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Renormalization-group-inspired neural networks for computing topological invariants
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We show that artificial neural networks (ANNs) can, to high accuracy, determine the topological invari-
ant of a disordered system given its two-dimensional real-space Hamiltonian. Furthermore, we describe a
“renormalization-group” (RG) network, an ANN which converts a Hamiltonian on a large lattice to another
on a small lattice while preserving the invariant. By iteratively applying the RG network to a “base” network that
computes the Chern number of a small lattice of set size, we are able to process larger lattices without retraining
the system. We therefore show that it is possible to compute real-space topological invariants for systems larger
than those on which the network was trained. This opens the door for computation times significantly faster and
more scalable than previous methods.
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I. INTRODUCTION

Machine learning (ML) has been redefining the way
computer-related problems are solved [1,2]. Until about a
decade ago, the methodology of algorithmic problem solving
had been quite clear: A human programmer looks for rules
and regularities, which are then transformed into conditional
statements run by the computer. Machine learning takes a
different approach, based on the concept of training, i.e.,
repeatedly changing the values of internal parameters in the
algorithm in order to reach a desired goal. After the training,
the ML algorithm finds a solution by itself, earning it the
name artificial intelligence. Owing to massive improvements
in both software and hardware, machine learning has emerged
as a game-changing approach to formidably difficult prob-
lems, well beyond the reach of traditional algorithms. Popular
examples of such problems are image and pattern recognition
[3] and natural language processing [4,5].

The great promise held by machine learning did not
evade the notice of physicists [6–9]. ML approaches are now
widespread in many areas of experimental physics involving
the analysis of large amounts of data [10–14]. Additionally,
ML techniques—and in particular, artificial neural networks
(ANNs)—keep finding applications in theoretical condensed
matter physics [15]. For example, ANNs have been used as a
means to detect phase transitions [16–20] and solve quantum
many-body problems [21–26]. Typically, a representation of
the system is chosen (like Hamiltonian parameters or wave
function), and the ML algorithm learns to calculate a de-
sired property (like phase classification, ground-state energy,
or average magnetization). An important advantage of ML
techniques in solving such problems is the sizable speedups
they offer compared to traditional methods.

*These authors contributed equally to the work.

With the advent of topological phases of matter in the
past several decades [27–31], calculating topological invari-
ants has become a highly relevant problem in contemporary
condensed matter physics [32–37]. These integer-valued in-
variants are important markers of the bulk topology and the
edge properties. A famous example is the quantum Hall effect
[38,39], where the relevant topological invariant—the Chern
number—counts the number of chiral edge modes [32,40].
In translation-invariant and noninteracting systems, calculat-
ing topological invariants is usually a straightforward task
[31,41]. However, the presence of disorder alters the pic-
ture and makes the calculation challenging. In two spatial
dimensions, there are several methods for solving this prob-
lem [42,43], but their scaling with the system size makes
them unfeasible for large systems. It is therefore tempting to
utilize ML techniques to tackle this problem. In particular,
since topological invariants are integers, the task at hand is
actually a classification problem, for which ML algorithms
are particularly well suited [44–52].

Despite the apparent appeal and compatibility of ML tech-
niques to the task of calculating topological invariants of large
disordered systems, there is one clear drawback. The over-
whelming majority of ML algorithms assume a constant input
size, whereas we would like our method to be general—we do
not wish to train a separate ANN for each system size. Further-
more, generating labeled samples and training an ANN both
become computationally intractable, for large lattice sizes.

To overcome these hurdles, we employ a two-stage so-
lution strategy, as illustrated in Fig. 1(a). First, we train an
ANN to solve the simple problem of calculating the Chern
number of a small system with a fixed size. We shall refer
to this as the “base” network. Then, we train a second ANN
whose goal is to map a large system to a smaller one, while
preserving the Chern number. This resizing network applies a
non-linear transformation to the original system and reduces
its linear size by a factor of 2. Crucially the network is ca-
pable of reducing any N × N system to an effective N
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FIG. 1. (a) RG and base network block structure. In the first stage, the base network is trained to find the Chern numbers of 4 × 4 lattices.
Then a compound network (thick outline), which includes the pretrained base network and a resizing “RG” network, is trained on 8 × 8
lattices. The RG network reduces the lattice dimensions by 2 while preserving the Chern number, allowing it to be solved by the base network.
(b) Runtime scaling comparison between the Bott index method and successive application of an RG network. The times for both methods
are normalized by the runtime for the 4 × 4 case calculated using the Bott index method. The Bott index method, used as a baseline in this
work, is O(n4) to O(n6), depending on the efficiency of diagonalization methods, where n is the linear lattice size. Extreme parallelization
allows the RG method to run in sublinear time. Notice that the accuracy of the result is not shown; it is likely that the accuracy of our method
declines for particularly large lattices, though additional research may change this. (c) Extension of the diagram in panel (a) to arbitrary lattice
sizes by iteratively applying the RG network, then computing the Chern number via the base network once the lattice has been reduced to
size 4 × 4.

one. It then becomes possible to start with a large system
and iteratively apply the resizing network, without further
training, until it reaches the fixed small size accepted by the
base network. At this point, the reduced system is fed into the
base network, which outputs its Chern number. The iterative
process is demonstrated in Fig. 1(c). This architecture allows
for a very substantial speedup in computation time compared
to the standard methods, as shown in Fig. 1(b). Though the
base network is not the source of the computational speedup,
expressing the base Chern solver as a neural network allows
easier integration with the RG network during training.

Mapping a large system onto a smaller effective one is
a well-established paradigm in condensed matter physics,
and the overarching theoretical framework for doing so is
the renormalization group (RG) [53–55]. In particular, our
approach is similar in spirit to real-space RG or block-spin
decimation [56,57]. There, the idea is to cluster neighboring
degrees of freedom, and treat them as the effective degrees
of freedom in a new, coarse-grained system. Such methods
have had some success in elementary problems, but they are
typically insufficient for capturing more complex situations.
They may fail by generating new types of interactions that
were absent in the original system, or by ignoring the en-
tanglement between coarse-grained blocks—the ground state
of a large system is not necessarily composed of the ground
states of each block. Here, we aim to address the difficulties
common in real-space RG methods by assuming very little
about the resizing transformation (which we refer to as the
“RG” network): The high versatility and nonlinearity of the
ANN allow it to realize extremely complicated transforma-

tions. The network, by construction, learns an appropriate
RG-like transformation that preserves the topological invari-
ant. Furthermore, the built-in separation into network blocks
allows us to gain some insight into the nature of the learned
transformation. Such insight is not typically possible in ANNs
(see Appendix C).

II. SYSTEM AND BASE NETWORK

Our example system is a disordered p + ip superconductor
in real space [31,58,59], described by the following tight-
binding Hamiltonian:

H =
∑

i, j

[
μi, jc

†
i, jci, j + t x

i, jc
†
i+1, jci, j + t y

i, jc
†
i, j+1ci, j

+ �i, jc
†
i+1, jc

†
i, j + i�i, jc

†
i, j+1c†

i, j + H.c.
]
, (1)

where c†
i, j , ci, j are creation and annihilation operators for an

electron on the site (i, j) of the square lattice with periodic
boundary conditions. Each site has an on-site energy μ, hop-
ping energies t x and t y to adjacent sites, and a superconducting
pair potential � with p + ip symmetry. It is helpful to define
t±
i, j ≡ (t x

i, j ± t y
i, j )/2 and normalize the parameters such that

t+ = 1 for all sites. This leaves us with three parameters per
site: μi, j , t−

i, j , and �i, j (the latter two are bond parameters, but
they can equivalently be regarded as site parameters).

In the clean case the Chern number is independent of �,
and it is determined by the uniform values of μ and t− [59],
as shown in the phase diagram in Fig. 2(a). In the disordered
case, we can construct a similar phase diagram. A disorder
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FIG. 2. (a) Phase diagram of a clean system (every site identical) in terms of the chemical potential μ and hopping anisotropy t−. Color
indicates the Chern number C of the system. [(b), (d), (f)] Examples of disordered phase diagrams of 4 × 4 lattices, calculated using the Bott
index method [42]. [(c), (e), (g)] Corresponding phase diagrams calculated by the base neural network.

realization is defined by a list of random values of μ, t−, and
� at each site with zero mean. On top of that, we uniformly
vary the average values of μ and t−, and calculate the real-
space Chern number for the resulting lattice via the Bott index
method [42]. Figure 2(b), 2(d), and 2(f) each correspond to a
single disorder realization for a 4 × 4 lattice.

We shall now reproduce this calculation using an ANN.
Our base neural network acts on a 4 × 4 lattice, and thus takes
as input a set of 48 numbers: 16 sites times 3 “channels” per
site: μ, t−, �. We used a convolutional ResNet architecture
with 9 layers, which proved fast to train (see Appendix A
for more details on the network structure, loss function, and
training process). The network was trained on 108 disorder
realizations, whose Chern number was calculated using the
Bott index method and treated as a label. For each sample,
the network was trained to minimize the difference between
its estimate of the Chern number and the sample’s label.
This process continued until the network reached a maximum
accuracy of 99.02%.

As a visualization of the network’s performance, we com-
puted the phase diagrams corresponding to several disorder
realizations. This was done by feeding the disorder configura-
tion with the uniform μ, t− offsets into the trained network.
The resulting phase diagrams, shown in Figs. 2(c), 2(e), and
2(g), are in very good agreement with the directly computed
ones shown in Figs. 2(b), 2(d), and 2(f).

III. RG NETWORK

Now that we have a base network capable of accurately
determining the Chern number of disordered 4 × 4 lattices,
the next step is generalizing to larger lattices. We do this by
training an “RG” network that transforms an 8 × 8 lattice
to a 4 × 4 one. For this network, we use another nine-layer
convolutional ResNet, whereby each layer consists of several
“kernels”—small blocks which are convolved with the lattice,

incorporating periodic boundary conditions into the network
structure (see Appendix B for more details on the network’s
architecture). This type of neural network is ideal for an RG-
like operation because it operates on neighboring sites and
transforms them into an effective site, regardless of the system
size. Each layer is also reminiscent of a renormalization group
in that it is spatially local.

For the training of this RG network, we generated 107 dis-
order realizations of 8 × 8 lattices, and calculated the Chern
number for each of them using the Bott index method. The RG
network takes these samples as input, keeping the same input
structure of 8 × 8 × 3 parameters per sample, and outputs an
effective 4 × 4 lattice: a list of 4 × 4 × 3 parameters. This
effective reduced lattice is then combined with the previously
trained 4 × 4 base network to form a compound network,
illustrated in a thick outline in Fig. 1(a), which, as a whole,
takes a disordered 8 × 8 lattice and returns an estimate of its
Chern number. The resulting Chern number is compared to
the correct one, and the network is trained to minimize the
difference between the two, under the constraint that the base
network’s weights are not allowed to change.

This process alone can be used to train an RG network to
high accuracy, 98.72%, when evaluating 8 × 8 lattices. The
crucial question, though, is what happens when trying to apply
this network to a larger lattice. The simplest test is taking a
16 × 16 lattice, applying the RG network to obtain a 8 × 8
lattice, and then applying it again to obtain a 4 × 4 lattice.
We find that the Chern number accuracy of this repeated
network drops significantly (to 72.49%). This behavior is not
surprising: the RG network has over 9 × 106 free parameters,
and its training has no generalization requirement, so it has a
very low probability of converging to a generalizable solution.

To fix this issue, we initialize the RG network, prior to its
training, to perform a naïve decimation mapping: constructing
the smaller output lattice by simply averaging adjacent sites
in each channel of the larger input. Initializing the network in
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FIG. 3. Accuracy of the RG network on 8 × 8 and (by applying
the network twice in succession) 16 × 16 lattices, as a function of
how long the network has been training. The accuracy for 16 × 16
initially increases, reaches a maximum at epoch 14, then declines.

this way can be thought of as using the decimation mapping
as a zeroth-order approximation of our desired function to be
performed by the RG network (details on the initialization
procedure are given in Appendix B 1). The main step in
our training procedure, which is training on the actual Chern
numbers of 8 × 8 lattices, is then a refinement of this ap-
proximation. As long as the network is only allowed to make
small changes beyond naïve decimation, we expect it to stay
generalizable.

The training process for the RG network is plotted in Fig. 3.
After each epoch—exposure to all of the samples in the 8 × 8
training set—the weights were saved and the current network
was tested against a testing set of 8 × 8 lattices (blue curve). In
addition, the double-RG layer was tested against a testing set
of 16 × 16 lattices (orange curve). Thus, the two curves in the
figure represent the performance of the same RG network on
multiple scales. The initial accuracies—93.52% and 91.91%
for 8 × 8 and 16 × 16, respectively—are the accuracies of
the initial decimation function. The network’s performance on
8 × 8 samples increases roughly monotonically, as expected
since this is the target function. The 16 × 16 performance,
however, reaches a maximum and then declines. Our inter-
pretation of this result is that the RG network begins in a
generalizable subspace, but as the training process seeks an
optimal 8 × 8 accuracy, it eventually drifts out of this sub-
space.

Since our goal is an RG network that generalizes well to
large scales, we halt the training process when the 16 × 16
accuracy is at its peak. The resulting RG network has an
accuracy of 97.64% on 8 × 8 lattices—slightly less than the
best accuracy we attained, due to the fact that the training pro-
cess was halted. The accuracy on 16 × 16 lattices is 95.60%,
a significant improvement over the uninitialized case. We
emphasize that this performance is despite the system never
being exposed to a 16 × 16 lattice during training.

IV. CONCLUSION

We have demonstrated that neural networks can accurately
compute the Chern numbers of disordered Hamiltonians on
lattices of a fixed size, and that RG-like networks can resize
lattices while preserving the Chern number. In combination,
these two types of networks can, in principle, evaluate the
topological invariants of lattices of arbitrary size, including
sizes that are not computationally tractable with previous
methods. Indeed, our proof-of-concept RG network general-
izes well to lattices a factor of 2 larger than those on which it
was trained.

Given this promising result, the natural question is how
large the input lattice can become before the compound
network’s accuracy decays beyond the point of usefulness.
Unfortunately, this question is logistically difficult to an-
swer. As discussed in Appendix B 2, an appropriate disorder
scaling convention must be found to counteract disorder
averaging at larger scales. However, finding a viable con-
vention is computationally expensive, as it requires slowly
generating many 32 × 32 or larger lattices and computing
their Chern numbers via the Bott index. Further study is
needed to determine a more efficient means of solving this
step; otherwise, our method’s use remains restricted to sys-
tems for which a valid disorder scaling is known. For this
reason, we constrained our scope to the 16 × 16 demonstra-
tion, as it is the simplest result that conveys the viability of
our approach.

However, the accuracy does drop between the 16 × 16
and 8 × 8 scales, and we have no guarantee that it does
not drop further for larger lattices. A possible way to ad-
dress this, which is left to future study, is an additional
training stage on 16 × 16 samples. We envision using two
copies of the RG network in sequence, constrained to be
identical throughout the training process, which reduce the
input size by an overall factor of 4. This training step
should further refine the RG block’s ability to generalize to
larger system sizes.

Beyond 2D systems and physics in general, iterated resiz-
ing networks represent an under-explored tool in computer
science with three significant benefits. One is their ability, as
we have demonstrated, to be applicable over many input sizes.
The second is the ability to reach high accuracies on inputs
outside of the training distribution, which may be helpful
in cases where training samples are more computationally
difficult to produce (as is the case for our 16 × 16 lattices)
or for which training data cannot be easily collected. Finally,
our modular design offers a degree of interpretability. Most
neural networks are “black boxes” with very limited means of
determining why they act the way they do. Our network with
8 × 8 inputs, for instance, can be examined at the intermediate
4 × 4 scale to study the network’s interpretation of “RG” (see
Appendix C for details). These benefits and extensions to our
concept suggest that the use of base networks and iterated re-
sizing blocks could prove useful in and beyond computational
physics.

Models and related functions used in this research were
written in PYTHON using the machine learning packages Keras
[60] and TensorFlow [61]. Samples were generated using
MATLAB. Our full code is available in Ref. [62] .
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APPENDIX A: STRUCTURE AND TRAINING: BASE
NETWORK

The base network is the final part of our network which
receives a small (4 × 4 lattice points) input and returns the
Chern number as an output. Here we describe the details of
this network.

The base network is a nine-layer convolutional ResNet [63]
with skip connections between layers 2 and 3, 4 and 5, and so
on. Each two-dimensional (2D) convolutional layer has 256
kernels of size 3 × 3, with ReLU activation [64] and zero
padding (periodic padding is only used for the RG network).
The output from these layers (of size 4 × 4 × 256) is then
combined via a max-pooling layer, flattened, and then passed
through a dense layer with a single node and linear activation.
This outputs the predicted Chern number.

The network was trained on an NVIDIA GeForce RTX
2080Ti GPU using 108 samples of 4 × 4 × 3 disordered
lattices labeled with their corresponding Chern numbers (cal-
culated via the Bott method [42,65]) in minibatches of size
640. We used stochastic gradient descent (SGD) with a mo-
mentum of 0.9 and an initial learning rate of 0.01. No learning
rate decay was used, but a callback function reduced the learn-
ing rate by a factor of 0.1 each time the validation loss did not
reach a new minimum for 50 consecutive epochs. When the
learning rate would have been reduced to 10−7, the training
instead terminated.

1. Sample distribution

Each 4 × 4 × 3 sample lattice is produced in two steps.
First, in each of the three channels (chemical potential μ,
hopping anisotropy t−, and pairing energy �), a random dis-
order value is generated for each site, chosen uniformly from a
disorder range specific to each parameter type and subtracting
the average so that each channel’s disorder averages to 0. The
disorder ranges used in this work are [−0.15, 0.15] for μ,
[−0.1, 0.1] for t−, and [−0.025, 0.025] for �. These disorder
ranges were chosen to allow a noticeable impact on Chern
number while not resulting in phase diagrams that are vastly
different from the clean diagram.

Next, we choose an average value for each of the three
channels and add it to every site in the lattice. Unlike the
disorder distribution, these average values are not selected
uniformly in each range. In order to use training time more
efficiently, our training set is boundary biased, meaning that
the distribution of average site values is biased toward points
close to the phase boundaries, where the Chern number is
most strongly affected by disorder (only the training set, not

FIG. 4. Biased distribution of training samples according to their
distance from the phase boundaries [see Eq. (A1)], with α = 0.03.

the testing set, is biased in this way; the latter is generated uni-
formly within the average and disorder ranges). Specifically,
the training set distribution of samples is

D(μ, t−,�) = N

α + x(μ, t−)
, (A1)

where N is a normalization factor, α = 0.03 is a constant that
indicates the level of bias, and x(μ, t−) is the distance between
the point ( μ

2 , t−) and the nearest clean phase boundary [the
vertical and diagonal lines where the Chern number changes
in Fig. 2(a) in the main text; we set t+ equal to 1]. The
sample distribution is visualized in Fig. 4. Note that since
the phase boundaries of clean systems do not depend on �,
the distribution of average � values is uniform. μ, t−, and �

are constrained to the ranges [−4, 4], [−2, 2], and [0.1,0.2],
respectively, and are subjected to the boundary-biasing distri-
bution within those ranges.

2. Custom loss

We make use of a custom loss function in all of our training
throughout this research. The function is

L(ypred − ytrue) = |ypred − ytrue| + (ypred − ytrue)2, (A2)

where ypred and ytrue are the predicted value and true value of
the label, respectively. For the base network, we apply this
loss on each channel independently and then add the results to
form an overall loss function.

This loss has the advantage of harshly punishing large
deviations from the labels, as a mean square loss does, while
also being unforgiving of small errors in the latter stages of
training, since the absolute value function is larger for values
close to zero. We found substantially improved accuracy on
early tests when using this loss function compared with mean-
square or linear loss functions, as well as with discrete losses
such as categorical cross-entropy. In later tests with our final
training set and disorder distribution, the difference between
this loss and conventional losses was less pronounced, but the
loss was not modified further.
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FIG. 5. Training loss for 8 × 8 (blue) and 16 × 16 (orange) eval-
uations of the RG network.

APPENDIX B: STRUCTURE AND TRAINING: RG
NETWORK

The structure of the RG network is nearly identical to the
base network: a nine-layer ResNet. All parameters are the
same as the base network except as indicated below.

The input layer is of size 8 × 8 × 3, and the output is
of size 4 × 4 × 3. In order to reduce the dimensions of the
lattice, the first convolutional layer has its stride value set to
(2,2), meaning that the kernels only evaluate on sites with odd
numbers as both of their indices. The sites with even index still
contribute to the output, however, since each is within several
3 × 3 kernels centered at nearby odd-indexed sites. All layers
after the first use the standard (1,1) stride, and in addition, the
number of kernels in each layer after the first is 512 so as to
keep the total number of parameters consistent between rows.

Rather than use zero padding, we employ periodic padding
(described in more detail in Sec. B 3) on the nine main con-
volutional layers. After the nine main layers, there is a single
convolutional layer with only three kernels of size 1, which
results in an output of the desired shape; the padding on this
layer is irrelevant since the kernel cannot extend beyond the
lattice boundary, so it is set to zero padding for simplicity.

For further illustration of the training process, the loss is
plotted in Fig. 5 for the same training run whose accuracy is
depicted in Fig. 3.

1. Initialization

As described in the main text, before the RG network can
be trained to classify Chern numbers, it must first be initialized
such that it approximates a decimation mapping. This prelimi-
nary step is motivated by the fact that decimation—equivalent
to an average pooling layer of pool size (2,2)—performs
somewhat well on both 8 × 8 and 16 × 16 lattices (with ac-
curacy 93.52% and 91.91%, respectively). We hypothesized
that an RG network initialized in this way would retain some
of the generalizability (functionality at multiple lattice scales)
of the decimation function in the early stages of its training to
preserve the Chern number when it changes the system size.

The goal of the initialization process is to begin with a
network that performs a simple decimation, meaning that it
merely averages nearby parameters, creating a coarse-grained
lattice. Practically, it is easier to train the network to perform

this decimation rather than setting its weights by hand. We
therefore begin with a normal distribution of kernel weights
and biases and the RG ResNet is trained on 5 × 107 samples
of 8 × 8 lattices. Rather than being labeled by their Chern
number, these samples’ labels are the 4 × 4 lattices that would
result from a decimation mapping being applied to them. The
loss during training is the custom loss described inAppendix
A 2 applied to each channel and site of the output, comparing
them to the corresponding channel and site of the label, and
then summing the result with all sites and channels weighted
equally. The training procedure is identical to that of the base
network, except that the learning rate is set to 0.0005 and not
adjusted during training.

The samples used in the initialization stage form a much
wider distribution than those used in the Chern number train-
ing. Specifically, each site and channel of a sample contains
a uniformly chosen random number in the range [−5, 5]. It
is critical that this domain includes, but is much larger than,
the parameter range of the base and RG network’s Chern
number training. If the initialization step is trained only on
lattices from the same distribution as the Chern-learning step,
the initialized network does not approximate a general dec-
imation, but rather a decimation that has been overfitted to
function only on 8 × 8 lattices in our specific input domain.
Naturally, this prevents it from generalizing successfully to
16 × 16 lattices.

2. Chern training and results

In the main training step, a compound network, composed
of the initialized RG network feeding into the base network,
is trained on 5 × 107 samples of 8 × 8 lattices and their Chern
numbers. The base network’s weights are frozen, so that they
do not update and only the RG network is optimized. The
training process is identical to the base network case except
for a learning rate of 0.0005, which is not changed during
training.

The samples are distributed identically to the 4 × 4 sam-
ples described in Sec. A 1, except that the range of disorder
in μ in both training and testing samples is increased from
[−0.15, 0.15] to [−0.3, 0.3]. This counteracts disorder av-
eraging, which causes the effect of disorder on the Chern
number to become less significant at larger lattice scales.
Without scaling the disorder in this way, a trivial RG map-
ping that ignores disorder altogether can still achieve high
accuracy. Since we are free to define how lattice parameters
scale in our renormalization scheme, we choose to increase
this disorder value in order to prevent the RG network from
converging to this trivial map. This ensures that our compound
network will be able to solve for the Chern number for large
lattices in the strong-disorder regime.

The compound network is saved after each epoch. The RG
network corresponding to each epoch is then loaded and tested
on an 8 × 8 testing set of size 106. Additionally, each network
is placed in a compound network with another copy of itself
and a base network, allowing it to evaluate 16 × 16 lattices.
This requires only that the input layer of each RG network be
removed, that the two be placed in sequence, and that a new
input layer of size 16 × 16 × 3 be added. The latter compound
network is tested on a 16 × 16 testing set of size 106. The
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FIG. 6. Accuracy as a function of epochs trained for 8 × 8 and
16 × 16 evaluations of the RG network.

accuracy of these tests as a function of epoch number are given
in Fig. 3 in the main text and in Fig. 6 below.

3. Periodic padding

Unlike in the image processing applications that are the
usual use case for convolutional neural networks, the lattices
we use as inputs represent periodic systems. As such, it is
physically reasonable to have the network interpret the lattice
in such a way that periodicity is preserved.

To do this, we define a periodic padding. When the 3 × 3
kernel is centered at a site on the edge or corner of the input
lattice, some of the positions in the kernel will be outside
the lattice. Instead of interpreting the values of these nonex-
istent so-called pad sites as uniformly zero in each channel,
as most convolutional networks do, we treat their value as
being what it would be if the lattice was periodic; that is,
equal to the corresponding site on the other side of our input
lattice. Practically, this is accomplished by inserting a Lambda
layer—a layer that performs a predefined function—before
each convolution, which adds a periodic pad. The input to
each convolutional layer is thus two sites larger in each dimen-
sion, corresponding to the one-site-thick pad. The padding
procedure of the convolutional layers is set to “valid,” mean-
ing that the border sites are not allowed to be the center sites
of kernels, which reduces the output of the convolutional layer
by two, back to its correct size.

The effect of periodic padding on the computed Chern
number accuracy of 8 × 8 and 16 × 16 lattices is shown in
Fig. 6. For unknown reasons, periodic padding causes the ac-
curacy to grow more slowly in the 8 × 8 case and to fall more
rapidly in the 16 × 16 case for later epochs of training. How-
ever, in our testing, it provided the best single saved network
at evaluating 16 × 16 lattices (95.60% accuracy, compared to
95.43% accuracy for the best nonperiodic network). Periodic
padding also aids in interpretability, since it removes a notable
and unphysical distortion along the system boundary when
using the RG network as a resizing mapping (see Sec. C). The
frequent layer resizing causes RG training time to increase by
about 40%, however.

APPENDIX C: PROPERTIES OF THE RG NETWORK

Our network has a two-stage structure: a down-sizing RG
block is followed by a Chern number calculation block. This
structure allows us to examine the properties of the RG net-
work alone, without looking at the Chern number itself. In this
section, we describe some basic observations on the nature of
this network.

1. Points mapping

As a first step, we ask how the RG transformation acts in
parameter space. We know that the Chern number is mostly
preserved, but that alone does not mean the lattice does not
drift far away in parameter space—many points have the
same Chern number despite being distant from each other
in parameter space. However, our training starts from simple
decimation, which leaves parameter space invariant, so we
expect the output lattice’s parameters not to stray too far from
those of the input lattice.

To check this notion of locality in parameter space, we
generated clean 128 × 128 lattices with values of μ and t−
evenly spaced in the interval [−2, 2] (as usual, we set t+ = 1).
Simple decimation leaves these points exactly where they
started in the 2D parameter space of μ, t−. Our network, how-
ever, acts slightly differently. The 64 × 64 plot in Fig. 7 shows
the distribution of points after applying the RG network. Each
point in this plot corresponds to a clean lattice which resulted
from the RG mapping being applied to a clean lattice from the
128 × 128 plot. Rather than being evenly spaced, we observe
a high density of points deep inside the phases, and generally
a much lower density close to the phase transition lines. Our
interpretation is that the network is trying to avoid regions
with large uncertainty, where the error in the Chern number
would be much higher. Physically, the topological gap in these
regions is small, and therefore the Chern number becomes
harder to determine reliably.

The network has the freedom to choose an asymmetric
transformation, as we do not force any symmetry; hence, the
point plots do not obey the mirror symmetries of the phase
boundaries in general. Moreover, different runs of the training
procedure may randomly lead to different asymmetries.

As the RG mapping is applied iteratively, the points cluster
into fixed points. Since this mapping has been trained to
preserve Chern number, we expect at least one fixed point per
phase region, and this is indeed what we find. If this holds for
most disorder realizations as well, it implies that in large-scale
implementations of this method, the inputs will be clustered
and effectively classified by the time they are reduced to the
4 × 4 scale. Thus, in these large-scale implementations, it is
likely that the base network could be substituted with a much
smaller, simpler network, further improving runtime.

2. Mapping of a single impurity

Going one step further, we would like to understand how
simple configurations are mapped under the RG network. As
an example, we consider a single impurity in an otherwise
clean 8 × 8 lattice. The impurity is in the form of a different
chemical potential, μ0 + δμ, at a specific site, where all the
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FIG. 7. Visualization of the RG mapping. Each point in the 128 × 128 plot corresponds to a single clean lattice, characterized by its
chemical potential μ and the hopping anisotropy t−. The solid black lines represent the phase boundaries in the clean case. As the RG network
is applied iteratively, the points cluster in each phase, demonstrating that the RG mapping actively preserves the Chern number.

other sites have chemical potential μ0. Specifically, here we
take μ0 = 0.5t+ and place the impurity at the site (4, 6).

In Fig. 8, we show the 4 × 4 lattices resulting from apply-
ing the RG network to this impurity configuration, for four
values of the impurity δμ. For each δμ, we plot the values
of μ, t−,� at each point in the 4 × 4 lattice, subtracting their
initial values to get a difference map.

Without an impurity (δμ = 0), the 4 × 4 lattice is clean,
as its 8 × 8 ancestor, and the parameters closely match the
original ones—see Fig. 8(a). As δμ is increased, we ob-
serve the impurity propagating to the 4 × 4 lattice in a
local way. First, the impurity mostly affects the sites close
to the location of the original impurity (if one were to
coarse-grain the 8 × 8 lattice into a 4 × 4 one). Second,

FIG. 8. Propagation of a single impurity in the chemical potential from an 8 × 8 lattice down to the renormalized 4 × 4 lattice calculated
by the RG network. The values used are μ0 = 0.5, t−

0 = 1, �0 = 0.15. The impurity δμ is placed at the site (4, 6), and its values are indicated
on the different panels.
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the propagation is mostly local also in channel space: The
variation in μ affects mostly the renormalized μ, and its
effect on the renormalized t−,� is weaker. This demonstrates

that although the Chern number is a global property, the
RG-like transformation that preserves it is mostly local in
nature.
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