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Information-theoretic memory scaling in the many-body localization transition
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A key feature of many-body localization (MBL) is the breaking of ergodicity and consequently the emergence
of local memory, revealed as the local preservation of information over time. As memory is necessarily a time-
dependent concept, it has been partially captured by a few extant studies of dynamical quantities. However,
these quantities suffer from a variety of issues which limit their value as true quantifiers of memory; thus, a
fundamental and complete information-theoretic understanding of local memory in the context of MBL remains
elusive. We outline these issues in detail and introduce the dynamical Holevo quantity to address them. We find
that it shows clear scaling behavior across the MBL transition, and we determine a family of two-parameter
scaling Ansätze which capture this behavior. We perform a comprehensive finite-sized scaling analysis to extract
the transition point and scaling exponents.
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I. INTRODUCTION

How many bits of information stored locally in a quantum
many-body system are preserved over time? The most striking
scenario in which to ask this question is in the context of
many-body localization (MBL). In MBL systems, quenched
disorder frustrates natural, scrambling, self-thermalizing dy-
namics [1–3], leading to the local preservation of information:
the emergence of memory. Unlike conventional quantum
phase transitions [4], the MBL transition (MBLT) takes
place across the spectrum [1–3,5], making its analysis a
far more elaborate task than that of other quantum critical
systems. Despite this, several features of the MBL phase
have been characterized, including Poisson-like level statis-
tics [6–11], area-law entangled eigenstates [12–17], slow
growth of correlations with time [8,18–20], and the break-
down of transport [9,21–27]. To identify these features,
various quantities have been exploited, including quantum
mutual information [28], Schmidt gap [29], entanglement
in the form of concurrence [19,21,30], entropies [8,10,15–
17,19,21,23,26,31–40] and negativity [19,29,41], population
imbalance [9,21–27,42], and other occupancylike quanti-
ties [7,22,31,32,35,36,39,43].

The above works are either concerned with spatial cor-
relations or are missing a bitwise interpretation and do
not fully capture the temporal preservation of informa-
tion, i.e., memory. Extant studies of dynamical quantities,
primarily entanglement growth, and the population imbal-
ance [7,27,36,42,43] only partially capture memory. For
example, the imbalance and similar quantities are dependent
on the measurement basis, and a sub-optimal choice can ob-
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scure otherwise accessible information. Raw informational
quantities like entanglement entropy or spatial correlation
functions account for this but fail to distinguish between
input states or quantify the amount of accessible infor-
mation in a block. The entanglement entropy also lacks
a temporal component: simply giving us an indication of
the instantaneous mixedness of a subsystem. Thus, it is
highly desirable to have a complete, unbiased, information-
theoretic quantification of local memory in the context of
MBL.

The investigation of the MBL phase and the MBLT is
broadly conducted through two different classes of quantities:
(i) static quantities computed over many-body eigenstates (of-
ten selected from a small energy interval) [6–11,15–17,28–
35,39,41,44] and (ii) dynamical quantities computed over the
time-evolved quantum state of a system which has overlap
with several eigenstates [7,9,15,18–27,36–39,42,43,45–49].
Scaling near the MBLT has been investigated mainly through
static quantities such as the level statistics [9,11,32] and entan-
glement entropy [15,17,32–34]. Investigating the properties of
scaling through dynamical quantities is more challenging and

FIG. 1. Schematic diagram of the procedure by which individual
messages �(k) are transmitted via the map E . Information initially
localized within the message may bleed out into the environment
during transmission.
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less thoroughly explored (see, e.g., Refs. [15,22,50]). Memory
is necessarily a dynamical quantity, motivating three main
questions: (i) What is required of a quantifier for it to be
a quantifier of local memory? (ii) Can one construct such a
quantifier which is optimal in the sense that it is independent
of measurement basis and captures the maximum possible
amount of accessible information? (iii) If so, what it its behav-
ior across the MBLT, and does it exhibit scaling? Addressing
these questions is crucial to developing an informational un-
derstanding of the nature of the MBLT.

In this paper, we address these questions by discussing
local memory and introducing criteria which a quantity must
satisfy to be a true memory quantifier. We introduce a dy-
namical version of the Holevo quantity as a complete and
optimal information-theoretic memory quantifier. We inves-
tigate it across the MBLT and perform a comprehensive
scaling analysis over its late-time values using a family of
two-parameter scaling Ansätze, from which we extract critical
parameters.

II. MEMORY IN MBL SYSTEMS

The notion of local memory is widely quoted in the lit-
erature of MBL but is infrequently the subject of direct
investigation. In this section, we outline and discuss the ways
in which memory has been captured in MBL systems before
and leverage this discussion into a determination of the impor-
tant features that a quantifier of memory must have—features
that none of the extant quantities display completely.

In theoretical and experimental studies alike, memory is
most frequently discussed in terms of nonzero steady states of
appropriate observables, notably quantities derived from lo-
cal magnetization or occupancy measurements [1,7,36,43,51–
54]. Should these measurements systematically coincide with
similar measurements made on the initial state of the system,
then the system has retained some local memory of those
initial features. A generic quantity of this kind is the auto-
correlation function:

F (t ) = 〈W (0)W (t )〉, (1)

of some appropriate observable W (t ) = 〈Ŵ (t )〉.
The premier example of this type of quantity is the imbal-

ance, used extensively in MBL literature and to great effect in
landmark experiments (see, for example, Refs. [23,26,27,55]).
It is usually defined in terms of local fermionic number ex-
pectation values 〈n̂ j (t )〉 = n j (t ), where j indexes sites on a
lattice. If the initial system is in some charge density wave
configuration, then the aggregate deviation of the nj (t ) from
their initial values nj (0) quantifies how well the system re-
members its initial number configuration. The prototypical
example, for a system of spinless fermions such that nj (t ) ∈
[0, 1] and initialized in the Fock state |0, 1, 0, . . . , 0, 1〉
(a charge density wave configuration), the imbalance is
defined as

I (t ) = Ne(t ) − No(t )

Ne(t ) + No(t )
, (2)

where Ne(o) = ∑
j∈even(odd) n j (t ) is the total number of

fermions on even (odd) sites. The initial state has all even sites
unoccupied and all odd sites occupied, so I (0) = 1. As the

system evolves, it can either thermalize to homogeneity such
that the initial configuration is lost limt→∞ I (t ) = 0, or else it
can relax to be correlated limt→∞ I (t ) > 0 or anticorrelated
limt→∞ I (t ) < 0 with its initial state. The prevailing issues
with the use of such quantities as memory quantifiers are
twofold: first, they have no bitwise interpretation, and second,
a poor choice of measurement basis can obscure otherwise
accessible information. To illustrate the latter case, consider
a protocol which perfectly transmits Z-basis eigenstates to
X -basis eigenstates: |0〉 → |+〉, |1〉 → |−〉, but where the
final measurements on these states are made in the Z basis.
This issue means that, even if informational versions of local
observables are constructed, they still do not give a complete
understanding of how much information has been retained.

A more sophisticated grasp of memory from the perspec-
tive of information scrambling can be attained by investigating
the growth of the out-of-time-order correlator (OTOC):

OWV (t ) = 〈[W (t ),V (0)]†[W (t ),V (0)]〉β, (3)

for some appropriately chosen, spatially distant operators Ŵ
and V̂ , which originally commute. The 〈·〉β here denotes the
thermal average at inverse temperature β. Originally envis-
aged as an analogy to the classical Poisson bracket as a
measure of quantum chaos, it can also be interpreted as an
indirect measure of information scrambling: the speed and
strength with which the effect of the perturbation V̂ is felt
by the distant Ŵ tells us how quickly information is car-
ried through the system. In the ergodic phase, the effect of
the perturbation spreads rapidly, and the OTOC grows ex-
ponentially in time OWV (t ) ∼ exp(λLt ) at a rate governed
by the Lyapunov exponent λL, while in the localized phase,
this growth appears logarithmic or power law [56–58]. The
OTOC approach, while more nuanced, depends on an ap-
propriate choice of operators, has no clear interpretation in
terms of how much information can actually be extracted from
a given subsystem, and is exceedingly difficult to measure
experimentally.

Finally, local memory can be inferred without appealing
to time correlation by monitoring, e.g., the growth of entan-
glement entropies, the spatial mutual information, and the
extraction of local integrals of motion (LIOMs) [28,59–62].
Some of these quantities have obvious bitwise informational
interpretations or are advantageously blind to the specifics of
measurement procedure. Despite this, all have shortcomings
which curtail their use as true memory quantifiers. Entan-
glement entropies quantify the instantaneous mixedness of a
subsystem and thus capture how valuable they are as instan-
taneous alphabets but not how much accessible information is
actually stored in them with respect to an initial message. The
same issue exists in the context of extraction of LIOMs and
their physical extent which, though exceedingly valuable as
direct probes of the MBL regime itself, are difficult to probe
experimentally, contain no clear correlation to initial informa-
tion distributions, and lack bitwise interpretations. The spatial
mutual information also suffers from this lack of temporal
correlation: it quantifies how separate subsystems correlate
but not how well they correlate with their own past.

In summary, the prevailing methods by which memory
is accessed in MBL systems all have respective strengths
and shortcomings. The dynamics of local observables,
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like the magnetization and imbalance, are experimentally
tractable and temporally connect the initial conditions with
late-time measurements but can be rendered useless by a
poor choice of measurement basis and do not quantify
how much information—in bits—can be extracted from a
subsystem. OTOCs, while much more sophisticated and theo-
retically invaluable, suffer similarly from the specification of
perturbation/measurement operators and the lack of a bitwise
interpretation and are not readily accessible to experiment.
Quantities like the entropy and spatial mutual information are
informational but lack the temporal correlations necessary to
act as a true memory quantifier.

Based on this analysis, we define two requirements for
a quantity to be considered a true quantifier of memory. A
memory quantifier must have (i) temporal correlations which
relate the initial and final states of an appropriately defined
message register and (ii) a bitwise interpretation of the amount
of information a subsystem has retained. We also state two
preferred features which, while not necessary, are advanta-
geous to a quantifier: (i) optimal, in the sense that no change
in measurement basis increases the amount of information
captured, and (ii) experimental accessibility.

III. THE HOLEVO QUANTITY

We introduce the Holevo quantity to address the re-
quirements outlined in the previous section. The Holevo
quantity quantifies the amount of classical information, in
bits, which can be accessed via optimal measurements on
an ensemble of information bearing quantum states [63–65].
For an ensemble of M input states {�(1), �(2), . . . , �(M )}
undergoing a general quantum evolution in the form of a trace-
preserving completely positive map E , the Holevo quantity is
defined as

C(t ) = S

{∑
k

pkE[�(k)]

}
−

∑
k

pkS{E[�(k)]}, (4)

where pk is the probability with which the input �(k) is sent
through the map E , and S(·) = −Tr[· log2 ·] is the von Neu-
mann entropy. This quantity is widely used for bounding the
capacity of classical communication across a distance using
quantum carriers [63,66–72]. Here, we use this as a quanti-
fier of memory, which can be regarded as a communication
in time. The Holevo quantity has two distinct informational
advantages: (i) It is optimal with respect to measurement
basis [65], and (ii) it distinguishes between different input
states �(k) by construction. The temporal correlation which we
posit as a necessary condition for a quantity to be a memory
quantifier is between the initial ensemble (encoded in the pk)
and final ensemble [encoded by the ρ (k)]. The Holevo quan-
tity is clearly informational, explicitly yielding the number
of classical bits which remain accessible over time. Finally,
we note that the sums in Eq. (4) run over an ensemble of
message states rather than individual sites, making it qualita-
tively different from conventional bulk correlation functions.
These features together satisfy both the necessary conditions
for a memory quantifier introduced at the end of the previ-
ous section. This makes the Holevo quantity a more viable
and complete quantifier of memory than quantities like the

imbalance and entanglement entropy and one which is more
experimentally accessible and informationally complete than
the use of OTOCs, correlation functions, or explicit extraction
of LIOMs.

IV. MODEL

We consider a system of l spin- 1
2 particles which

encode pure separable messages of the form �(k) =
|m(k)

1 , m(k)
2 , . . . , m(k)

l 〉〈m(k)
1 , m(k)

2 , . . . , m(k)
l | in which m(k)

i =
0, 1 represents spin up and down, respectively. This system
is embedded in an environment of size L − l which is initially
prepared in a pure quantum state |e〉. The combined state of
message and environment is of size L and is initially given
by the quantum state �(k)

se (0) = �(k) ⊗ |e〉〈e|. The interactions
between the particles are explained by the Hamiltownians Hs,
He, and Hse for system, environment, and their interaction,
respectively, and are taken to be

Hs = J

(
l−1∑
j=1

S j · S j+1 +
l∑

j=1

h jS
z
j

)
,

He = J

⎛
⎝ L−1∑

j=l+1

S j · S j+1 +
L∑

j=l+1

h jS
z
j

⎞
⎠,

Hse = J (Sl · Sl+1 + S1 · SN ), (5)

where J is the exchange interaction, and the hi are random
fields drawn uniformly in the interval [−h,+h], with h being
the disorder strength. The unilocal operator Sα

j = σα
j /2 (for

α = x, y, z) is the spin operator α at site j. The total Hamilto-
nian is thus given by H = Hs + He + Hse. As the result of this
interaction, the combined system and environment evolves as
�(k)

se (t ) = e−iHt�(k)
se (0)e+iHt . By tracing out the environment,

one can get the reduced density matrix of the system �(k)
s (t ) =

Tre[�(k)
se (t )] which also defines our map E[�(k)] = �(k)

s (t ). This
procedure is shown schematically in Fig. 1, and its simulation
was carried out using the QUIMB package [73]. By computing
the Holevo quantity in Eq. (4) for a given input ensemble
{pk, �

(k)} and environment state |e〉 under the action of the
map E[·], one can directly quantify how much information, in
bits, can be extracted locally from the system s at time t about
its initial state. This is a direct, dynamical quantification of
local memory in the subsystem s. The value of this quantity in
identifying the MBL regime and probing the ergodic-MBLT
is the subject of the rest of this paper.

V. HOLEVO RATE AS A QUANTIFIER
OF LOCAL MEMORY

We consider M = 2l equiprobable (pk = 1
2l ) mes-

sages with �(1) = |0, 0, . . . , 0〉〈0, 0, . . . , 0| to �(2l ) =
|1, 1, . . . , 1〉〈1, 1, . . . , 1|. Three different types of quantum
state are taken for the environment: (i) Néel product state
|eNéel〉 = |0, 1, 0, . . . , 1, 0〉; (ii) an entangled state resulting
from the time evolution of the Néel state under the action
of He, namely, |eevo〉 = exp(−iHetNéel)|eNéel〉 [74]; and (iii)
one of the midspectrum eigenstates |eeig〉 of He, namely,
He|eeig〉 = En|eeig〉, where En is the median eigenstate energy.
For each of these environment types, we compute the Holevo
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quantity for the given set of equiprobable messages. In
general, the averaged Holevo quantity C is a function of
several variables, namely, C ≡ C(L, l, {h j}, t ) (for a given set
of random fields {hj}), and is extensive in l . As such, it is
convenient to normalize the Holevo quantity by the message
size l to get a Holevo rate:

R(L, l, {hj}, t ) = 1

l
C(L, l, {h j}, t ). (7)

The Holevo rate R(L, l, {h j}, t ) quantifies what proportion
of input data can be extracted at time t by only accessing
the qubits in the system s, varying between 1 for perfect
memory and 0 for full scrambling. We average the Holevo
rate over different realizations of the hi ∈ [−h, h] for a fixed
disorder strength h to get a disorder-averaged Holevo rate
R̄(L, l, h, t ) [75]. We note here that, additionally to the con-
ventional exponential scaling of computational complexity
with total system size L, the calculation of the Holevo quan-
tity scales exponentially with the size of the subsystem l .
This is because we need to transmit all 2l messages {ρ (k)},
which manifests numerically as having to run each disorder
sample 2l times. Thus, the computational cost of calculating
the Holevo quantity for a single disorder realization scales
exponentially with subsystem size in addition to the standard
exponential scaling of the cost of exact diagonalization. For
this reason, the system sizes we can access are severely lim-
ited; they are doubly afflicted by the curse of dimensionality.

VI. DYNAMICAL BEHAVIOR

To investigate the behavior of the disorder-averaged
Holevo rate, in Figs. 2(a)–2(c), we plot R̄ as a function of time
for different choices of disorder strength h for L = 16 and
l = 4 for the three chosen environment states, respectively.
After early transient behavior, the disorder-averaged Holevo
rate—like other quantities—either saturates rapidly in time
(in the ergodic regime) or falls off logarithmically in time and
will fully saturate only at exponential time scales (in the MBL
regime). In the limit of large L, it tends to zero in the ergodic
regime and to a nonzero finite value in the MBL regime. For
our finite systems, we found that the total evolution times of
T1 = L2 are sufficient to differentiate the two regimes in all
cases. The fact that R̄ increases as a function of increasing
disorder strength indicates that the message subsystem s fails
to locally retain information in the ergodic regime but success-
fully retains a high proportion of it deep in the MBL regime. In
essence, the late-time value of the disorder-averaged Holevo
rate successfully captures the conventional understanding of
how local memory behaves in both phases.

To estimate the steady-state value of R̄, we take the late-
time average of the disorder-averaged Holevo rate:

R̄SS (L, l, h) = 1

T1 − T0

∫ T1

T0

R̄(L, l, h, t )dt . (8)

In the extreme limit T1 → ∞, this quantity converges to the
true steady-state value of R̄. Thanks to the short time scale of
transient dynamics in the evolution of R̄, the above quantity
also closely approximates this value for finite T0, T1 [76],
at least to an extent which makes it possible to distinguish
ergodic and localized regimes. This time-averaged Holevo

FIG. 2. (a)–(c) The disorder-averaged Holevo rate R̄(L, l, h, t )
against time for a fixed message length l = 4. (d)–(f) The time-
averaged Holevo rate R̄SS (L, l, h) against disorder strength for a
variety of message lengths. Each row contains results for a single
environment type: (a) and (d) Néel state, (b) and (e) evolved Néel
state, and (c) and (f) eigenstate environments, respectively. We take
L = 16 for all above figures.

rate R̄SS varies between near zero in the ergodic regime to near
unity in the fully localized regime, successfully distinguishing
regimes. To show this more clearly, in Figs. 2(d)–2(f), we plot
R̄SS as a function of disorder strength h for various message
sizes l in a chain of size L = 16 for the three chosen environ-
ment states, respectively. As the figures show, R̄SS varies from
low to high values as we increase h, saturating toward unity.

Finally, this behavior indicates that the Holevo quantity
may exhibit scaling across the MBLT. As the nature of the
transition is still under debate, the potential ability of the
information-theoretic Holevo quantity to investigate it from
the perspective of memory is of great importance. The scaling
analysis of the following section addresses this possibility.

VII. FINITE-SIZED SCALING

The behavior of R̄SS , presented in Figs. 2(d)–2(f), sug-
gests that R̄SS may show scaling behavior across the MBLT
point. This scaling would be invaluable, as it would allow
us to quantitatively investigate the MBLT from a strictly in-
formational perspective. We note here that such an analysis
will exhibit similar pathologies to other extant small-system
analyses in the field (see, e.g., Refs. [15,77]), namely, a vio-
lation of the Harris criterion [78–80]. This is because, while
it is certainly possible to differentiate the two regimes using
R̄SS , a rigorous analysis of the transition itself is difficult
without going to both exponential time scales T1 ∼ eαL and
length scales [81,82]. There also exists the ongoing question
of the universality class the ergodic-MBLT falls into [83–86].
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FIG. 3. Time-averaged Holevo rate R̄SS (L, l, h) for (a) Néel state, (b) evolved Néel state, and (c) eigenstate environments, respectively. The
main figures show results for the fixed ratio l/L = 1

3 and insets for the fixed ratio l/L = 1
4 . Dashed red lines indicate the region in which the

data collapse was carried out, and the gray regions indicate the standard error on hc.

Finally, we note an open debate in the field as to whether a
stable MBL phase exists at all in the thermodynamic limit or
whether it is a finite-sized artifact [82,85,87–89]. Despite this,
our following scaling analysis, with modest system sizes and
times up to T = L2, falls comfortably in line with other extant
small-system analyses and validates the Holevo quantity as
an information-theoretic counterpart to the quantities more
widely used in the field.

In line with previous studies (see, e.g.,
Refs. [7,16,17,29,32,34]), we assume a continuous phase
transition with diverging length scale ξ ∼ |h − hc|−ν , where
hc is the infinite-length MBL critical point. The most general
two-parameter scaling function for R̄SS can be written as

R̄SS (L, l, h) ∼ Lβ/ν f

[
l

L
, L1/ν (h − hc)

]
, (9)

where f (·, ·) is an arbitrary function, and β is the exponent
that accounts for thermodynamic limit behavior as R̄SS (L →
∞, l, h) ∼ |h − hc|β f (l/ξ ). In fact, Eq. (8) defines a whole
family of scaling functions: the functional form of f (·, ·)
may differ for each environment type and message-to-system
length ratio l/L [90].

It is worth emphasizing that, in Eq. (8), we do not consider
a corresponding exponent for the message length l , as it is
always necessarily constrained by the system length L. As
such, no true thermodynamic limit exists in l independent of
the corresponding limit in L, and we do not expect to see scal-
ing behavior in l alone. This is evidenced in Figs. 2(d)–2(f),
which do not show scaling behavior as we vary l for fixed L.
For increasing values of l , we simply see an overall increase
in R̄SS for all h, with R̄SS → 1 for all h as l → L.

To verify the scaling Ansätze in Eq. (8), in Figs. 3(a)–3(c),
we plot R̄SS as a function of h for various choices of l and
L such that l/L is fixed. Each panel shows the results for
a different type of environment state, namely, |eNéel〉, |eevo〉,
and |eeig〉, respectively, with the main figures showing fixed
l/L = 1

3 and the insets showing fixed l/L = 1
4 . Interestingly,

all the curves in all three panels and insets intersect at a point,
i.e., h = hc, demonstrating that, for fixed l/L and a given
environment type, R̄SS becomes independent of L and l at
h = hc, which means that β 
 0 in all six cases. This indicates

that the time-averaged Holevo rate R̄SS is analytic across the
transition.

The above scaling analysis provides strong support for the
Ansätze of Eq. (8) and determines β 
 0. Moreover, the point
at which each of these curves intersect can be used to extract
values of hc for a fixed value of l/L and a given environment
type. However, it does not provide any estimation for the
exponent ν. To evaluate the critical exponents more directly,
we consider another independent finite-sized scaling analysis
using the Python package PYFSSA [91,92]. In Figs. 4(a)–4(c),
we plot L−β/ν R̄SS as a function of L1/ν (h − hc) for various
choices of l and L while keeping l/L fixed for the three
given environment states, respectively. By properly tuning
the critical value hc and the exponents β and ν, one can get
a separate data collapse for each set of curves. As the fig-
ures show, different critical parameters are obtained for each
environment. Interestingly, in all cases, the exponent β is very
small, which is consistent with the previous scaling analysis.
The results of these data collapses in the form of extracted
critical values and exponents are summarized in Table I. We
find that the extracted values are consistent between different
message-to-system length ratios but vary as the environment
type changes.

VIII. ROLE OF THE ENVIRONMENT

A noteworthy feature of Table I is that the values of hc

and ν vary between environments. This is expected for the

TABLE I. Extracted critical values and exponents for all the
investigated message-to-system length ratios and environment types.
The standard error on β was on the order of 0.01 or less for all results
and is omitted.

l/L Environment hc ν β

1
3 Néel 3.26 ± 0.18 1.32 ± 0.27 0.00

Evolved Néel 3.41 ± 0.11 1.40 ± 0.14 0.00
Eigenstate 2.87 ± 0.05 1.06 ± 0.09 0.00

1
4 Néel 3.07 ± 0.06 1.38 ± 0.10 0.00

Evolved Néel 3.26 ± 0.20 1.57 ± 0.26 0.00
Eigenstate 2.69 ± 0.10 1.04 ± 0.13 0.00
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FIG. 4. The optimal data collapse of each of the results shown in Fig. 3 using the Ansätze of Eq. (8) for sizes up to L = 16. The critical
values hc and exponents ν and β of each collapse are summarized in Table I.

critical value hc, as each environment makes the state of the
system overlap with different regions of the MBL mobility
edge. Interestingly, our work indicates a similar variation in ν.
We conjecture two possible explanations for this variation: (i)
that the value of the critical exponent ν might also vary across
the MBL mobility edge or (ii) that ν in the thermodynamic
limit is unique, but different environments may replicate the
behavior of the system at the thermodynamic limit better than
the others [93].

IX. CONCLUSIONS

We have introduced the dynamical Holevo quantity as a
complete and concrete quantifier of local memory, in terms
of numbers of preserved bits. After a discussion of a wide
range of extant quantities and their varied shortcomings when
it comes to actually quantifying memory, we have argued
that a strictly informational approach—and the Holevo quan-
tity particularly—is the most complete way to access local
memory in these systems. We have shown that the Holevo

quantity can successfully distinguish ergodic and localized
regimes and exhibits scaling behavior across the MBLT. We
have determined a family of two-parameter scaling Ansätze
for the steady state from which we extract critical values
and exponents in line with these extant numerics for modest
system sizes and time scales. The results of this paper place
the concept of local memory across the MBLT on a clear
quantitative footing and is a quantitative investigation of lo-
cal memory from a strictly informational perspective in any
quantum many-body system.
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