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Real-space representation of the quasiparticle self-consistent GW self-energy
and its application to defect calculations
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The quasiparticle self-consistent (QS) GW (G for Green’s function, W for screened Coulomb interaction)
approach incorporates the corrections of the quasiparticle energies from their Kohn-Sham density functional
theory (DFT) eigenvalues by means of an energy-independent and Hermitian self-energy matrix usually given
in the basis set of the DFT eigenstates. By expanding these into an atom-centered basis set (specifically here the
linearized muffin-tin orbitals) a real space representation of the self-energy corrections becomes possible. We
show that this representation is relatively short-ranged. This offers opportunities to construct the self-energy of a
complex system from parts of the system by a cut-and-paste method. Specifically for a point defect, represented
in a large supercell, the self-energy can be constructed from those of the host and a smaller defect-containing
cell. The self-energy of the periodic host can be constructed simply from a GW calculation for the primitive cell.
We show for the case of the AsGa in GaAs that the defect part can already be well represented by a minimal
eight-atom cell and allows us to construct the self-energy for a 64-atom cell in good agreement with direct
QSGW calculations for the large cell. Using this approach to an even larger 216-atom cell shows the defect
band approaches an isolated defect level. The calculations also allow us to identify a second defect band which
appears as a resonance near the conduction band minimum. The results on the extracted defect levels agree well
with Green’s function calculations for an isolated defect and with experimental data.

DOI: 10.1103/PhysRevB.105.205136

I. INTRODUCTION

In recent years, many-body-perturbation theory, specifi-
cally in Hedin’s GW approximation [1,2], where G is the
one-electron Green’s function and W the screened Coulomb
interaction, has emerged as the method of choice to calculate
meaningful quasiparticle excitation energies as opposed to
Kohn-Sham density-functional one-electron energies. In par-
ticular, this yields more accurate band structures and band
gaps in good agreement with experiments, typically within
∼0.1 eV depending somewhat on the details of the implemen-
tation and the material [3].

For localized levels, such as point defects, on the other
hand, excitations are usually calculated by means of a �SCF
approach from differences between two total energies. More
precisely for point defects, it is now standard procedure to
calculate the energies of formation as a function of Fermi
level position (i.e., the electron chemical potential) in the
gap and then to determine the transition energies, which
are the crossing points of these energies of formation from
one charge state to the other [4]. On the other hand, it has
been pointed out that the GW quasiparticle energies for a
defect system can be directly related to vertical excitations,
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meaning excitations which keep the structure unchanged.
Apart from excitonic effects, their differences represent the
optical transitions, for example, for transferring an electron
from a defect level to the conduction band or from the va-
lence band to a defect level [5,6]. For example, transferring
an electron from a defect level to the conduction band min-
imum (CBM) changes the defect from one charge state q to
another q + 1, with an electron in a delocalized conduction
band state. Thus, the difference in CBM and defect-level
quasiparticle energies calculated at the fixed geometry of
the q state is the vertical excitation energy for this process.
Subsequently, one may add relaxation energies of the defect
to lowest energy geometry within a given charge state [5].
Thus, the thermodynamic transition state level of the q/q + 1
transition may be obtained from a total energy relaxation
within a given charge state calculated at the density functional
theory (DFT) level combined with the quasiparticle excitation
energies calculated at the GW level. These types of GW
defect calculations were recently reviewed by Chen et al.
[7,8]. Apart from the excitonic effect, the vertical transition
is often directly of interest as an approximation to the optical
transition.

In practice, defect levels are usually calculated in super-
cells using periodic boundary conditions, and the defect levels
turn into defect bands. So, the above relation gives a renewed
incentive to take defect one-electron band structures seri-
ously, rather than dismissing them as irrelevant Kohn-Sham
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eigenvalues, provided they are calculated at the GW quasipar-
ticle level.

Nonetheless, the GW method has not yet found widespread
applications in defect studies. This is at least in part due to
the large computational effort required for GW calculations.
In particular, the latter is challenging for the large supercells
needed to represent defects adequately. Thus, there is a need
for improving the efficiency of the GW approach, eventually
at the cost of some simplification, to make it applicable to
larger systems.

On the other hand, in many defect calculations, the
infamous gap underestimate of the typical semilocal general-
ized gradient approximation or local density approximations
(LDAs) can lead to serious errors in defect calculations. De-
fect levels which should be in the gap may end up in the band
continuum. This also affects the total energies and therefore
transition levels if one considers charge states in which that
defect level (now a resonance in the band) is given an extra
charge because in the calculation that charge is actually placed
in a delocalized state at the bottom of the band rather than in
the defect level. Thus, there seem to be some advantages to
start from a more accurate quasiparticle one-electron theory
such as GW . Total energies with in the QSGW approach are
in principle calculable at the random phase approximation
(RPA) level by means of an adiabatic connection approach [9]
but are difficult to converge because they require a sum over
unoccupied bands.

It would seem desirable to at least build into the calculation
of the defect, the correct band structure of the host, overcom-
ing thereby the band gap problem. Several such approaches
have been used in the past: for example, Christensen [10]
advocated using a δ-function corrected potential in which a
δ function placed at the cation site and some interstitial sites,
raises the s-like partial waves at those sites in energy and since
these s-like orbitals form a predominant part of the conduc-
tion band, they artificially corrected the gap. LDA + U with
several orbital-dependent U parameters were also shown to
provide an effective way to mimic the corrected band structure
[11–13]. Nonlocal external potentials (NLEPs) of the form
�V NLEP

α,l adjusted to reproduce the conduction band structure
were introduced by Lany et al. [14]. Modified pseudopoten-
tials were also used for this purpose [15].

The question thus arises to what extent we can decouple
the host band structure effects from the defect. Our goal with
this project was to explore whether the GW self-energy of a
defect system could be constructed from that of the host and
the defect site itself or its immediate neighborhood without
having to carry out the expensive full GW calculation for the
large unit cell required to adequately represent a defect.

The most prevalent approach nowadays to incorporate the
gap corrections beyond semi-local functions is to use a hy-
brid functional such as the Heyd-Scuseria-Ernzerhof [16–18].
That approach significantly improves the gaps by including a
fraction of the exact exchange operator cutof,f usually beyond
a certain range. By adjusting the fraction of the exchange
included, the gap can be adjusted. While this approach cor-
rectly incorporates the gap correction, it is less clear that it
also adjusts both band edges individually and/or obeys the
generalized Koopmans theorem [19,20] for different defects
simultaneously with the host band structure. Furthermore, it is

also a relatively expensive approach with computational effort
well beyond that of a semilocal calculation. The approach we
present here to construct the GW self-energy is also applicable
to the nonlocal exact exchange and, hence, could also make
that approach more efficient.

In this paper, we show that the QSGW self-energy matrix
can be expanded in atom-centered orbitals, such as linearized
muffin-tin orbitals (LMTOs). If these are chosen sufficiently
localized, then the self-energy matrix can be represented in
real space within a finite range. One might envision doing
this also with maximally localized Wannier functions. This
then offers opportunities to approximately construct the self-
energy of a system by partitioning the system in subparts
and constructing the self-energy by a cut-and-paste approach.
In particular, we apply this here to point defects. We first
construct the self-energy of the host in a supercell from that
of the primitive cell. In a second step, we replace the part of
the self-energy matrix related to the defect atom and its near
neighborhood in terms of the self-energy of a smaller super-
cell containing the defect for which a GW calculation is more
readily feasible. We validate the accuracy of the approach with
the well-studied case of the AsGa defect.

One might view our approach also in the context of the
recently developed embedding approach for point defects [21]
in which one describes the immediate neighborhood of the
defect at a more accurate quantum mechanical level than the
farther neighborhood. However, Ma et al. ’s [21] goal is to
describe the defect many-electron levels, which cannot neces-
sarily be described with a single determinant many-body wave
function, while ours is more simply to obtain the one-electron
levels in a more accurate than DFT approach.

II. COMPUTATIONAL APPROACH

A. GW background

In many-body-perturbation theory, quasiparticle excitation
energies are given by the equation[

−1

2
∇2 + vN (r) + vH (r)

]
�i(r)

+
∫

d3r′�xc(r, r′, Ei )�i(r′) = Ei�i(r), (1)

where we use Hartree atomic units (h̄ = e = me = 1), vN is
the nuclear potential, and vH the Hartree potential, �xc the
exchange-correlation self-energy, and �i is the quasiparticle
wave function. In the GW approximation, the latter is calcu-
lated from �(12) = iG(12)W (1+2), where 1 is a shorthand
for {r1, σ1, t1}, i.e., position, spin, and time of the particle 1,
1+ means limδ→+0 t1 + δ, G(12) is the one-electron Green’s
function, and W (12) the screened Coulomb interaction. The
exact one-particle Green’s function is defined by G(12) =
−i〈N |T [ψ (1), ψ†(2)]|N〉, with T the time-ordering operator,
ψ (1) the annihilation field operator, and |N〉 the N-electron
ground state. The screened Coulomb interaction is given
by W (12) = v(12) + ∫

d (34)v(3)P(34)W (42), and P(12) =
−iG(12)G(21) is the irreducible polarization propagator. In
practice, it is usually obtained starting from some effective
independent-particle Hamiltonian,

H0 = − 1
2∇2 + vN (r) + vH (r) + vxc(r), (2)
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with, for example, the LDA exchange-correlation potential
vxc(r). The Green’s function G0 is then constructed from the
eigenvalues εi and and eigenfunctions ψi of

H0ψi(r) = εiψi(r) (3)

as follows:

G0(r, r′, ω) =
∑

i

ψi(r)ψ∗
i (r′)

ω − εi + iδsgn(εi − μ)
, (4)

with μ the chemical potential and ω the energy variable of
the Green’s function. These LDA eigenstates form a con-
venient basis set in which the Green’s function G0

i j (ω) =
δi j (ω − εi ± iδ)−1 is diagonal. For a solid, the states are la-
beled by i = {n, k} with n a band index and k the point in
the Brillouin zone. The screened (W 0) and bare (v) Coulomb
interactions and the polarization P0, on the other hand, are
expressed in an auxiliary basis set of Bloch functions. In the
LMTO implementation of the GW method, these are con-
structed from products of angular momentum partial waves
[22] inside the spheres and plane waves confined to the in-
terstitial space, which is afterward reduced to avoid linear
dependence and rotated so as to diagonalize the bare Coulomb
interaction [9,23,24]. We label them Eqμ(r) and the matrix of
the Coulomb interactions in terms of them is then written

vμν (q) =
∫

d3rd3r′E∗
qμ(r)

1

|r − r′|Eqν (r′) (5)

and

W 0
μν (q, ω) = [

1 − vμλ(q)P0
λκ (q, ω)

]−1
vκν (q) (6)

is obtained from a matrix inversion once P0
μν (q, ω) is known.

The latter is also calculated directly in terms of the ψnk and
eigenvalues εnk [9]. In the above equation, summation con-
vention over repeated indices is understood. In most other
works, plane waves are used instead as basis functions. Let’s
write the rotation from the auxiliary functions Eq

μ to the LDA
eigenstates as 〈ψkn|ψk−qn′Eq

μ〉. Using this rotation matrix, we
can express W as

W 0
nn′mk(q, ω) =

∑
μν

〈
ψkn

∣∣ψk−q,n′Eq
μ

〉
W 0

μν (q, ω)

× 〈
Eq

ν ψk−qn′
∣∣ψkm

〉
. (7)

The self-energy matrix is then given by

�nm(k, ω) = i

2π

∫
dω′ ∑

q

∑
n′

G0
nn′ (k − q, ω − ω′)

×W 0
nn′m;k(q, ω′)eiδω′

, (8)

in which we recognize the schematic � = iGW but which
makes it clear that to obtain the energy and k-space dependent
form, a triple convolution is involved over energy ω′, q and
band index n′.

This self-energy matrix is energy dependent and contains,
in principle, information, not only on the quasiparticle en-
ergies but also the satellites and noncoherent parts of the
one-electron excitation. In the QSGW method, we now re-
duce this to a nonlocal but energy-independent and Hermitian

matrix:

�̃nm(k) = 1
2 Re[�nm(k, εnk ) + �nm(k, εmk )]. (9)

We now define ��̃nm(k) = �̃nm(k) − vxc
nm(k), where we sub-

tract the matrix element of the LDA exchange-correlation
potential taken between the Bloch eigenstates. We can then
add this correction to the exchange-correlation potential to
the H0 Hamiltonian and rediagonalize the latter to find new
independent particle eigenvalues and eigenstates and repeat
the cycle of calculating �̃. At the convergence of this iteration,
the eigenvalues of the final H0, which we will call HQSGW are
identical to the quasiparticle energies. We may view this as
finding a G0W 0 perturbation theory solution of Eq. (1) starting
from H0 but refining H0 so the perturbation becomes negligi-
ble. In this sense, the quasiparticle energies are self-consistent
and independent of the starting approximation but they are
still real and do not provide information on the lifetime of the
actual quasiparticle states.

B. Bloch-function and real space representation

The Bloch functions of the HQSGW are now known as an
expansion in the LMTO basis set,

|ψnk〉 =
∑
Ri

∣∣χk
Rı

〉
bk

nRi, (10)

so we can re-express the self-energy correction matrix as
��̃Ri,R′i′ (k). Here R label the sites in the unit cell and i the
muffin-tin orbitals. The latter are labeled by angular momen-
tum quantum numbers (l, m) as well as a third index, labeling
the choice of smoothed Hankel function decay and/or local
orbital (confined to the muffin-tin sphere). See Ref. [9] for a
full description of the full potential (FP)-LMTO method used.
Finally, performing an inverse Bloch sum or Fourier trans-
form, we obtain ��̃R,i;R′+T,i′ fully expressed in real space,
where T are the lattice translation vectors.

Next, let us consider the same self-energy of the bulk
system but represented in a supercell. Obviously there is a
one-to-one mapping {R, T} ↔ {RS, TS} between positions R
in the primitive cell with lattice vectors T to the positions
inside the supercell, RS , and the superlattice’s lattice vectors,
where TS = ∑3

i niAi with ni integers, and the superlattice is
defined by Ai = ∑

j Ni ja j with Ni j a set of integers. Thus, we
can obtain ��̃RS,i;R′

S+TS ,i′ by a simple relabeling procedure. In
practice, these are stored for every RS using a neighbor table
out to some maximum distance |R′

S + TS − RS| � dmax.

C. Self-energy cut-and-paste approach

The overall scheme for constructing the defect cell and
its self-energy is as follows. For example, let us consider a
64-atom supercell to model the defect. We then start by cre-
ating the self-energy matrix of the perfect supercell (the host)
from the self-energy in the primitive cell in the above form in
real space and labeled according to the 64-atom cell {RS, TS}
scheme. Once we have the self-energy matrix in the host
supercell, we need to replace it by that for the defect within
a certain range ddef from the defect atom. For that purpose,
we construct a smaller supercell containing the defect, which
we ultimately plan to use, e.g., an eight-atom cell and carry
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FIG. 1. Schematic illustration of the self-energy editor cut-and-
paste method. The left shows the 648d supercell with defect atoms
shown as black spheres and host atoms as open circles and the atoms
within a range dmax from the defect atom indicated by the dashed
circle are red. The target system 641d with 1 defect is shown on
the right. In this example, we assume only the defect atom itself
comprises the defect region and the atoms within the range dmax

contribute to the self-energy in real space. The self-energy �̃R,R′

of the atom pairs corresponding to the red atoms connected to the
defect atom in the target 641d cell are replaced by those from the
648d supercell, shown on the left.

out a self-consistent DFT calculation for it and subsequently a
QSGW calculation of its self-energy. We then transform the
self-energy of this defect cell again to a new 64-atom cell
by a similar relabeling step. Let us call this the 648d cell
where 64 indicates the number of atoms in the cell and the
superscript indicates the cell contains eight defects. Next, we
modify the host 64-atom cell by inserting the defect. We then
carry out a self-consistent calculation for it at the DFT level
and construct its self-energy by the following cut-and-paste
method. The first step of the method is to create a blank place
holder in memory to hold the self-energy around each atom,
the type of atom, and their orbitals at each of its neighbors.
We then copy the corresponding self-energy into it from the
host 64-atom cell and subsequently replace it by that of the
defect 648d cell for atoms within a certain distance ddef from
the defect site. The rest of the atoms are left unchanged as
host atoms. Each copy step only happens according to the
neighbor table up to a maximum range dmax. The copying
of the self-energy orbital blocks happens by pairs. Only half
of the �RSi;R′

S+TS,i′ matrix elements need to be constructed
because of the Hermiticity. Once assembled in real space, it
can be Fourier transformed back according to the periodicity
of the supercell to find �RS i;R′

S i′ (kS ). Finally, we then need
to carry out just one DFT self-consistent step in which the
thus assembled estimate of the self-energy is added to the H0

DFT Hamiltonian and we can evaluate its band structure. The
scheme is illustrated in Fig. 1.

It is clear that for the scheme to work, dmax must fit within
the small defect-containing supercell, so the self-energy in the
final cell for a pair of atoms of which one is within the defect
range ddef does not have a neighbor of the wrong type, in other
words, it must still be a hostlike atom as in the final cell, not
another defect atom.

Furthermore, we need to allow for relaxation of the atoms
near the defect. Therefore, the atoms are mapped between the
different cells based on their atom numbering and connectiv-
ity, not on the basis of their exact position. In principle, one
could first relax the atoms in the large cell with the defect

at the DFT level and then do the mapping to the perfect
crystal and small defect cell even if their atomic positions
do not perfectly match. Alternatively, we could assume that
the self-energy is not too sensitive to the relaxation and hence
keep the self-energy fixed after our initial cut-and-paste op-
eration and, afterward, relax (or relax again) the positions in
the presence of that fixed self-energy. It is important here to
remember that the self-energy provides only a correction to
the electronic structure beyond the DFT Hamiltonian. The
main defect-induced changes are already contained at the DFT
level.

D. Computational details

The method has been implemented in the LMTO and
QSGW suite of codes, named Questaal (Quasiparticle Elec-
tronic Structure and Augmented LMTOs) [25,26]. The basis
sets are specified in terms of the angular momentum cutoffs
and smoothed Hankel functions. For the initial tests on GaAs
with the AsGa antisite defect, we used a rather minimal ba-
sis set as specified, along with the results. This leads to an
overestimate of the band gap but is convenient for our present
purpose of demonstrating the validity of the approach. Lat-
tice positions are optimized for the crystal cells with defects.
Details of the supercells chosen in the cut-and-paste approach
are given along with the test results. In the final Sec. III D,
we use a larger basis set to achieve accurate comparison to
experiment.

III. RESULTS

A. Gap convergence with self-energy real-space cutoff

We start by testing the core idea of a finite-range self-
energy for bulk GaAs. Table I shows the band gap of GaAs
in QSGW as function of the cutoff dmax used in the real space
representation of the self-energy. We can see that as soon as
dmax/a > 1 with a the lattice constant or a cluster of about 30
atoms is included, the gaps become reasonable, although the
convergence is not uniform and it takes until a cluster of about

TABLE I. Convergence of band gap with dmax in GaAs with
Basis set Ga: spd , As: spd . a = 10.66 Bohr is the lattice constant
in the zinc blende structure. The gap of GaAs the LDA gap with this
basis set is 0.50 eV and the k-space QSGW gap is 2.35 eV.

dmax/a No. of neighbors Gap (eV)

0.6 5 1.84
0.8 17 1.76
1.0 29 2.09
1.2 47 2.26
1.4 87 2.30
1.6 147 2.29
1.8 191 2.30
2.0 275 2.32
2.2 345 2.32
2.4 417 2.33
2.6 457 2.34
3.0 461 2.35
∞ 2.35
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FIG. 2. The trace of submatrices of corresponding atom-atom
pair Tr[�RS i;R′

S+TS i′ ] in the self-energy matrix is plotted as function of
distance |R′

S + TS − RS|. The basis atoms of primitive GaAs crystal
(Gap and Asp), the defect (AsGa) from the 64-atom cell and its nearest
neighbor (Asnn) are chosen to illustrate the drastic drop in energy
corrections with distance. Both structures are in q = 0 state. In the
inset on the top, the on-site energy corrections of the As atoms are
seen more clearly.

450 atoms or dmax/a ≈ 3 to get absolute convergence. We note
that in an eight-atom supercell, the distance between defects is
only one cubic lattice constant a and thus choosing dmax = a
would still result in some �R,R′+T with both R and R′ + T
sites being defect sites, which is incorrect for the dilute limit.
One might think one needs to restrict dmax � a/2 to avoid
such defect-defect matrix elements of the � matrix. However,
such a small choice of dmax would lead to an unacceptable
error in the band gap. We will show, however, that using
dmax = a even in an eight-atom cell introduces a negligible
error.

The short-distance nature of the self-energy in real space
is illustrated in Fig 2. We here show the trace of each
block of the self-energy matrix for pairs {R, R′ + T} as
function of the their separation distance. While the self-
energy operator �̃(r, r′) itself, in principle, falls off as
1/|r − r′|, being a screened exchange type term, the matrix
elements ��̃Ri,R′+Ti′ = 〈χRi|�̃(r, r′) − vxc|χR′+Ti′ 〉 fall off
much faster because they are dominated by the overlap of
the corresponding basis function orbitals. The on-site ele-
ments are clearly seen to be two to three orders of magnitude
larger than the intersite elements with second or higher nearest
neighbors. They oscillate somewhat as we go to further neigh-
bors. Specifically, we can see, that if we cut off these matrix
elements at a distance dmax > a ≈ 5.6 Å, the off-site matrix
elements of the third neighbor (at distance a) is about 100
times smaller than the on-site element and 10 times smaller
than the first nearest-neighbor one. Furthermore, in the perfect
crystal, this is a Ga-Ga or As-As type matrix element shown,
respectively, by the green or orange symbols, while in the
64-atom defect cell, the matrix elements connected to the
AsGa defect site (shown in blue) at the origin would be a
As-Ga matrix element but it is not significantly different from
the perfect crystal one. The error we make by substituting this

from the eight-atom cell is that we use an AsGa-AsGa third-
neighbor matrix element instead of AsGa-Ga matrix element
of the 64-atom cell, but these differ by only 8 × 10−4 eV.
This shows that even though the eight-atom cell may seem
too small to respect the dmax = a cutoff, it will introduce only
a negligible error even when we have a wrong type of atom
matrix element. We might even have gotten away with a larger
dmax using an eight-atom cell. While this would introduce
more wrong types of atom matrix elements, and these start
deviating more from each other relatively, they are all of order
10−3 eV and would not contribute much to the final result.

From the inset in Fig. 2, we can see that even the on-site
self-energy of As in the perfect crystal or in the defect site
are very close to each other. The essential point in correcting
the self-energy matrix of the perfect crystal represented in
the supercell, which already incorporates the host band-gap
change, is to replace that of the Ga atom by an As atom.
That on-site matrix element (green circle versus pink circle)
makes a difference of order of a few 0.1 eV and is sizable. The
intersite elements of the self-energy beyond nearest neighbors
are so much smaller that they play only a minor role and
this explains why we can restrict the range of the self-energy
matrix elements rather severely with a small dmax. This also
provides a posteriori an explanation for why schemes such as
LDA + U [11,12] for modifying the band structure or other
local on-site corrections [10,14] have had considerable suc-
cess in adjusting the gap in defect calculations.

We finally note that the self-energy matrix element lo-
calization and the smoothness of the decay could be further
improved by means of more localized screened muffin-tin-
orbitals such as the jigsaw orbitals proposed in Ref. [25]. It
was already shown there that the band gap as a function of
self-energy cutoff decays quickly and smoothly using these
more localized basis functions than with standard muffin-tin
orbitals.

B. Basic properties of the AsGa antisite defect

Next, we check the viability of the scheme for the case
of the AsGa antisite in GaAs. This is a well-studied defect,
known as the EL2 defect, or at least closely related to it
[27,28]. In the q = 0 state, it has a single a1 defect level filled
in the gap and a single t2 empty resonance just above the
CBM. The excited state a1

1t1
2 is twofold degenerate and both its

S = 1 and S = 0 configurations are orthogonal to the ground
state a2

1t0
2 . This degeneracy leads to a symmetry breaking

distortion, such that the antisite As atom is pushed through
the interstitial position and the initial single point defect turns
into Ga-vacancy and As-interstitial VGa + Asi defect complex.
Due to this displacement, the system might get trapped in
a metastable state at lower energy than the excited state but
at the distorted geometry. This metastable state is labeled
1a02a2 where now the levels are labeled according to the C3v

distorted geometry. The ground state in this notation is 1a22a0

and the excited state is 1a12a1. In other words, 1a in C3v

derives from the a1 in Td while 2a derives from t2 [28]. This
state is associated with the photoquenching behavior of EL2
defect in Ref. [28]. Therefore, the optical excitation energy
from the a1 to the t2 level is of interest and can be directly
related to the corresponding QSGW levels since it occurs from
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FIG. 3. Band structure of AsGa in q = 0 state in GaAs in 64-atom
cell in LDA. This supercell has simple cubic form and the high-
symmetry k-points are � = (0, 0, 0), X = (1, 0, 0), M = (1, 1, 0),
and R = (1, 1, 1) in units 2π/aS with aS = 2a the supercell lattice
constant.

the ground state q = 0 geometry. Furthermore, the Green’s
function calculations of Bachelet et al. [27] provide detailed
information on the position of the Kohn-Sham defect levels of
a1 and t2 symmetry in two charge states. We identify these two
defect levels in defect supercell band structure and compare
our results with Refs. [27,28]. The ground-state defect level
of neutral EL2 is well known experimentally and we discuss
this further in Sec. III D.

C. Application of the method to AsGa

In Fig. 3, we show the band structure of a 64-atom supercell
containing an AsGa antisite defect at its origin in the LDA and
for q = 0 state. In this paper, we used a minimal basis set of
only a single κ and smoothing radius Rsm, spd orbital set on
Ga and As. The gap is thereby underestimated as 0.65 eV in
LDA and overestimated as 2.25 eV in QSGW . This should
facilitate recognizing the defect level. Nonetheless, we see in
Fig. 3 that the electronic structure of the defect and even the
gap are barely recognizable. The defect band is the highest
occupied band but is seen to be so much broadened that, in
combination with the LDA gap underestimate, it touches the
valence band maximum (VBM) at the � point. The CBM
occurs 0.65 eV above it at the � point in LDA, while a
converged basis set would give an even lower LDA gap of
only 0.51 eV. Clearly, the band structure of this system cannot
be examined accurately with DFT level calculations.

Next, we construct the defect in an eight-atom cell and
perform a QSGW calculation for it. From the corresponding
band structure shown in Fig. 4, it is clear that this cell is
much too small to adequately represent the defect electronic
structure. In this figure, it is not even clear which is the defect
band and which is the lowest conduction band. On the other
hand, we will show that this cell is sufficient to reconstruct the
self-energy components in the immediate neighborhood of the
defect.

FIG. 4. Band structure of AsGa in eight-atom GaAs cell in
QSGW . This supercell is also a simple cubic but with lattice constant
a. The high-symmetry points are labeled the same as in Fig. 3 but
correspond to a Brillouin zone twice as large in each direction.

In Fig. 5, we show the band structure of the 64-atom cell
obtained by means of our self-energy cut-and-paste approach
with the dashed red lines. The defect region contains only the
defect atom itself and the self-energy range dmax was set to
one lattice constant (5.64 Å). In the same figure, we show the
fully self-consistent QSGW results in the same 64 atom cell
with the solid black lines after aligning the two at the VBM.
The dispersion of this defect band is about 0.7 eV and results
from periodically repeated defects in the 64-atom supercells,
so from defects that are 2acell or 11.28 Å apart. Comparing
with the band structure in a larger cell in Fig. 8, we can see
that the defect bandwidth is mostly reduced at R and � but the
top of the band near X and M stays the same. We therefore
identify the eigenvalue near its maximum with the isolated

FIG. 5. Band structure of AsGa in q = 0 state in GaAs in 64-atom
cell: Fully QSGW (solid black lines), with self-energy constructed by
cut-and-paste approach (red dashed lines) using only the defect atom
as defect region aligned at the VBM. The zero of energy is the Fermi
level for the defect system in the full QSGW case for the neutral
defect.
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defect level. The fact that the defect band dispersion does
not follow the expected form Ed + 2t[cos (kxa) + cos (kya) +
cos (kza)] for a simple isotropic s-band in a nearest-neighbor
simple cubic lattice, where the maximum would be at R and
the minimum at �, indicates that the interactions between
defect states are not isotropic because of the underlying crys-
tal structure. The filled defect band is now clearly detached
from the VBM and it occurs at about 1.12 eV above the
VBM. Its position above the VBM and even its dispersion is
in excellent agreement between the cut-and-paste and fully
self-consistent results. Furthermore, this defect-level position
above the VBM is in good agreement with Bachelet’s Green’s
function calculation [27] of an isolated defect, which gives
1.23 eV for the q = 0 state.

The CBM is also clearly seen (overestimated as 2.25 eV
above the VBM by our small basis set) in the full self-
consistent calculation. This gap is somewhat smaller in the
cut-and-paste case (1.66 eV). This is because the range cutoff
dmax applied to � reduces the gap. Second, in this 64-atom
cell, we do not yet approach the dilute limit where the perfect
crystal gap with this cutoff (2.09 eV) would be recovered.
This can be attributed to the t2 defect level interacting with the
CBM. In both cases, we can identify the second defect level,
the t2 state, which here is a resonance and can be recognized
as a flat band near X at about 1.55 eV above the Fermi level,
which coincides with the top of the a1 defect band, in direct
QSGW calculation and 1.07 eV in the cut-and-paste method.
This defect level lies 0.42 eV above the CBM in direct QSGW
calculation and 0.60 eV in the cut-and-paste approach. The
energy splitting between the t2 and a1 state taken as the energy
difference at the X point, because of above reasons, hence
1.55 eV in direct calculation and 1.06 eV in our approach.
Dabrowski and Scheffler [28] reports this splitting as 1.18 eV
experimentally and as 0.97 eV at the DFT-level calculations,
while in the Green’s function calculation it is 0.87 eV [27].
Our result for this splitting of the t2 − a1 level is thus com-
parable in accuracy with the previous calculations and in fact
closer to the experimental value, which, as mentioned earlier,
is important for understanding the optical behavior of this
defect. Hence, the cut-and-paste method is found to be a
viable approach.

Next, we test whether replacing only the self-energy related
to the defect atom itself is sufficient or whether we need to
include a larger defect cluster region. In our cut-and-paste
method, including the nearest neighbors in the defect region
corresponds to taking the nearest neighbor of the defect atom
as another center for the ��̃R,R′+TS to be taken from the small
defect-containing (eight-atom) cell. This approach could be
thought to be problematic because it extends the range of this
��̃ with R being a nearest neighbor of the defect beyond
its unit cell, and hence includes pairs connecting this atom to
other defect atoms, while in the dilute limit or in the large
supercell with a single defect, there should only be one defect
atom. However, for our eight-atom cell and with dmax = a this
problem already occurred even for the defect atom itself but,
as already discussed in Sec. III A, the off-site matrix elements
fall off very quickly and this is found not to be a serious
problem. With this approach, we observe that the valence
and defect bands remain in the same position, but the CBM
value drop by 0.14 eV, which deviates more from the QSGW

TABLE II. The energy band gap, Eg, the defect level at the X -
point with respect to VBM, aX

1VBM
, the defect-level splitting at the X

point, (t2 − a1)X , and the a1 defect band width w(a1), are presented
for various schemes in q = 0 (top half) and in q = 2 (bottom half)
states. The subscript numbers represent the small cell atom number
which was used to build up the final cell in the cut-and-paste method.
The defect levels for the q = +2 charge state include a background-
image charge correction as discussed in the text of −0.29 eV for 64-
atom and −0.19 eV for the 216-atom cell.

Eg aX
1VBM

(t2 − a1)X w(a1)

Dabrowski and Scheffler [28] 0.6 0.97
Bachelet et al. [27] (LDA) 0.7 1.23 0.87
64-atom QSGW 2.25 1.12 1.55 0.62

648
a 1.66 1.19 1.07 0.68

648
b 1.52 1.19 1.04 0.69

6432
a 1.69 1.01 1.02 0.67

6432
b 1.64 0.98 1.03 0.68

2168
a 1.72 1.14 1.24 0.19

2168
b 1.67 1.14 1.23 0.19

Bachelet et al. 0.69 0.99
64-atom QSGW 2.24 0.40 1.60 0.60

648
a 1.71 0.77 0.95 0.67

648
b 1.58 0.78 0.94 0.67

6432
a 1.63 0.63 0.96 0.67

6432
b 1.64 0.63 0.95 0.67

2168
a 1.70 0.42 1.24 0.16

2168
b 1.65 0.43 1.24 0.16

aDefect region is defect atom itself.
bDefect region is defect atom and its nearest neighbors.

calculation than with only the defect atom itself. These results
are shown in the Supplemental Material [29].

To describe the neighborhood of the defect atom more
accurately and work with a larger cutoff in a safe way, it
would be advantageous to enlarge the size of the cell from
which the defect and its neighbors’ self-energy is extracted.
This might then also allow us to increase the dmax or range
of the self-energy cutoff. To further test the convergence of
our scheme, we now consider a somewhat larger cell than the
eight-atom cell to extract the defect atom and its neighbors’
self-energy. For this purpose, we incorporate the defect in a
32-atom supercell of GaAs. The dmax value is set to the lattice
constant of this cell, 1.73a of the conventional cell, which is
then also the nearest defect distance.

Building the host cell using this small cell does not provide
considerable improvement for the cut-and-paste method. This
is expected since we already know that the self-energy matrix
elements fall off rapidly with intersite distance. Furthermore,
the exact QSGW calculation of this cell is now a more ex-
pensive calculation and not so much is gained by increasing
the size to a 64-atom cell using the cut-and-paste approach.
Nonetheless, we test its performance to check the convergence
of our cut-and-paste approach in terms of the size of the defect
region and self-energy cut-off distance dmax. The results of this
scheme are summarized in Table II with the label 6432. Dif-
ferent defect region descriptions and charge states were also
considered. In Fig. 6, we compare the two cut-and-paste band
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FIG. 6. Band structure of AsGa in q = 0 state in GaAs in 64-atom
cell: 648 scheme (solid black lines), and 6432 scheme (red dashed
lines), both with self-energy constructed by cut-and-paste approach
using only the defect atom as defect region, aligned at the VBM. The
zero of energy is the Fermi level for the defect system in 648 scheme.

structures of the defect containing a 64-atom cell in the q = 0
state, built from the eight-atom cell (648) and from the 32-
atom cell (6432). The almost identical bands show that there is
nothing to be gained in the accuracy of the method by extract-
ing the defect atom self-energy from a 32-atom compared to
an eight-atom cell and is furthermore significantly more com-
putationally expensive. We conclude that the most effective
approach for the cut-and-paste method is building the defect-
containing host cell from the eight-atom cell and it is sufficient
to define the defect region as the defect atom itself. The results
obtained by this approach are in good agreement with our ex-
act QSGW calculations and previous studies in the literature.

Next we want to address whether the cut-and-paste ap-
proach also works for charged defect states and correctly
describes the trend with charge observed in the Green’s func-
tion calculations. In Fig. 7, we show the band structure of the
same cell, but with the defect in the q = 2 state. In this case,
the exact QSGW band gap does not change, but the defect
level moves closer to the VBM. The cut-and-paste approach
yields 0.05 eV larger band gap. Although the defect band
dispersion is again reproduced faithfully, the position of defect
level deviates by about 0.2 eV between the cut-and-paste and
exact calculation. This is still an acceptable precision of the
cut-and-paste method and indicates that the nearly perfect
agreement seen earlier for the q = 0 state is perhaps somewhat
coincidental.

On the other hand, the difference between the two charge
states regarding the defect level position agrees with prior
work and has a clear physical meaning. It can be related to
the different final geometries after atomic relaxations in dif-
ferent charge states. For the q = 0 state, we observe outward
breathing of nearest As atoms, such that they move further
from the defect atom about 4% of the nearest-neighbor dis-
tance. Dabrowski and Scheffler [28] reported similar lattice
relaxation effects. On the other hand, in the q = 2 state, the
nearest-neighbor distance remains the same as in the perfect
crystal.

FIG. 7. Band structure of AsGa in q = 2 state in GaAs in 64-atom
cell: fully QSGW (solid black lines), with self-energy constructed by
cut-and-paste approach (red dashed lines) using only the defect atom
as defect region, aligned at the VBM. The zero of energy is the Fermi
level for the VBM in the full QSGW case for the doubly ionized
defect.

There is an additional issue with charged defect levels,
namely, the spurious interaction of the image charges with the
compensating homogeneous background charge density. Such
corrections are well known to be required for defect formation
energies or total energies and can be estimated in a point
charge model as Ecor = −αq2/2Lε, where α is a Madelung
constant for the supercell, L the linear size of the supercell
and ε the dielectric constant of the medium. Closely related,
there is a correction in the potential for a one-electron level
which is δV = −αq/Lε. Note that this correction is linear in
the charge state but does not include the factor of 2 in the
denominator. For q = 2, the two corrections are the same.
Using the dielectric constant of GaAs of 12.9 and the size of
our supercell, this amounts to a correction of −0.29 eV for the
64-atom cell and −0.19 eV for the 216-atom cell. This gives
a difference between the q = 0 and q = +2 defect levels of
0.43 eV for the 64-atom cell using cut-and-paste.

One important advantage of our method is that once the
exact QSGW calculation for the small cell is done, moving
to larger host cells and calculating the defect properties in
the dilute limit is a straightforward procedure and one can
achieve GW -level accuracies for the cost of an LDA calcula-
tion for even larger cells. Although we do not include the exact
calculations for these larger cells in this paper, we analyze a
216-atom cell, i.e., a 3 × 3 × 3 supercell of the conventional
simple cubic eight-atom cell. In Fig. 8, we see that in the
216-atom cell dispersion of the defect band is almost zero,
indicating we are close to the dilute limit. Furthermore, this
allows us to better evaluate the nature of the defect band
dispersion. As mentioned earlier, the top of the defect band
which is flat between X and M remains the same as in the
smaller 64- and 32-atom cells but the bandwidth is reduced at
�. This helps us to identify the top of the defect band with the
dilute limit defect level.

It is important to point that obtaining this 216-atom cell
band structure only required an additional LDA calculation
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FIG. 8. Band structure of AsGa in q = 0 state: 648 scheme (solid
black lines), and 2168 scheme (red dashed lines), aligned at the
VBM. Defect region is defined only with the defect atom. Dispersion
of a1 level vanishes as defect-defect distance increases in a fashion
explained with the tight-binding model above. Note that the Brillouin
zones of the 216- and 64-atom cells have the same symmetry labeling
but the latter is larger and contains fewer bands. The � − X distance
of the 216 atom cell is scaled down by a factor 2/3 compared with
the 64-atom one and similarly for the other directions.

of this cell. Once the eight-atom cell GW calculation is
done, moving to even larger cells only requires the LDA
calculation of the desired single defect containing supercell.
This provides an immense reduction in computational cost.
For instance, we can compare the computation time of exact
QSGW calculations for 8-atom, 32-atom, and 64-atom cells.
The convergence parameters for these calculations are kept
the same and the k-point meshes are kept equivalent by taking
a smaller set with approximately the same grid-density in
the larger cells. The number of processors for each calcula-
tion is adjusted proportional to the k-point mesh grid. Under
these circumstances, the fully consistent QSGW calculation
was completed in 0.6 h for the 8-atom cell, 26.4 h for the
32-atom cell, and 181 h for the 64-atom cell. In other words,
the computing timescales like Nη with η ≈ 1.8 and N the
number of atoms or 3η for the scaling with the linear size of
the supercell. On the other hand, the LDA calculation of the
64-atom cell took less than half an hour. For this particular
648 scheme, the bottleneck of cut-and-paste method was the
eight-atom cell QSGW calculation. For larger single defect
cells, the LDA calculation might become the bottleneck due to
large number of atoms, however, the computation cost would
still be insignificant compared to the QSGW calculation of the
same cell. For instance, the LDA calculation of the host cell in
our 2168 scheme was performed using resources comparable
to that of 648 LDA step, and this step took around 6 h. Note
that all the atoms are fully relaxed in this step, and one could
reduce the computation time even further by only letting the
first few nearest-neighboring atoms relax.

D. Large basis sets and comparison to experiment

To test the fidelity of the theory, we finally make a careful
comparison against the experimentally observed neutral EL2

deep donor level (Ev + 0.75 eV) [28,30,31]. This defect level
was first identified with the AsGa antisite by Weber et al. [30]
based on electron paramagnetic resonance (EPR) and activa-
tion of the unpaired spin +1 charge state from the neutral state
by an optical transition to the conduction band, which was
found to occur at 0.75 eV. This was later also confirmed by
thermionic emission, capacitance spectroscopies and optical
studies [31–33]. In view of the experimental gap of 1.52 eV at
low temperature, this places the defect level almost exactly at
mid gap. We revisit the neutral EL2 level with a reasonably
well converged basis, and also include spin-orbit coupling
(SOC). We repeat the procedure described above, using a
32-atom supercell, with an spdfspd basis on both the Ga and
As, and local orbitals to include the Ga 3d in the valence. The
basis also includes sp “floating orbitals” (smoothed Hankel
functions without augmentation spheres [25]) centered at the
two high-symmetry interstitial sites along the [111] line. The
QSGW bandgap (1.7 eV, including SOC) is slightly less than
that of a fully converged basis (1.8 eV). This includes a reduc-
tion in the bandgap of 0.11 eV from SOC. The gap reduction
is expected, as the split-off valence band at � is 0.33 eV below
the VBM, both experimentally and in QSGW.

We note that even with his well-converged basis set the
bandgap is overestimated because QSGW under-screens W ,
because the RPA polarizability omits electron-hole attractions
that connect the electron and hole parts of the bubble. If
such attractions are included, e.g., via ladder diagrams, the
bandgap is reduced to a value very close to the observed gap.
It was discovered soon after QSGW was first formulated that,
empirically, the RPA dielectric constant ε∞ is uniformly 20%
too small for a wide range of insulators, strongly correlated or
not [34]; see in particular Fig. 1 in Ref. [35]. Adding ladder
diagrams greatly improves on ε(ω), as has been known from
pioneering work in the groups of Louie [36] and Reining [37].
It has recently shown that improving W with ladders, and
using this W in the QSGW self-consistency cycle, almost com-
pletely eliminates the overestimate of band gaps in weakly
correlated semiconductors, and it also corrects for the under-
estimate of ε∞ [38]. As an alternative, a hybrid approach has
long been used, mixing LDA and QSGW [34]. Kotani and his
coworkers showed that a hybrid of 80% QSGW and 20% LDA
yields uniformly good band gaps in many weakly correlated
semiconductors [39]. The hybrid approach is an inexpensive,
albeit ad hoc way to mimic the effect of ladder diagrams, and
we use it here to refine our estimate of the neutral EL2 level.

Figure 9 shows the density of states (DOS) of the 128
supercell within QSGW for two scenarios: the black data is
the DOS for an ideal (unrelaxed) structure, while the red data
shows the effect of relaxing the four nearest neighbors around
the AsGa only. Limiting relaxations to nearest neighbors sim-
plifies the embedding procedure, and tests showed that more
complete relaxations made minor further changes. It is seen
that the lattice relaxation induces a shift in the defect level,
moving it about 0.3 eV closer to the valence band.

To estimate the EL2 energy in the limit of an infinite cell,
the center of gravity of the band was calculated. It is found to
be close to the Fermi level at the top of the defect band for the
neutral charge state, about 0.11 eV below EF . Thus, for higher
precision we here subtract this 0.11 eV from EF to obtain the
defect level. This would reduce the a1 defect levels in Table II
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FIG. 9. Density-of states of a 128-atom supercell of GaAs with a
single As antisite for an unrelaxed lattice (black) and for a lattice
whose nearest neighbors were relaxed (red). Energy zero corre-
sponds to the Fermi level in both cases, and sits at the top of the
(doubly occupied) midgap EL2 level. It has a dispersion of about
0.3 eV. in the 128-atom cell.

by 0.11 eV. The VBM and CBM are inferred from the energies
where the DOS touches zero (see labels in Fig. 9), so the EL2
relative to either can be computed. The results are displayed
in Table III.

As Table III shows, the (+/0) level of EL2 is predicted
to be at Ev + 0.83 eV and Ec − 0.85 eV. It is slightly too
far from both the VBM and the CBM, compared to experi-
ment, because the QSGW gap is too large. It is not a priori
obvious how much this level will shift if QSGW were high
enough fidelity to yield the experimental gap, e.g., by adding
ladder diagrams to W . It is possible, in principle, to do this
by carrying out the calculation with ladders in W , but here
we take the hybrid 80% QSGW + 20% LDA approach as a
simple alternative. The result is shown in Table III. The hybrid
approach reduces the level by about 0.1 eV, while the gap itself
is reduced by ∼0.25 eV. This is consistent with the EL2 being
comprised of roughly equal measures of the host valence
band and conduction band character and its position almost
exactly in the middle of the gap. Finally, the predicted (+/0)
EL2 energy (Ev + 0.74 eV) is in excellent agreement with the
observed value Ev + 0.75 eV, while the band gap (1.42 eV) is
also close to the room-temperature experimental gap. (Ideally,
the QSGW gap should be ∼1.5 eV, the zero-temperature gap
of GaAs. Indeed, it does come out very close to 1.5 eV when
a fully converged basis is used, whether ladders are added or
the hybrid-� approach is used).

TABLE III. Band center of neutral EL2 defect, in eV, relative
to the valence band maximum, embedded in a 128-atom cell. A
reasonably well converged basis was used, with spin orbit coupling
included. Two calculations are shown: The first assuming no lattice
relaxation and the second including it, as described in the text. Also
shown is the band gap.

QSGW
80% QSGW + 20%

LDA

Structure EL2 gap EL2 gap
Unrelaxed 1.13 1.69 1.02 1.44
Relaxed 0.83 1.68 0.74 1.42

We can also estimate the (2 + /+) transition level. The
latter is experimentally found at 0.52–0.54 eV or about
0.23 eV lower than the (+/0) level. Following the ap-
proach of Bachelet et al. [27], we can use the difference
between our q = 2+ one-electron level and q = 0 level
to estimate the transition levels. Using Janak’s theorem,
εi = ∂E (ni )/∂ni, and assuming a linear dependence εi(ni ) =
ε(0) + Uni, we obtain E (ni ) = εi(0)ni + Un2

i /2 or ε(+/0) =
E (2) − E (1) = εi(0) + 3

2U and ε(2 + /+) = E (1) − E (0) =
εi(0) + 1

2U . From Table II, our value of U ≈ 0.2 − 0.3 eV
including the charge-background correction, in excellent
agreement with the experimental value of 0.23 eV. Thus, if
with the large basis set we obtain the (+/0) level at 0.74 eV,
our value for the (2 + /+) level will also be close.

Even with a slightly less complete basis set, including
spdf spd and Ga-3d local orbitals or spdsp+ local orbitals,
but omitting the floating orbitals, we found that the defect
band top in a 64-atom cell and using 648 cut-and-paste ap-
proach lies at 0.78 eV above the VBM when the latter is
corrected by SOC, and with a host gap of 1.7 eV (1.5 eV
for the spdsp basis set). Given that the center of gravity of
the defect band DOS lies slightly lower, this would become
0.67 eV. Even in this calculation, however, the CBM in the
defect cell is ∼1.35 eV, indicating that the t2 resonance in
the conduction band affects the CBM. This effect is reduced
only by going to even larger supercells. Using the spdsp
basis set, we have also calculated the defect level in q = 0
and q = +2 charge states and find them to be 0.81 eV and
0.48 eV (including the charge-background correction and the
spin-orbit coupling gap correction). These did not yet include
the 0.8� correction but are consistent with the large basis set
and show that both the +/0 and 2 + /+ transitions are in good
agreement with experiment.

We finally note that while these levels are indicated as
+/0 and 2 + /+, the experiments are more directly related
to the frozen geometry one-electron excitation levels we cal-
culate here in, respectively, the neutral and 2+ geometries
because they correspond to optical excitations activating the
EPR singly occupied q = +1 state and not thermodynamic
transition levels. To calculate the thermodynamic transition
levels, one can follow the approach suggested by Rinke et al.
[5]. For example, the thermodynamic transition level

ε(+/0) = E f (0, 0) − E f (+,+) − εF ,

= [E f (0, 0) − E f (+, 0)]

+ [E f (+, 0) − E f (+,+)] − εF ,

= εd − εF + Erelax(0 → +). (11)

Here E f (q, q′) indicates the energy of formation of the defect
in charge state q in the relaxed geometry of charge state
q′. The first bracket in the second line is frozen geometry
excitation energy from the neutral to the q = +1 charge state,
calculated in the GW approach. If we pick the chemical po-
tential a εF at the VBM, then εd − εv is just the one-electron
defect level relative to the VBM. The second bracket is the
relaxation energy of the q = +1 charge state from the ini-
tial q = 0 geometry to its own equilibrium geometry. This
amounts to about 0.08 eV.
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IV. CONCLUSION

We have shown that the GW self-energy matrix represented
in a real-space basis set is short-ranged, and the contribution
to the quasiparticle energy correction to DFT eigenvalues is
significant only for the first few nearest neighbors of a spe-
cific atom. We introduced a cut-and-paste method for defect
calculations at the GW level that exploits this property. We
demonstrated the method using a well-known single point
defect, namely, the AsGa antisite in a GaAs crystal. The main
correction to the defect band structure compared to LDA
in our method is incorporating the host perfect crystal gap
correction via the perfect crystal self-energy, which requires
a trivial cost because it just amounts to a relabeling of the
self-energy matrix according to the supercell description of
the atomic sites. After detailed examination, we conclude that
an eight-atom cell is sufficient to extract the defect atom’s
self-energy which is then used to replace the defect atom
self-energy in the final supercell. We observe almost perfect
agreement between the fully self-consistent QSGW defect
bands and the cut-and-paste method, in terms of the valence
bands, the a1 defect-level position, and the defect band disper-
sion. There is a small disagreement between our method and
the full QSGW calculations, in terms of unoccupied levels.
This is caused mainly by the range cutoff dmax applied to
�, which slightly reduces the gap from its converged QSGW
value. The main advantage of the method is that it allows us to
obtain GW -level accuracy results for large defect supercells at
essentially the cost of an LDA calculation for the latter. This
allowed us to carefully monitor the defect band dispersion and
identify the dilute limit isolated defect level more precisely.
We found good agreement for the defect-level positions with

previous studies of this system, although the previous studies
were not at the GW level. Inspecting the band structures of
the defect system in detail allowed us to identify not only the
obvious defect level in the gap of a1 symmetry but also the
excited defect t2 symmetry resonance and provides accurate
information on the optical transition between these levels,
which has previously been recognized as an important step
in activating a metastable state of this defect. Our calculation
also agrees with previous work in the change in defect level as
a function of charge states. Overall, the cut-and-paste method
significantly reduces the computational cost of GW -level cal-
culations, with a small loss in accuracy. Finally, to establish
that QSGW is able to predict defect levels with a fidelity
comparable to its ability to predict energy bands of bulk
materials, we benchmark the embedding approach against
the experimentally measured neutral EL2 level. We show
the discrepancies with experiments are small, and closely
track the known discrepancies for weakly correlated periodic
systems.
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