∞, the JT distortions asymp-
totically vanish. This is in contrast with the situation with d1

configuration. One can easily understand this by noting that
also at very strong SOC, the intra-atomic exchange makes two
electrons to occupy jz

3/2 and jz
1/2 or jz

−3/2 and jz
−1/2 orbitals [to

have maximal spin projections, see Eq. (B6)]. However, the
distortions induced by such occupation compensate each other
exactly: Using Eqs. (4) and (B6), it can be readily shown that,
e.g., jz

3/2 gives Q3/2
JT = − 1

3
g
B , while jz

1/2 results in Q1/2
JT = 1

3
g
B .

These results were obtained taking into consideration only
the t2g manifold, assuming that the cubic crystal field leading
to splitting (10Dq) of t2g and eg levels is the largest parameter
in the system. Admixture of eg states in case of finite 10Dq can

FIG. 8. Amplitude of the JT distortion defined as Q =√
Q2

4 + Q2
5 + Q2

6 as a function of the SOC constant λ in the case of
d4 electronic configuration for g = B = 1.

bring about some modifications largely of numerical charac-
ter. This problem, especially important for d2 configuration,
will be considered separately.

C. The d3 configuration

In the case of three electrons and zero SOC, we fill three
t2g levels by electrons, which have the same spin projection
due to the strong intra-atomic Hund’s rule exchange. Such a
state does not exhibit any orbital degeneracy and, therefore, it
is inactive for the JT effect.

The SOC acts against the Hund’s rule exchange and re-
distributes electrons in such a way as to make them occupy
j = 3/2 states. This results in orbital degeneracy (three elec-
trons at the fourfold degenerate j = 3/2 states) and activates
the JT effect as was pointed out by Warren [21]. The distortion
amplitude as a function of spin-orbit constant λ is shown in
Fig. 7. One might expect that, similarly to the t ⊗ E problem
[22], here one would also have the Mexican hat geometry of
the adiabatic potential energy surface in the formal limit of
λ → ∞. Indeed, as in the case of the d1 configuration, we
have here a single “JT active” particle at the j3/2 levels, but it
is a hole in the case of d3.

It is interesting to study the effect of intra-atomic exchange
on JT distortions. First, one may see in Fig. 7 that it is ratio
λ/JH , which plays a crucial role. A half maximum possible JT
distortion is achieved at λ/JH ∼ 0.7 − 1. On the other hand,
indeed the Hund’s rule and SOCs favor very different occu-
pations of the spin-orbitals by electrons: Eigenfunctions (B6)
of spin-orbit operator (2) are obviously not optimum from
the viewpoint of intra-atomic exchange, which favors having
as many as possible electrons with the same spin projection.
Therefore by increasing JH , we suppress the JT distortions
induced by the SOC, see Fig. 7.

D. The d4 and d5 configurations

These two configurations demonstrate very similar behav-
ior in the case of the t ⊗ E problem [22]. For T vibrations, this
result remains the same. The corresponding plots of distortion
amplitude are summarized in Figs. 8 and 9.
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FIG. 9. Amplitude of the JT distortion defined as Q =√
Q2

4 + Q2
5 + Q2

6 as a function of the SOC constant λ in the case
of the d5 configuration. This function is the same for different g

and B, if λ is measured in the units of g2

B and Q is measured
in the units of g

B . Insets demonstrate the constant energy surfaces
E (Q4, Q5, Q6) = Eiso, which are close to the global energy minima,
at λ = 0 < λc (left) and λ = 1.2 > λc (right).

The case of d5 configuration without SOC can be described
in terms of one hole at t2g levels, so it can be derived from
the d1 case by replacing g with −g. Then, the points charac-
terizing absolute energy minima are of the opposite signs as
compared with the d1 case: [1,1,1], [1,−1,−1], [−1, 1,−1],
or [−1,−1, 1] in the Q4Q5Q6 space (Fig. 9, left inset). The
ML6 octahedron is elongated in one of these directions, and
we put five electrons at the crystal-field levels of Fig. 2(b).
This is the typical situation for such ions as Ir4+ and Ru3+,
important, e.g., for the Kitaev materials.

As λ increases, the JT distortions decrease and near the
critical value λc abruptly disappear (Fig. 9). The absence of
distortions at large λ values can be explained in the j j cou-
pling scheme, which is relevant in this case. In this scheme, a
single hole occupies the upper Kramers doublet j = 1

2 , which
does not have any orbital degeneracy, so the JT effect does not
work in this situation.

The same picture also explains similar behavior for the d4

configuration, Fig. 9: In the j j scheme, four electrons com-
pletely fill four j = 3/2 states leading to the nondegenerate
and nonmagnetic J = 0 state.

IV. FULL t ⊗ (T + E ) PROBLEM

Typically, for the description of specific materials, it is
enough to treat the coupling of electrons with E or T vibra-
tions. Nevertheless, for completeness, below we consider the
general t ⊗ (T + E ) problem, which includes both tetragonal
(Q2, Q3) and trigonal (Q4, Q5, Q6) displacements. In this
situation, the JT term is written in the following form,

ĤTE
JT = Be

2

(
Q2

2 + Q2
3

) + Bt

2

(
Q2

4 + Q2
5 + Q2

6

)

− ge

(
1√
3

(
l̂2
x − l̂2

y

)
Q2 +

(
l̂2
z − 2

3

)
Q3

)

− gt ((l̂y l̂z + l̂z l̂y)Q4 + (l̂x l̂z + l̂z l̂x )Q5

+ (l̂x l̂y + l̂y l̂x )Q6). (5)

Here Be and ge (Bt and gt ) are constants corresponding to E
(T ) distortions.

The solution of Eq. (5) is well known for the case of zero
SOC, ζ = 0. There are three types of extremum points: Three
correspond to tetragonal minima with Q4 = Q5 = Q6 = 0,
four are trigonal minima with Q2 = Q3 = 0, and six are
orthorhombic points [9]. The difference between the ener-
gies Ee = −2g2

e/9Be (the coupling to E modes) and Et =
−2g2

t /3Bt (T modes) is crucial for the t ⊗ (T + E ) problem.
If Ee < Et , the tetragonal extremum points are absolute min-
ima and the others are saddle points. Conversely, if Et

JT < Ee
JT,

then the trigonal points correspond to global minima, and
again the others are saddle points. Orthorhombic points al-
ways remain to be saddle points.

The Ee = Et case is more complicated. All types of
extrema become minimum points. Moreover, there is a con-
tinuous subset of minima. For a special case Be = Bt and ge =
gt/

√
3 (the so-called t ⊗ D problem) all minima obey the re-

lationship Q2
2 + Q2

3 + Q2
4 + Q2

5 + Q2
6 = Q2

0 = g2
t /3Bt , so they

can be parameterized as

Q2 = −
√

3Q0 sin2 θ cos 2φ,

Q3 = −Q0(3 cos2 θ − 1),

Q4 = −
√

3Q0 sin 2θ sin φ,

Q5 = −
√

3Q0 sin 2θ cos φ,

Q6 = −
√

3Q0 sin2 θ sin 2φ. (6)

Let us consider how the situation changes with the account
taken of the SOC. First, if we compare the results of the t ⊗
T and t ⊗ E problems, one can notice that all modes have
similar dependence on λ.

Therefore, one might expect that the ground-state energies
of the t ⊗ E and t ⊗ T problems have the same dependence on
λ. Direct numerical calculations of Ee with Bt = gt = 0 and
Et with Be = ge = 0 [using Eq. (5)] show that this is indeed
the case (see Fig. 10). If Ee is equal to (larger or less than)
Et at λ = 0, then Ee is equal to (larger or less than) Et at any
λ. Consequently, all conclusions derived for the t ⊗ (T + E )
problem without SOC remain the same in the case of nonzero
SOC.

Moreover, parametrization (6) can also be used for the case
of Be = Bt , ge = gt/

√
3, but now all modes (including Q0)

become functions of λ, which are similar to the Q function
(Fig. 3). Direct calculations with the JT term described by
Eq. (5) with substitution from Eq. (6) for some values of λ

show that the ground-state energy of the system is the same
for any θ and φ. Thus SOC does not destroy the continuous
set of minimum points in the t ⊗ D problem.

The λ → ∞ case is considered separately. We use the
same algorithm as described in Appendix A, but with an
additional step. Exact expression for the total energy is rather
cumbersome, but one can expand this into the Laurent series
at λ → ∞ and take the leading terms (λ1 and λ0). After these
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FIG. 10. Energy as a function of λ for the t ⊗ T (black solid line)
and t ⊗ E (red circles and blue solid line) problems in the case of d1

configuration. The coefficient ge = √
3 is chosen to have Ee = Et at

λ = 0 and, e.g., for ge = 0.9
√

3: |Ee| < |Et |.

transformations, the ground energy takes the form

E (Q2, Q3, Q4, Q5, Q6)

= − λ

2
+ Be

2

(
Q2

2 + Q2
3

) + Bt

2

(
Q2

4 + Q2
5 + Q2

6

)

− 1

3

√
g2

e

(
Q2

2 + Q2
3

) + 3g2
t

(
Q2

4 + Q2
5 + Q2

6

)
. (7)

If we take Be = Bt = B and ge = gt/
√

3 = g, Eq. (7) be-

comes E = B
∑

i Q2
i − 1

3 g
√∑

Q2
i − λ

2 . Now we can again

use Eq. (6) and obtain E = 5BQ2
0/2 −

√
5

3 gQ0 − λ
2 . The last

expression has the minimum at Q2
0 = g2/45B2. This is the

Mexican hat again, but in the 6D space.
Consider the case Ee 
= Et . Now Eq. (7) depends on two

sums: The sum of Eg modes Q2
2 + Q2

3 and the sum of T2g

modes Q2
4 + Q2

5 + Q2
6. One can transform Eg modes to cylin-

drical coordinates and T2g modes to spherical coordinates

Q2 = Qe sin φ,

Q3 = Qe cos φ,

Q4 = Qt sin θ cos φ

Q5 = Qt sin θ sin φ,

Q6 = Qt cos θ. (8)

Then, we obtain

E (Qe, Qt ) = Be

2
Q2

e + Bt

2
Q2

t − 1

3

√
g2

eQ2
e + 3g2

t Q2
t − λ

2
. (9)

This energy equation is 3D, so it can be easily treated an-
alytically. Using the first derivatives, we obtain stationary
points (0, ±gt/

√
3Bt ) (with Et

JT = −g2
t /18Bt ) and (±ge/3Be,

0) (with Ee
JT = −g2

e/6Be) in (Qe, Qt ) coordinates. Then, we
calculate the Hessians and find that the point (0, ±gt/

√
3Bt )

is the absolute minimum if 3g2
t Bt > g2

e/Be (or Et
JT < Ee

JT), and
the point (±ge/3Be, 0) is the absolute minimum if 3g2

t Bt <

g2
e/Be (or Ee

JT < Et
JT).

Hence in the λ → ∞ limit, we have three Mexican hats:
The first is 4D with only T2g modes (Q2

4 + Q2
5 + Q2

6 = Q2
t =

g2
t /3Bt ) for Et

JT < Ee
JT. The second 3D hat includes only Eg

modes Q2
2 + Q2

3 = Q2
e = g2

e/9B2
e for Ee

JT < Et
JT. Finally, the

last Mexican hat is a 6D in the T2g and Eg modes space that
was considered at the beginning of this section.

Here we have considered the static t ⊗ (T + E ) problem of
the linear JT coupling at arbitrary SOC strength. Previously,
the dynamical properties for the strong JT coupling [9] and
the coexistence of tetragonal, orthorhombic, and trigonal dis-
tortions for the quadratic JT interaction [10] were studied for
this problem. However, the SOC was treated only for special
cases, such as the g value [9] and the 3T term [10].

V. CONCLUSIONS

In this paper, we analyzed an interplay between SOC and
vibronic interactions in ions with partially occupied t2g levels
in the case of the cooperative JT effect. A special emphasis
was put on the t ⊗ T problem, i.e., on the interactions of t2g

electrons with trigonal vibrational modes Q4, Q5, and Q6 of a
metal–ligand octahedron.

In the case of the d1 configuration, an increase in the SOC
leads to a gradual decay (but not vanishing) of the character-
istic JT distortions. At a strong SOC, we obtain a 4D analog
of the Mexican hat adiabatic potential energy surface with the
potential for concomitant quantum effects.

For the d2 configuration, the SOC also suppresses the JT
distortions. However, in contrast with the d1 case, these distor-
tions can vanish due to such additional factors as the Hund’s
rule intra-atomic exchange, JH . Quite an unusual situation
arises for the d3 configuration for which in the absence of
SOC, owing to the strong Hund’s rule exchange, three elec-
trons with parallel spins occupy three t2g levels, thus removing
orbital degeneracy. The SOC redistributes such electrons fa-
voring the occupation of the j = 3/2 state. That is why the or-
bital degeneracy is restored, and the JT effect begins to work.

The d4 and d5 cases turn out to be quite similar in their
behavior. In both cases, the JT distortions abruptly vanish at
a sufficiently strong SOC since the latter favors the formation
of the j = 1/2 doublet for the d4 and a singlet J = 0 state for
d5 configurations, which do not exhibit the orbital degeneracy,
thus removing the JT effect.

The results, in a nutshell, are that the qualitative behavior
of JT effect for trigonal distortions (the t ⊗ T problem) for
the strong SOC coupling is qualitatively similar to that for
coupling to tetragonal distortions (the t ⊗ E problem) con-
sidered earlier [22]. This agrees with previous results where
limiting situations of a very large and small SOC strength
were considered [21]. In particular, the JT effect for trigonal
distortions can survive even for very strong SOC when we can
describe the situation by the j = 3/2 quartet. In this sense, the
situation in such a limit is not identical to the actual eg case
with two Kramers doublets. The more complicated nature of
the SOC-stabilized states with strong entanglement of spins
and orbitals changes the situation drastically and makes it
quite nontrivial.

An interesting conclusion is that the very strong SOC leads
to a continuous degeneracy of the ground states (“Mexican
hat”, in this case “Mexican globe”). In contrast to the usual
situation without SOC, where this continuous degeneracy is
lifted by higher-order effects, here it is destroyed already for
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linear JT coupling but for finite SOC. This can lead to inter-
esting effects in particular in the dynamics of such systems.

It is worthwhile to note that features of local distortions of
the ligand octahedra in 4d and 5d transition metal compounds
have become a subject of many recent studies. These are, e.g.,
local point symmetry breaking in Ba2NaOsO6 seen by local
methods such as NMR [35], while diffraction does not detect
any deviations from the cubic symmetry [36] or noncubic
crystal-field seen by the resonant inelastic x-ray scattering
in various iridates expected to be in undistorted octachedra
in the limit of large SOC [37–39]. One might also men-
tion unexpected elongation of the octahedra in Ba2SmMoO6

[40], Ba2NdMoO6 [41], Sr2MgReO6 [42], Sr2LiOsO6 [43],
and K2TaCl6 [17], which sometimes is accompanied by even
further lowering of the symmetry and thus might involve T
modes. The coupling to the trigonal vibrations should be espe-
cially relevant for systems containing corresponding transition
metal ions with face-sharing octahedra such as, for example,
systems of the type of Ba3TMRu2O9 or Ba3TMIr2O9 with
TM = Na, Ca, Y, Ce, etc. Detailed study of these materials
is an important but at the same time complicated problem,
since there are many other factors affecting lattice distortions
in addition to the conventional JT effect such as purely steric
factors defined by the Goldschmidt tolerance factor or possi-
ble high-order multipolar orderings [20,44].

Thus we see that even a single-site problem involving the
SOC provides a real cornucopia of interesting new physics.
Taking into consideration the interactions between JT sites in
a lattice results in an interplay among orbital, spin, and lattice
degrees of freedom. It has been shown on an example of the
E distortions that the spin-orbit and vibronic interactions also
compete in this case as well and, e.g., for d1 configuration
suppression of the JT distortions by the SOC also occurs [22].
However, taking into account the interactions of the JT ion
with the lattice may bring even a richer physical content. In-
deed, these are not simple electronic orbitals, but spin-orbitals,
which are now coupled with lattice distortions and therefore
one might expect other novel, e.g., magneto-elastic effects in
this case, but details depend on a particular occupation of d
orbitals, lattice connectivity, and of course, the strength of the
SOC. We believe that the results of this work should create a
good basis for further study of these effects.
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APPENDIX A: GOLDSTONE MODES
FOR d1 IN THE CASE OF λ → ∞

In this Appendix, we will show analytically that the adia-
batic potential energy surface for electronic configuration d1

in the limit of λ → ∞ is similar to the Mexican hat in the
space of four dimensions (Q4, Q5, Q6, E ), where E is the
energy.

For the sake of simplicity, we first perform the derivation
for the t ⊗ E problem, which was considered in detail in

Ref. [22]. In this case, instead of Q4, Q5, and Q6, one has only
two phonon modes, Q2 and Q3. As the first step, we transform
full Hamiltonian (3) of Ref. [22] including both SOC and
JT terms to the basis, which is diagonal in the space of j1/2

and j3/2 states. In the limit of λ → ∞, the splitting j1/2 and
j3/2 becomes infinitely large and one can work only with a
4 × 4 Hamiltonian for j3/2 states. Its diagonalization gives the
spectrum with the lowest in energy eigenvalue,

E (Q2, Q3) = −λ

2
− g

3

√
Q2

2 + Q2
3 + B

2

(
Q2

2 + Q2
3

)
. (A1)

There are two types of extrema; the first one at (Q2 = 0,

Q3 = 0) is absolutely unstable and the second one corre-
sponding to the absolute minimum is parametrized by the
equation

Q2
2 + Q2

3 = 4

9

g2

B2
. (A2)

This is nothing else but the equation describing the trough of
the Mexican hat. We see that the ground state of our problem
is highly degenerate and it is described by the rotation in the
Q2Q3 space, i.e., by the Goldstone mode.

Now, one can repeat the same calculations for the t ⊗ T
problem. Then, we obtain

E (Q4, Q5, Q6) = −λ

2
− g√

3

√
Q2

4 + Q2
5 + Q2

6

+ B

2

(
Q2

4 + Q2
5 + Q2

6

)
, (A3)

i.e., the same quadratic form characteristic for the Goldstone
modes, which again gives equation for the trough of the Mex-
ican hat but now in the 4D space

Q2
4 + Q2

5 + Q2
6 = 4

3

g2

B2
. (A4)

APPENDIX B: WAVE FUNCTIONS

If one considers a metal–ligand octahedron with the axes
directed to the metal–ligand bonds, then the trigonal orbitals
are

|a1g〉 = 1√
3

(|xy〉 + |xz〉 + |yz〉), (B1)

∣∣eπ
g

〉 = ± 1√
3

(|xy〉 + e±2π i/3|xz〉 + e∓2π i/3|yz〉). (B2)

However, if the z axis is chosen along the trigonal [1,1,1]
direction, they can be written in a more suitable form [45]:

|a1g〉 = |3z2 − r2〉, (B3)

∣∣eπ
g,1

〉 = − 2√
6
|xy〉 + 1√

3
|yz〉,

∣∣eπ
g,2

〉 = 2√
6
|x2 − y2〉 + 1√

3
|xz〉. (B4)

Then, one may construct lz = ±1 states from the eπ
g orbitals∣∣lz

±1

〉 = ∣∣eπ
g,1 ± ieπ

g,2

〉
, (B5)

while |lz
0〉 = |a1g〉.
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Finally the j = 3/2 wave functions are:∣∣ j3/2, jz
3/2

〉 = ∣∣lz
1,↑

〉
,∣∣ j3/2, jz

−3/2

〉 = ∣∣lz
−1,↓

〉
,

∣∣ j3/2, jz
1/2

〉 =
√

2

3

∣∣lz
0,↑

〉 + 1√
3

∣∣lz
1,↓

〉

∣∣ j3/2, jz
−1/2

〉 =
√

2

3

∣∣lz
0,↓

〉 + 1√
3

∣∣lz
−1,↑

〉
. (B6)

[1] T. Takayama, J. Chaloupka, A. Smerald, G. Khaliullin, and
H. Takagi, Spin-orbit-entangled electronic phases in 4d and
5d transition-metal compounds, J. Phys. Soc. Jpn. 90, 062001
(2021).

[2] U. Öpik and M. H. L. Pryce, Studies of the Jahn–Teller effect. I.
A survey of the static problem, Proc. R. Soc. A 238, 425 (1957).

[3] I. B. Bersuker and V. Z. Polinger, Vibronic Interactions in
Molecules and Crystals (Springer-Verlag, Heidelberg, 1989).

[4] I. B. Bersuker, The Jahn–Teller Effect (Cambridge University
Press, New York, 2006).

[5] D. I. Khomskii, Transition Metal Compounds (Cambridge Uni-
versity Press, Cambridge, 2014).

[6] S. Streltsov and D. Khomskii, Orbital physics in transition metal
compounds: New trends, Phys.-Usp. 60, 1121 (2017).

[7] D. Khomskii and S. Streltsov, Orbital effects in solids: Ba-
sics, recent progress, and opportunities, Chem. Rev. 121, 2992
(2021).

[8] W. Moffitt and W. Thorson, Vibronic states of octahedral com-
plexes, Phys. Rev. 108, 1251 (1957).

[9] M. C. O’Brien, Dynamic Jahn-Teller effect in an orbital triplet
state coupled to both Eg and T2σ vibrations, Phys. Rev. 187, 407
(1969).

[10] M. Bacci, A. Ranfagni, M. Fontana, and G. Viliani, Coexis-
tence of tetragonal with orthorhombic or trigonal Jahn-Teller
distortions in an O h complex: A plausible interpretation of
alkali-halide phosphors luminescence, Phys. Rev. B 11, 3052
(1975).

[11] C. A. Bates, Jahn–Teller effects in paramagnetic crystals,
Phys. Rep. 35, 187 (1978).

[12] B. R. Judd, Jahn–Teller trajectories, Adv. Chem. Phys. LVII,
247 (1984).

[13] G. Chen and L. Balents, Spin-orbit coupling in d2 ordered
double perovskites, Phys. Rev. B 84, 094420 (2011).

[14] E. M. Plotnikova, M. Daghofer, J. van den Brink, and K.
Wohlfeld, Jahn–Teller Effect in Systems with Strong On-Site
Spin-Orbit Coupling, Phys. Rev. Lett. 116, 106401 (2016).

[15] H. Liu and G. Khaliullin, Pseudo-Jahn–Teller Effect and Mag-
netoelastic Coupling in Spin-Orbit Mott Insulators, Phys. Rev.
Lett. 122, 057203 (2019).

[16] S. Nikolaev, I. Solovyev, A. Ignatenko, V. Irkhin, and S. V.
Streltsov, Realization of the anisotropic compass model on
the diamond lattice of Cu2+ in CuAl2O4, Phys. Rev. B 98,
201106(R) (2018).

[17] H. Ishikawa, T. Takayama, R. K. Kremer, J. Nuss, R. Dinnebier,
K. Kitagawa, K. Ishii, and H. Takagi, Ordering of hidden mul-
tipoles in spin-orbit entangled 5d1 Ta chlorides, Phys. Rev. B
100, 045142 (2019).

[18] A. Paramekanti, D. D. Maharaj, and B. D. Gaulin, Octupolar
order in d-orbital Mott insulators, Phys. Rev. B 101, 054439
(2020).

[19] G. Khaliullin, D. Churchill, P. P. Stavropoulos, and H.-Y. Kee,
Exchange interactions, Jahn–Teller coupling, and multipole or-
ders in pseudospin one-half 5d2 Mott insulators, Phys. Rev.
Research 3, 033163 (2021).

[20] D. F. Mosca, L. V. Pourovskii, B. H. Kim, P. Liu, S. Sanna,
F. Boscherini, S. Khmelevskyi, and C. Franchini, Interplay
between multipolar spin interactions, Jahn–Teller effect and
electronic insulator, Phys. Rev. B 103, 104401 (2021).

[21] K. D. Warren, in Complex Chemistry: Structure and Bonding
(Springer, Berlin, 1982), Vol. 57, p. 119.

[22] S. Streltsov and D. Khomskii, Jahn–Teller Effect and Spin-Orbit
Coupling: Friends or Foes?, Phys. Rev. X 10, 031043 (2020).

[23] N. Iwahara, V. Vieru, and L. F. Chibotaru, Spin-orbital-lattice
entangled states in cubic d1 double perovskites, Phys. Rev. B
98, 075138 (2018).

[24] S. D. Kloß, M. L. Weidemann, and J. P. Attfield, Preparation of
bulk-phase nitride perovskite LaReN3 and topotactic reduction
to LaNiO2-Type LaReN2, Angew. Chem. Int. Ed. 60, 22260
(2021).

[25] C. H. Kim, S. Baidya, H. Cho, V. V. Gapontsev, S. V. Streltsov,
D. I. Khomskii, J.-G. Park, A. Go, and H. Jin, Theoretical
evidence of spin-orbital-entangled J = 1/2 state in the 3d tran-
sition metal oxide CuAl2O4, Phys. Rev. B 100, 161104(R)
(2019).

[26] H. Y. Huang, A. Singh, C. I. Wu, J. D. Xie, J. Okamoto, A. A.
Belik, E. Kurmaev, A. Fujimori, C. T. Chen, S. V. Streltsov
et al., Resonant inelastic X-ray scattering as a probe of Jeff =
1/2 state in 3d transition-metal oxide, npj Quantum Mater. 7,
33 (2022).

[27] L. Prodan, S. Yasin, A. Jesche, J. Deisenhofer, H.-A. K. von
Nidda, F. Mayr, S. Zherlitsyn, J. Wosnitza, A. Loidl, and V.
Tsurkan, Unusual field-induced spin reorientation in FeCr2S4:
Field tuning of the Jahn-Teller state, Phys. Rev. B 104, L020410
(2021).

[28] Y. Weng and S. Dong, Manipulation of Jeff = 3
2 states by

tuning the tetragonal distortion, Phys. Rev. B 104, 165150
(2021).

[29] Y. Zhang, L. F. Lin, A. Moreo, and E. Dagotto, Electronic and
magnetic properties of quasi-one-dimensional osmium halide
OsCl4, Appl. Phys. Lett. 120, 023101 (2022).

[30] F. S. Ham, Dynamical Jahn-Teller effect in paramagnetic reso-
nance spectra: Orbital reduction factors and partial quenching
of spin-orbit interaction, Phys. Rev. 138, A1727 (1965).

[31] R. Englman, The Jahn-Teller Effect in Molecules and Crystals,
Interscience Monographs and Texts in Physics and Astronomy
(Wiley-Interscience, New York, 1972).

[32] B. Keimer, D. Casa, A. Ivanov, J. W. Lynn, M. V. Zimmermann,
J. P. Hill, D. Gibbs, Y. Taguchi, and Y. Tokura, Spin Dynam-
ics and Orbital State in LaTiO3, Phys. Rev. Lett. 85, 3946
(2000).

205142-9

https://doi.org/10.7566/JPSJ.90.062001
https://doi.org/10.3367/UFNe.2017.08.038196
https://doi.org/10.1021/acs.chemrev.0c00579
https://doi.org/10.1103/PhysRev.108.1251
https://doi.org/10.1103/PhysRev.187.407
https://doi.org/10.1103/PhysRevB.11.3052
https://doi.org/10.1016/0370-1573(78)90122-9
https://doi.org/10.1002/9780470142813
https://doi.org/10.1103/PhysRevB.84.094420
https://doi.org/10.1103/PhysRevLett.116.106401
https://doi.org/10.1103/PhysRevLett.122.057203
https://doi.org/10.1103/PhysRevB.98.201106
https://doi.org/10.1103/PhysRevB.100.045142
https://doi.org/10.1103/PhysRevB.101.054439
https://doi.org/10.1103/PhysRevResearch.3.033163
https://doi.org/10.1103/PhysRevB.103.104401
https://doi.org/10.1103/PhysRevX.10.031043
https://doi.org/10.1103/PhysRevB.98.075138
https://doi.org/10.1002/anie.202108759
https://doi.org/10.1103/PhysRevB.100.161104
https://doi.org/10.1038/s41535-022-00430-0
https://doi.org/10.1103/PhysRevB.104.L020410
https://doi.org/10.1103/PhysRevB.104.165150
https://doi.org/10.1063/5.0079570
https://doi.org/10.1103/PhysRev.138.A1727
https://doi.org/10.1103/PhysRevLett.85.3946


STRELTSOV, TEMNIKOV, KUGEL, AND KHOMSKII PHYSICAL REVIEW B 105, 205142 (2022)

[33] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance
of Transition Ions (Clarendon Press, Oxford, 1970).

[34] A. Georges, L. D. Medici, and J. Mravlje, Strong correlations
from Hund’s coupling, Annu. Rev. Condens. Matter Phys. 4,
137 (2013).

[35] L. Lu, M. Song, W. Liu, A. P. Reyes, P. Kuhns, H. O. Lee,
I. R. Fisher, and V. F. Mitrović, Magnetism and local symmetry
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