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Emergent space-time supersymmetry at disordered quantum critical points

Xue-Jia Yu,1 Peng-Lu Zhao,2,3 Shao-Kai Jian,4 and Zhiming Pan5,6,*

1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2Department of Physics, Southern University of Science and Technology, Shenzhen 518071, China

3Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
4Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA

5Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
6Department of Physics, School of Science, Westlake University, Hangzhou 310024, China

(Received 3 March 2022; revised 9 May 2022; accepted 16 May 2022; published 31 May 2022)

We study the effect of disorder on the space-time supersymmetry that is proposed to emerge at the
quantum critical point of pair density wave transition in (2 + 1)-dimensional (D) Dirac semimetals and
(3 + 1)D Weyl semimetals. In the (2 + 1)D Dirac semimetal, we consider three types of disorder, in-
cluding random scalar potential, random vector potential and random mass potential, whereas the random
mass disorder is absent in the (3 + 1)D Weyl semimetal. Via a systematic renormalization-group anal-
ysis, we find that any type of weak random disorder is irrelevant due to the couplings between the
disorder potential and the Yukawa vertex. The emergent supersymmetry is, thus, stable against weak ran-
dom potentials. Our paper will pave the way for exploration supersymmetry in realistic condensed-matter
systems.
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I. INTRODUCTION

About five decades ago, the space-time supersymmetry
(SUSY) was proposed as a possible way of solving the
hierarchy problem of the standard model [1–4] and the cos-
mological constant problem [5]. Later, some supersymmetric
theories have been studied as toy models to understand
strong-coupling physics rigorously [6,7]. Due to these at-
tractive features, SUSY has been studied intensively in the
past 50 yr, and there is some expectation before that SUSY
may be revealed in the large hadron collider (LHC). Unfor-
tunately, the recent experiments at the LHC have found no
evidence of SUSY and/or its spontaneous breaking in particle
physics.

Three-dimensional Weyl fermions [8–10] in noncen-
trosymmetric materials [11–15] provide an opportunity to test
and investigate important concepts developed in the context of
high-energy physics in realistic condensed-matter systems. It
has been suggested that SUSY can emerge in the low-energy
limit of a number of nonsupersymmetric models [16–26]. In
particular, SUSY is proposed to emerge at quantum critical
points (QCPs) in Bose-Fermi lattice models [27,28], in the
(2 + 1)-dimensional (D) surface states of topological in-
sulators [29–33], as well as at multicritical points in some
low-dimensional systems [34–36]. Moreover, an interesting
recent suggestion [37] is that SUSY can be realized at certain
pair-density-wave (PDW) superconducting quantum critical
points of ideal Weyl semimetals (WSMs) [38,39].
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The realization of SUSY at QCPs relies crucially on the
fact that the infrared fixed point is stable against small pertur-
bations. In particular, for the emergent SUSY to be realized, it
must be robust when the fermions are subject to small pertur-
bations from quenched disorder and other dissipation effects.
Here, we are particularly interested in the impact of quenched
disorder on the emergent SUSY because disorder unavoid-
ably exists in all realistic materials. It is well known that
disorder plays an essential role in condensed-matter systems
[40–48] and may lead to plenty of prominent phenomena,
such as Anderson localization and metal-insulator transition.
In graphenelike Dirac semimetals (DSMs), depending on the
specific type, disorder can either enhance or reduce the ef-
fective Coulomb interaction strength [49–55], which, in turn,
drastically modifies the phase diagram obtained in the clean
limit [49–55]. Moreover, disorder may have a significant
impact on the low-temperature properties of various Dirac
or Weyl semimetals, such as the conductivity of graphene
[50,56–58], the optical conductivity of WSMs [59], and the
low-energy spectral, thermodynamic, and transport behaviors
of d-wave cuprate superconductors [45,60–63]. Disorder also
plays a vital role in quantum Hall systems [64–67] and topo-
logical insulators [29,30].

In this paper, we investigate the stability of emergent
SUSY against the disorder scattering. We focus on the
disorder-induced unusual renormalization of the fermion
velocity [53,62,68] and examine whether such a renormal-
ization effect causes a substantial difference between the
velocities of fermions and bosons at low energies and ru-
ins the emergent SUSY. Based on this analysis, we are
able to identify the influence of nonmagnetic disorder on
the particular fixed point that is argued to display an
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FIG. 1. Schematic RG flow near the SUSY fixed point as a
function the Yukawa coupling g2 and quench disorder strength �.
The emergent SUSY fixed point is stable for weak random quench
disorders from our one-loop level RG calculations.

emergent SUSY at the QCP of PDW transition in (3
+ 1)D WSMs and (2 + 1)D DSMs [37]. In the case
of (2 + 1)D DSMs, we consider three types of dis-
order, including random scalar potential (RSP), random
vector potential (RVP), and random mass (RM). In (2
+ 1)D, our systematic renormalization-group (RG) analy-
sis reveals that weak RVP, RMP, and RSP are irrelevant
at the QCPs where fermion velocity and boson velocity
flow into same value under renormalization, which cer-
tainly does not breaks the emergent SUSY. In (3 + 1)D
WSMs, the disorder potential becomes more irrelevant, and
the effective SUSY is robust against weak disorder. The
schematic RG flow diagram for emergent SUSY is shown
in Fig. 1.

This paper is structured as follows. In Sec. II, we present
the effective model for (2 + 1)D disordered DSMs and per-
form the RG calculations. In Sec. III, the same analysis is
carried out in (3 + 1)D WSMs. We briefly summarize the
results of this paper in Sec. IV. Further RG details for our
calculations are provided in Appendix B.

II. (2 + 1)D DIRAC SEMIMETALS

As demonstrated in Ref. [37], a spac-time SUSY could
emerge in the low-energy region at the PDW QCP of (2 +
1)D DSMs only when the number of massless Dirac fermions
is Nf = 2. In this case, the low-energy effective action at the
PDW criticality in a clean system is given by

S = S f + Sb + SI , (1)

S f =
∫

d2x dτ
∑
n=±

ψ†
n

[
∂τ + iv f

2∑
j=1

γ j∂ j

]
ψn, (2)

Sb =
∫

d2x dτ

{ ∑
n=±

[
|∂τφn|2 + v2

b

2∑
j=1

|∂ jφn|2

+r|φn|2 + u|φn|4
]

+ u+−|φ1|2|φ2|2
}

, (3)

SI =
∫

d2x dτ g
∑
n=±

[
φnψ

T
n σyψn + H.c.

]
, (4)

where γ j = (σx, σy). σα, α = x, y is the Pauli matrix with spin
indices. S f corresponds to the action for two noninteracting
two-component Dirac fermions ψ± at two Dirac points Q±
[69,70] with quartic and higher-order self-coupling terms be-
ing irrelevant [27] at low energies. Sb describes the quantum
fluctuation and the self-coupling of the PDW order parameter
φn near the QCP, where φ± is the superconducting order
with momentum 2Q±, respectively. Terms with higher pow-
ers of φn are all irrelevant, whereas φ∗

n∂τφn is excluded by
particle-hole symmetry [37]. SI represents the Yukawa cou-
pling between Dirac fermions and bosons. The terms of the
forms φ∗

−ψ+σyψ+ and φ∗
−ψ+σyψ− are not allowed because

they do not satisfy momentum conservation [27]. Therefore,
the effective action given above is of the most general form.
It has been shown through renormalization-group analysis
that an emergent space-time SUSY occurs at the low-energy
limit. A necessary condition for the emergent SUSY is that
velocities of fermions and bosons flow to the same value
under RG, which renders the emergent Lorentz symmetry. It
was claimed that such an emergent Lorentz symmetry can be
naturally realized in a number of correlated electron systems
[27–33,37].

The aim of the present paper is to examine whether the
emergent SUSY is robust against disorder scattering. For this
purpose, we now introduce a direct fermion-disorder coupling
term to the system via the standard form, also see Appendix A
[45,49–51,53,63,67,71],

Sdis =
∫

d2x dτ
∑
n=±

ψ†
n

(∑



V
 (x)


)
ψn, (5)

where V
 (x) stands for the random potential and 
 labels
the type of the disorder potential. We assume V
 (x) to be a
quenched Gaussian white-noise potential characterized by the
following identities:

〈V
 (x)〉 = 0, 〈V
 (x)V
′ (x′)〉 = �
δ

′δ(x − x′), (6)

where 〈· · · 〉 denotes the average over disorder distribution
and �
 is introduced to characterize the strength of random
potential.

We consider three different types of disorder classified
by the different matrices 
. In particular, 
 = I2×2 for RSP,

 = σz for RM, and 
 = (σx, σy) for RVP. These three types
are most frequently studied in the literature, and they can be
induced by some specific mechanisms in realistic materials
[71–77]. These three types of random potential might exist
individually or coexist in the same material. To be general,
we assume that they coexist in the system and analyze their
impact by performing RG calculations.

The random potential V (x) can be properly averaged
by employing the replica trick [40,52,54,59,78,79], which
leads us to an interacting effective action of short-range
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fermion-fermion interaction,

Sdis = − 1

2

∫
d2x dτ dτ ′

{ ∑
n=±

[
�S

(
ψ†α

n ψα
n

)
x

(
ψ†β

n ψβ
n

)
x′ + �M

(
ψ†α

n σzψ
α
n

)
x

(
ψ†β

n σzψ
β
n

)
x′

+ �V

∑
j

(
ψ†α

n σ jψ
α
n

)
x

(
ψ†β

n σ jψ
β
n )x′

]
+ 2�′

S

(
ψ

†α
+ ψα

+
)

x

(
ψ

†β
− ψ

β
−
)

x′

+ 2�′
M (ψ†α

+ σzψ
α
+)x(ψ†β

− σzψ
β
−)x′ + 2�′

V

∑
j

(ψ†α
+ σ jψ

α
+)x(ψ†β

− σ jψ
β
−)x′

}
, (7)

where j = (x, y), α and β are the replica indices, x ≡ (x, τ )
and x′ ≡ (x, τ ′) are the space-time coordinates. The repeated
indices α and β are summed automatically. In the replica
theory, the replica limit

∑
α = N → 0 is implemented in the

following RG calculation. Three parameters �S , �M , and
�V characterize the effective strength of quartic couplings of
Dirac fermions induced by averaging over RS, RM, and RVP,
respectively. The two pieces of Dirac fermions share the same
random potential. Three cross terms characterized by �′

S , �′
M ,

and �′
V are induced in the replica limit. In the RG analysis,

the bare values of the parameters are the same, �′0
S = �0

S ,
�′0

M = �0
M , and �′0

V = �0
V , moreover, the RG equations for

�
 and �
′ are the same (see Appendix B for details), so we
focus on �
 in the following.

As shown in previous calculations [53,62,68], disorder can
strongly affect the RG flow of fermion velocity as the energy
is lowered. If the disorder coupling is relevant that flow to a
finite value at the low-energy limit, it will drive the fermion
velocity to vanish at sufficiently low energies, which then
spoils the Lorentz symmetry for the fermion sector, but not for
the boson sector. As a result, the emergent Lorentz symmetry,
and, thus, the emergent SUSY will be ruined by disorder.
However, whether this takes place relies crucially on the scale
dependence of disorder coupling parameter. In the case of
(2 + 1)D DSMs, naive power counting, according to Eqs. (2)
and (7) shows that disorder is marginal. A careful analysis
of the marginal disorder effect is helpful to tell us whether
an irrelevant and a relevant coupling need to be investigated
further.

To this end, we carry out a detailed RG analysis starting
from the critical action with r = 0, represented by Eq. (1)
along with Eq. (7) by considering the leading order of the
ε expansion, where ε = 4 − D = 3 − d , D and d are the
space-time dimension and the spatial dimension, respectively.
The pertinent one-loop Feynman diagrams are shown in
Fig. 2. After integrating out the fast modes defined within
the momentum shell e−l� < |p| < � and then perform-
ing RG transformations [80], we obtain the following RG
equations (the detailed results are presented in Appendix B):

dv f

dl
= v f

[
g2(G1 − G0) − 2

∑



�


]
, (8)

da

dl
= g2

(
1 − a2

2a
+ a(G0 − G1)

)
+ 2a

∑



�
, (9)

dg2

dl
= εg2 − g4(1 − G0 + 3G1) +

(
4�S + 2

∑



�


)
g2,

(10)
d�S

dl
= (ε − 1)�S + 2�S (�S + �M + 2�V )

+ 4�M�V + (G0 − 3G2 − 2G1)�Sg2, (11)

d�M

dl
= (ε − 1)�M − 2�M (�S + �M − 2�V )

+ 4�S�V − (G0 + 3G2 + 2G1)�Mg2, (12)

d�V

dl
= (ε − 1)�V + 2�M�S − (G0 + 2G1)�V g2, (13)

where a = vb/v f , G0 = 4
a(a+1)2 , G1 = 4(2a+1)

3a(a+1)2 , and G2 =
4(2+a)

3a(a+1)2 . In the above calculations, we have rescaled all the

couplings as follows: g2�−εSD−1/[2(2π )D−1vD−1
f ] → g2 and

(b)(a)

(c)

(e)

(g) (h)

(f)

(d)

FIG. 2. Feynman diagrams for all the relevant one-loop diagrams
that survive within replica limit. Here, the solid line represents the
free fermion propagator, the wavy line is the free boson propagator,
and the dashed line is the disorder.
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�
�1−εSD−1/[(2π )D−1v2
f ] → �
 with Sd = 2πd/2/
(d/2)

as the area of the unit sphere in d dimensions. By setting all
�
 = 0, Eqs. (9) and (10) recover the RG equations for v f ,
a, and g2 previously obtained in Refs. [27,37]. In the case of
disordered Dirac fermion systems with g = 0, our RG results
for �
 are in accordance with that previously obtained in
Refs. [56,57,81]. The RG equations for u and u+−, which are
not shown here, are exactly the same as those presented in
[27,37] since there is no direct coupling between boson and
fermion disorder potential. In the case of the clean system
as demonstrated in Refs. [27,37], a∗ = 1 is the only stable
infrared fixed point for a, which means that the bosons and
fermions have the same velocity at low energies. Moreover,
the coupling constant g, u, and u+− will flow to a strongly
coupled fixed point that preserves SUSY. In the following, we
first analyze the effects of single disorder and then consider
the interplay between different types of disorder.

We now consider the case in which RVP exists by itself by
taking �M = �S = 0. Noting that the physical case of (2 +
1)D corresponds to ε → 1, Eq. (13) becomes

d�V

dl
= − (G0 + 2G1)�V g2. (14)

Thus, the effective coupling strength for RVP, namely, �V

is irrelevant and flows to zero. Without the fermion-boson
coupling g, RVP is marginal, which originates from the exis-
tence of a time-independent gauge transformation that ensures
RVP unrenormalized and is valid at any order of loop expan-
sion [50,51,67,68,81]. Nevertheless, near the emergent SUSY
fixed point where the coupling constant g remains finite, RVP
is irrelevant, and, thus, the emergent SUSY is stable.

We then assume that RM exists alone, which means �S =
�V = 0 in Eq. (12), and we have

d�M

dl
= −2�2

M − (G0 + 3G2 + 2G1)�Mg2. (15)

From the RG function, we see that �M is always irrelevant.
We, thus, can infer that the emergent SUSY is also robust
again RM.

The RSP can be similarly analyzed. The simplified RG
equations for RSP are

da

dl
=g2

(
1 − a2

2a
+ a(G0 − G1)

)
+ 2a�S, (16)

dg2

dl
=g2 − g4(1 − G0 + 3G1) + 6g2�S, (17)

d�S

dl
=2�2

S + (G0 − 3G2 − 2G1)�Sg2. (18)

There exist two fixed points, Gaussian fixed point (g2 = �s =
0) and the SUSY fixed point. The Gaussian fixed point is
unstable. With only random scalar potential (�s �= 0, g2 = 0),
the system will flow into strong disorder regime and explicitly
breaks the Lorentz symmetry. On the contrary, g2 has a finite
critical point g2

c,

g2
c = 1 + 6�S

1 − G0 + 3G1
, (19)

where the RG function of �S near �S = 0 is negative (G0 −
3G2 − 2G1 < 0), and we expect small �S is irrelevant. The

FIG. 3. Flow diagram on the �S-a plane with g2 = g2
c when

the system contains only RSP. There is an stable fixed point(red
point)(g2, �∗

S, a∗) = (g2
c, 0, 1). Within the g2

c plane, no other fixed
point exists, and any RSP �S is irrelevant at the one-loop level. The
system always flows into the weak disorder regime.

RG flow of the equations within the critical plane g2 = g2
c

is shown in Fig. 3. Finite g2 will always pull back the RG
flow, and RSP �S is irrelevant eventually at the one-loop level
for any initial values. We find that SUSY is stable: an arbi-
trarily strong RSP flows to the weak-coupling regime in the
lowest-energy limit. This means that the RSP is an irrelevant
perturbation, which is consistent with the one-loop RG result
in Ref. [82]. Previous results show that the RSP is marginally
relevant for Dirac fermions and will induce an instability of
the system, leading to a diffusive motion of the Dirac fermions
[42,45,52,54,56,57,81]. However, our result shows that the
RSP is rendered irrelevant by the critical fluctuations at the
PDW QCP through the finite Yukawa coupling g2 between
fermion and boson. There exists no diffusive behaviors as long
as g2 is finite.

When more than one type of disorder exists, from the prop-
erties of the RG equation, Eqs. (12)–(14) that the coexistence
of any two types disorder dynamically generate the third one.
Thus, we need to analyze the full set of RG equations given by
Eqs. (8)–(13). It is easy to see that there is a fixed point given
by (v f , a∗, g2∗,�∗

S,�
∗
M ,�∗

V ) = (v f , 1, ε
3 , 0, 0, 0), where v f

can take any value. Combining with the RG equation for
coupling constants u and u+−, it turns out that this is the
SUSY fixed point. Now we examine whether this fixed point
is stable by expanding the RG equation at the fixed point, and
calculate eigenvalues of the stability matrix (see Appendix C).
The eigenvalues of the stability matrix are all negative except
for one marginal direction at v f . So we can conclude that the
emergent SUSY is robust against weak disorders.

III. (3 + 1)D WEYL SEMIMETALS

In this section, we examine the disorder effects on the
emergent SUSY in (3+1)D WSMs [37]. The effective action
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of the disordered system in the vicinity of PDW QCP is
given by

S = S f + Sb + SI + Sdis, (20)

S f =
∫

d4x
∑
n=±

[
ψ†

n ∂τψn +
3∑

j=1

iv f jψ
†
n γ j

n ∂ jψn

]
, (21)

Sb =
∫

d4x

{ ∑
n=±

[
|∂τφn|2 +

3∑
j=1

v2
b j |∂ jφn|2

+r|φn|2 + u|φn|4
]

+ u+−|φ+|2|φ−|2
}

, (22)

SI =
∫

d4x g
∑
n=±

[φnψnσ
yψn + H.c.], (23)

Sdis = −1

2

∫
d3x dτ dτ ′

[
�S (ψ†

ασ0ψα )x(ψ†
βσ0ψβ )x′

+
∑

i=x,y,z

�i(ψ
†
ασiψα )x(ψ†

βσiψβ )x′

]
, (24)

where γ
j

± = (σ x, σ y,±σ z ). Now, ψ± denotes the two-
component Weyl fermions at two Weyl points Q±, and φ± is
the superconducting order with momentum 2Q±, respectively.
In the (3 + 1)D Weyl semimetal, RVP has three components,
i.e., RM becomes the third component [83,84]. In general,
the fermion velocity is anisotropic with unequal values along
different directions. As shown in Ref. [37], even in the ex-
tremely anisotropic case, an emergent Lorentz symmetry can
be established in the lowest-energy limit. Our current concern
is whether this emergent Lorentz symmetry can be broken by
quenched disorder, thus, it suffices to consider the isotopic
case. We now can assume that v f x = v f y = v f z = v f , and
make the same assumption for the bosonic field. We employ
the same symbol a to identify the ratio between boson and
fermion, and the same definition of G0, G1, and the rescaled
couplings in Sec. II. Calculating the same diagrams in Fig. 2,
we obtain the following RG equations:

d ln v f

dl
= g2(G1 − G0) − 2

(
�S +

∑
i

�i

)
, (25)

d ln a2

dl
= g2(1 − a2)

a2
− 2g2(G1 − G0) + 4

(
�S +

∑
i

�i

)
,

(26)

d ln g2

dl
= ε − g2(3G1 − G0 + 1) +

(
6�S + 2

∑
i

�i

)
,

(27)

d�S

dl
= (ε − 1)�S + 2�S

(
�S +

∑
i

�i

)

+2

3

∑
i

∑
j �=i

�i� j + g2(G0 − 3G2 − 2G1)�S, (28)

d�i

dl
= (ε − 1)�i + 4

3

∑
j �=i

�S� j

−2

3
�i

(
�S + 2�i −

∑
j

� j

)

−�ig
2(G0 + G2 + 2G1), (29)

in these equations, the index i is summed over x, y, and z.
The analysis of these RG equations follows similarly as per-
formed in Sec. II. First we consider only a single vector
component disorder exists, which means

�i �= 0, � j �=i = 0, �S = 0, (30)

by substituting this conditions to Eqs. (25)–(29), three sim-
plified RG equations for a, g2, and �i are obtained, we just
exhibit the result for disorder coupling as

d�i

dl
= (ε − 1)�i − 2

3
�2

i − �ig
2(G0 + G2 + 2G1). (31)

Therefore, for an exact (3 + 1)D system corresponding to ε =
0, any component of RVP is irrelevant. As a result, in (3 +
1)D WSMs, the emergent SUSY is robust against any single
component of RVP.

For there is only RSP in the system, we have �i = 0. Now
Eqs. (25)–(29) are simplified to

d ln a2

dl
=g2(1 − a2)

a2
− 2g2(G1 − G0) + 4�S, (32)

d ln g2

dl
=ε − g2(3G1 − G0 + 1) + 6�S, (33)

d�S

dl
=(ε − 1)�S + 2�2

S + g2(G0 − 3G2 − 2G1)�S, (34)

according to Eq. (33), and noting the fact 3G1 − G0 + 1 > 0,
the stable fixed point for g2 is located at g2

c = 6�S/(3G1 −
G0 + 1). Weak RSP itself is irrelevant as indicated in because
G0 − 3G2 − 2G1 < 0. Whereas for strong RSP, the scenario is
similar to the case of (2 + 1) DSMs, namely, the RSP becomes
irrelevant due to the interplay between the Weyl fermion and
the PDW order parameter. We, thus, conclude that the the
emergent SUSY is stable against RSP.

Next, we consider the coexisting case. According to
Eq. (28), the coexistence of two components of RVP can
dynamically generate RSP even when RSP does not exist at
the beginning. We also learn from Eq. (29) that the coexis-
tence of RSP and any component of RVP produce the other
two components. Therefore, we need to consider the generic
case in which all three components of RVP coexist with RSP.
Now the disorder effects should be analyzed by solving the
complete set of equations given by Eqs. (25)–(29). It is hard
to solve these coupled equations, but fortunately, it is simple
to show that in the weak disorder regime the SUSY fixed point
is stable against all random potentials, similar to the case of
(2 + 1) DSMs.

IV. SUMMARY AND DISCUSSION

To summarize, we perform a standard perturbative RG to
study the effect of disorder on the emergent SUSY in (2 + 1)D
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DSMs [27,37] and (3 + 1)D WSMs [37]. According to our RG
results, the effective SUSY fixed point is robust against any
weak disorder irrespective of the type of disorder potentials.
Our RG analysis of the disorder effects on the emergent SUSY
appearing in (2 + 1)D DSMs [27,37] and (3 +1 )D WSMs
[37] can be directly extended to other analogous models,
which may be more realistic to detect emergent SUSY in
quantum materials. In our one-loop RG analysis, we have
omitted new vertex that could be generated from the disorder
potential and the Yukawa coupling. It will be interesting to
include their effects, although at tree-level they are irrelevant.
Our paper can shed new light on the understanding and explor-
ing the emergent SUSY in realistic condensed-matter systems.
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APPENDIX A: DISORDER POTENTIALS

In this Appendix, we briefly consider the possible disorder
potential in the two-component Dirac (Weyl) system. The
original spinful fermion annihilation operator ψ can be ex-
panded around two-Dirac (Weyl) point Q±,

ψ (x) = e−iQ+·xψ+(x) + e−iQ−·xψ−(x), (A1)

where ψ± corresponds to the two low-energy Dirac (Weyl)
fermion. For the fermion system ψ , a general disorder poten-
tial takes the form

Hdis =
∫

dd x ψ†(x)

(∑



V
 (x)


)
ψ (x), (A2)

where the V
 (x) stands for the randomly distributed potential
and 
 = I, σμ (μ = x, y, z) labels type of the disorder po-
tential. We focus on the quenched disorder potential V
 (x),
with the Gaussian white-noise potential characterized by the
following identities:

〈V
 (x)〉 = 0, 〈V
 (x)V
′ (x′)〉 = �
δ

′δd (x − x′). (A3)

Substituting the fermion field Eq. (A1) into the disordered
Hamiltonian Hdis, we can arrive at the disorder Hamiltonian
for the two low-energy Dirac (Weyl) fermion ψ±. Note that for
the coupling between the two-Dirac field, e.g., ψ†

+(x)
ψ−(x),
there is an overall oscillating factor e±i(Q++Q− )·x. Such disor-
der potential coupled the two-Dirac (Weyl) fermion ψ± will
be small, in general. We only need to consider the disorder
Hamiltonian Eq. (5) with respect to a piece of the Dirac
fermion. It should be emphasized that the two pieces of Dirac
(Weyl) fermion share the same statistical distribution of ran-
dom potential.

APPENDIX B: RG DETAILS

We present here the detailed calculation of Figs. 2(a)–2(h)
as well as the RG equations in (2 + 1)D, the calculation for
(3 + 1)D is directly followed, which is not detailed shown
here.

From the free action of fermions and bosons,

S f 0 =
∫

d2x dτ
∑
n=±

ψ†
n

[
∂τ + iv f

2∑
j=1

γ j∂ j

]
ψn, (B1)

Sb0 =
∫

d2x dτ

{∑
n=±

[
|∂τφn|2 + v2

b

2∑
j=1

|∂ jφn|2
}

, (B2)

the free propagators for fermions and bosons are

G0(k) = 1

ikτ − v f γ · k
,

D0(k) = 1

k2
τ + v2

bk2
,

with k = (kτ , k) in the momentum space through replacement
(∂τ , ∂i ) → (ikτ , iki ). The free propagators for the two pieces
of the Dirac fermion take the same form. For Fig. 2(a), it
corresponds

�(k) = −2g2
∫

p
Tr

[
σ yGT

0 (p)σ yG0(−p − k)
]

= g2Sd�
−ε

2(2π )dv3
f

l

[
k2
τ +

(
2 − 3

d

)
v2

f k2

]
, (B3)

where
∫

p ≡ ∫
d pτ dd p/(2π )D is the (D = d + 1)-dimensional

momentum integral and Sd = 2πd/2/
(d/2) is the area of the
unit sphere in d dimensions. For Fig. 2(c), it gives

�
(b)
f (k) = −4g2(−)

∫
p
σ yGT

0 (p)σ yD0(−k − p)

= g2Sd�
−ε

2(2π )dv3
f

l

(
4(ikτ )

a(a + 1)2
− 4(2a + 1)

ad (a + 1)2
(v f γ · k)

)

= g2Sd�
−ε

2(2π )dv3
f

l[G0(ikτ ) − G1(v f γ · k)]. (B4)

The diagram of Fig. 2(d) is as follows:

�
(c)
f (k) = −

∑



(�
 + �′

 )

∫
dd k

(2π )d

G0(k)


=
∑




(�
 + �′

 )

�1−εSd

(2π )dv2
f

(ikτ )�, (B5)

which only contribute to the velocity renormalization at one
loop. The diagram of Fig. 2(e) is given by

δ�
(d )

 = − 8�
g2

∫
k
σ yD(−k)GT (k)
T GT (k)σ y, (B6)

δ�
′(d )

 = − 8�′


g2
∫

k
σ yD(−k)GT (k)
T GT (k)σ y. (B7)
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Calculating out these integrals for different 
a’s one by one,
we have

δ�
(d )
S =�S

g2Sd�
−ε

2(2π )dv3
f

(G0 − dG2), (B8)

δ�
(d )
M =�M

g2Sd�
−ε

2(2π )dv3
f

(−G0 − dG2), (B9)

δ�
(d )
V =�V

g2Sd�
−ε

2(2π )dv3
f

(−G0), (B10)

and the same for � → �′. The diagram of Fig. 2(b) involves
�γ vertex and is given by

δg(h) = g
∑




�


∫
k

T GT

+(k)σ yG+(−k)


= gl
∑




�
�1−εSd

(2π )dv2
f


T σ y
. (B11)

The remaining diagrams Figs. 2(f)–2(h) correspond to pure
coupling between disorder potentials [67], which can be ob-
tained as follows:

δ�
(e, f ,g)
S =

(
Sd

(2π )dv2
f �

2−d

)
l[+2�S (�S + �M + 2�V ) + 4�M�V ], (B12)

δ�
(e, f ,g)
M =

(
Sd

(2π )dv2
f �

2−d

)
l[−2�M (�S + �M − 2�V ) + 4�S�V ], (B13)

δ�
(e, f ,g)
V =

(
Sd

(2π )dv2
f �

2−d

)
l[2�M�S], (B14)

and similarly for the other three terms,

δ�
′(e, f ,g)
S =

(
Sd

(2π )dv2
f �

2−d

)
l[+2�′

S (�S + �M + 2�V ) + 4�′
M�′

V ], (B15)

δ�
′(e, f ,g)
M =

(
Sd

(2π )dv2
f �

2−d

)
l[−2�′

M

(
�S + �M − 2�V

) + 4�′
S�

′
V ], (B16)

δ�
′(e, f ,g)
V =

(
Sd

(2π )dv2
f �

2−d

)
l[2�′

M�′
S]. (B17)

According to the above results, label and rescale the couplings as follows:

G0 = 4

a(1 + a)2
, G1 = 4(1 + 2a)

da(1 + a)2
, G2 = 4(2 + a)

da(1 + a)2
, (B18)

g2�−εSd

2(2π )dv3
f

→ g2,
�
�1−εSd

(2π )dv2
f

→ �
.

Then, the results obtained for Figs. 2(a)–2(h) can be simplified, leading to the one-loop quantum corrections of the action. These
one-loop results produce the RG equations,

dv f

dl
= v f

[
g2(G1 − G0) −

∑



�
 −
∑




�′



]
, (B19)

da

dl
= g2

(
1 − a2

2a
+ a(G0 − G1)

)
+ a

∑



�
 + a
∑




�′

, (B20)

dg2

dl
= εg2 − g4(1 − G0 + 3G1) +

(
4�S −

∑



�
 + 3
∑




�′



)
g2, (B21)

d�S

dl
= (ε − 1)�S + 2�S (�S + �M + 2�V ) + 4�M�V + (G0 − 3G2 − 2G1)�Sg2, (B22)

d�M

dl
= (ε − 1)�M − 2�M (�S + �M − 2�V ) + 4�S�V − (G0 + 3G2 + 2G1)�Mg2, (B23)

d�V

dl
= (ε − 1)�V + 2�M�S − (G0 + 2G1)�V g2, (B24)

d�′
S

dl
= (ε − 1)�′

S + 2�′
S (�S + �M + 2�V ) + 4�′

M�′
V + (G0 − 3G2 − 2G1)�′

Sg2, (B25)
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d�′
M

dl
= (ε − 1)�′

M − 2�′
M (�S + �M − 2�V ) + 4�′

S�
′
V − (G0 + 3G2 + 2G1)�′

Mg2, (B26)

d�′
V

dl
= (ε − 1)�′

V + 2�′
M�′

S − (G0 + 2G1)�′
V g2, (B27)

Since the initial values of the parameters are �0

 = �′0


 , �
 ,
and �′


 will flow in the same way. We can simplify the
equations by taken �′


 = �
 and produce the Eqs. (8)–(13).
For the case of (3 + 1)D, due to the change in disorder

typies, the one-loop corrections of disorder couplings need to
recalculate, the extension is direct for which we do not show
details here.

APPENDIX C: GENERAL DISORDER CASE

In this Appendix, we study the case where all the disorder
potential s appears. We focus on the regime near the Lorentz
symmetric fixed point a = 1 + δa with small δa 	 1. The RG
equations in 2D now become

dv f

dl
= v f

[
g2 2

3
δa − 2

∑



�μ

]
, (C1)

dδa

dl
=

(
−5

3
g2 + 2

∑



�


)
δa, (C2)

dg2

dl
= εg2 − g4(3 − 2δa) +

(
4�S + 2

∑



�


)
g2, (C3)

d�S

dl
= (ε − 1)�S + 2�S (�S + �M + 2�V )

+4�M�V +
(

−4 + 17

3
δa

)
�Sg2, (C4)

d�M

dl
= (ε − 1)�M − 2�M (�S + �M − 2�V )

+4�S�V −
(

6 − 29

3
δa

)
�Mg2, (C5)

d�V

dl
= (ε − 1)�V + 2�M�S −

(
3 − 14

3
δa

)
�V g2,

(C6)

There is a fixed point given by (v f , a∗, g2∗,�∗
S,�

∗
M ,�∗

V ) =
(v f , 1, ε

3 , 0, 0, 0). For the small disorder case, the stability
matrix at this fixed point is⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2
9εv f 0 −2v f −2v f −2v f

0 − 5
9ε 0 2 2 2

0 2
9ε2 −ε 2ε 2

3ε 2
3ε

0 0 0 −1 − ε
3 0 0

0 0 0 0 −1 − ε 0

0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C7)

The eigenvalues of the stability matrix are all negative except
for one marginal direction at v f . We can conclude that the
coupling between Yukawa potential and disorder will suppress
the weak random disorder potential. a similar argument can
also be applied to the three-dimensional case.
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