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Momentum-resolved time evolution with matrix product states
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We introduce a method based on matrix product states (MPS) for computing spectral functions of (quasi-)
one-dimensional spin chains, working directly in momentum space in the thermodynamic limit. We simulate the
time evolution after applying a momentum operator to an MPS ground state by working with the momentum
superposition of a window MPS. We show explicitly for the spin-1 Heisenberg chain that the growth of
entanglement is smaller in momentum space, even inside a two-particle continuum, such that we can attain
very accurate spectral functions with relatively small bond dimension. We apply our method to compute spectral
lineshapes of the gapless XXZ chain and the square-lattice J1 − J2 Heisenberg model on a six-leg cylinder.
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I. INTRODUCTION

Spectral functions are some of the most important tools
for relating theory and experiment in the field of strongly
correlated quantum matter. The most exotic properties of
strongly correlated quantum phases are typically related to the
low-energy excitations in these systems, for which the spec-
tral function is a direct experimental probe. Inelastic neutron
scattering for magnetic materials and angle-resolved photo-
emission spectroscopy for electronic systems serve as the
most interesting options. As an outstanding example, in the
last few years, the occurrence of fractionalized quasiparticles
in candidate two-dimensional spin-liquid materials has been
observed through the spectral function in neutron-scattering
experiments [1,2].

A pressing challenge on the theoretical side is the evalu-
ation of the spectral function for a given microscopic model
Hamiltonian. In the one-dimensional case, only a restricted
class of integrable models such as the spin- 1

2 Heisenberg chain
[3] allows for a quasi-exact computation of the spectral func-
tion. In two dimensions, in addition to the case of the Kitaev
spin liquid [4,5], exact calculations are even less common.
Traditional numerical methods include exact diagonalization
with a continued fraction expansion [6], which is limited
to small clusters, and quantum Monte Carlo, for which the
analytic continuation [7–9] to real frequencies is often uncon-
trolled. Variational methods for capturing excited states can
be based on Gutzwiller-projected mean-field states [10,11]
or, more recently, variational wave functions from machine
learning [12].

For one-dimensional lattice systems, a lot of effort went
into designing efficient numerical methods based on the for-
malism of matrix product states (MPS) [13]. The earliest
approaches were based on the continued-fraction expansion
[14,15] or correction vectors [16–18]; the latter can give very
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accurate results but require a different run for every frequency
and adding a small imaginary frequency, leading to signifi-
cant broadening. Using Chebyshev expansions for the spectral
function, the full frequency range can be computed in a single
run [19–21]. Alternatively, one can use time-dependent MPS
algorithms [22–26] for computing the real-time evolution af-
ter applying a local operator to the ground state and transform
to frequency space [27]; here, the frequency resolution is
limited due to the growth of entanglement in the time-evolved
state, although linear prediction [27–29] or recursion methods
[30] can be used to extrapolate the signal to longer times.

Although the spectral function is a momentum-resolved
quantity, in all these MPS approaches, the translation sym-
metry of the model is explicitly broken either by working
on a finite open-boundary system or by introducing a local
operator for time evolution. A viable alternative consists of
targeting the low-energy excitations by a variational quasi-
particle ansatz that has well-defined momentum directly in
the thermodynamic limit [31,32]. With this approach, one
can compute the dispersion and spectral weight of isolated
branches in the spectrum [33] with high precision [34,35]; this
method does not suffer from a finite resolution in momentum
and frequency but only from variational errors. Extending
this framework to two-particle excitations [36,37], the fine-
grained features of the spectral function within a two-particle
continuum can be resolved [38]. For critical systems, however,
the absence of isolated lines or the occurrence of multiparticle
continua make this variational approach less useful for obtain-
ing the full spectral function accurately.

In this paper, we introduce an MPS-based method for sim-
ulating time evolution directly in momentum space and the
thermodynamic limit, which enables us to compute spectral
functions with higher accuracy than a real-space approach
would with the same bond dimension. We first recapitulate
how the real-space approach works using a window MPS em-
bedded in a uniform background and then discuss how to lift
this approach to momentum space. We illustrate our method
by comparing the real- and momentum-space approaches for
the spectral function in the two-magnon continuum in the

2469-9950/2022/105(20)/205130(10) 205130-1 ©2022 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.205130&domain=pdf&date_stamp=2022-05-23
https://doi.org/10.1103/PhysRevB.105.205130


VAN DAMME AND VANDERSTRAETEN PHYSICAL REVIEW B 105, 205130 (2022)

spin-1 Heisenberg chain. We further illustrate the efficiency
of our momentum-resolved method by simulating the time
evolution of wave packets, thus interpolating between real
and momentum space. Finally, we benchmark our method
by computing spectral lineshapes for the gapless XXZ chain
and the square-lattice J1 − J2 Heisenberg model on a six-leg
cylinder.

II. REAL-SPACE APPROACH

For concreteness, let us consider the spin-1 Heisenberg
chain with Hamiltonian:

H =
∑
〈i j〉

�Si · �S j, �Si = (
Sx

i , Sy
i , Sz

i

)
, (1)

where Sα
i are the spin-1 operators at site i, and the sum

runs over all nearest neighbors. Here, we are interested in
the momentum-frequency-resolved spectral function at zero
temperature:

S(q, ω) =
∫ ∞

−∞
dt eiωt S(q, t ), (2)

with

S(q, t ) =
∑
α,n′

e−iqn′ 〈�0| Sα
n+n′ exp[−i(H − E0)t]Sα

n |�0〉 ,

(3)

and |�0〉 the ground state with ground-state energy E0.
First, we approximate the ground state directly in the ther-

modynamic limit with a uniform MPS described by a single
tensor A:

(4)

Starting from the ground state, we apply a single-site spin
operator at an arbitrary site n and time-evolve the state:∣∣�α

n (t )
〉
rs = exp[−i(H − E0)t]Sα

n |�0〉 . (5)

The perturbation induced by the operator is expected to spread
through the system as time evolves, such that this time-
evolved state should be approximated as an MPS with a
window of site-dependent tensors around site n, embedded
within the uniform MPS [39–41]:

(6)

In this ansatz, the bond dimension of the tensors Xi and the
size of the window Nw enter as control parameters, and both
are expected to grow as time evolves: the effect of applying
a local operator will spread through the system with a char-
acteristic velocity, and the entanglement due to the spread of
quasiparticles will grow.

The time evolution of the tensors Xi can be determined
via the time-dependent variational principle (TDVP) [24,42],
by a Trotter-Suzuki decomposition [22,43], or by applying
the time-evolution operator in the form of a matrix-product
operator (MPO) [25,44] and truncating the bond dimension
[26]. Here, we take the latter option, i.e., in each time step, we

want to find new tensors X ′
i such that

|�n(X ′)〉rs ≈ exp[−i(H − E0)δt] |�n(X )〉rs , (7)

for a time step δt . This equation can be interpreted variation-
ally such that we find tensors X ′

i that maximize the overlap
with the right-hand side, which in practice is achieved by
a sweeping algorithm that sequentially optimizes over the
different tensors; here, exploiting the canonical form and
changing the orthogonality center within the window is cru-
cial for a stable algorithm [13]. Finally, the overlap of the
time-evolved state with a local operator at different sites can
be taken and, transforming to momentum space, yields an
estimate of S(q, t ).

Note that we can split up the full time evolution into
two parts such that bra and ket states can be time-evolved
independently; this allows us to reach longer times for S(q, t )
accurately with a given bond dimension in both time-evolved
states. In this paper, we always simulate the time evolution up
to a total time T and refrain from using extrapolation tech-
niques to focus on the accuracy of the time-evolution method
itself. To avoid unphysical signatures of the finite-time sim-
ulation in the spectral function, we always apply a Gaussian
envelope of the form exp(−αt2/T 2) to the finite-time signal
before transforming to frequency space.

III. MOMENTUM-SPACE EVOLUTION

Let us now explain how to evaluate the spectral function
directly in momentum space. Here, we start from rewriting
the spectral function as an overlap between two states with
well-defined momentum:

S(q, t ) =
∑

α

〈
�α

q (0)
∣∣�α

q (t )
〉
finite

, (8)

with ∣∣�α
q (t )

〉 = exp[−i(H − E0)t]
∑

n

eiqnSα
n |�0〉 , (9)

and where we have defined the finite part of the overlap
between two momentum states as

〈�p|�q〉 = 2πδ(p − q) 〈�p|�q〉finite . (10)

The central idea in this paper is to represent this time-evolved
momentum state as a momentum-window MPS [45] of the
form:

(11)

Like for the real-space window, the size of the window Nw

and the bond dimension of the tensors Xi enter as control
parameters. The real-time correlator S(q, t ) is now obtained
as the overlap of the time-evolved state with the initial one;
again, we can perform a two-sided time evolution to reach
longer times with the same bond dimension.

For a momentum cut that is dominated by a single mode,
we know that this momentum-window MPS will capture the
time evolution very well. Indeed, the variational quasiparticle
ansatz is contained within the class of momentum-window
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states, so in all cases for which the former yields high-
precision eigenstates (i.e., isolated lines in the spectrum [33]),
we will be able to simulate long time evolution accurately with
a momentum-window state. For two-particle states, we have
captured the center-of-mass motion by going to momentum
space, whereas the relative motion between the two particles
must be accounted for by growing the size of the momentum
window. In addition to smaller windows, we expect that the
bond dimension within the window will grow less rapidly
than in the real-space approach. Indeed, since the translation
symmetry of the model is explicitly preserved throughout the
calculations, we can target one specific momentum sector
only. This means that the time-evolved momentum window
contains a lot less information and can therefore be repre-
sented with a smaller bond dimension.

Again, the momentum-window MPS can be evolved
through time using the TDVP algorithm or applying the
evolution operator variationally. In the Appendix, we show
how to implement these algorithms, and we find that the
latter option is more efficient; the overhead of working with
a momentum superposition is linear in the window size
and can be parallelized, so the computational complexity of
momentum-resolved time evolution is modest with respect to
the real-space version.

We can illustrate the efficiency of the momentum-window
state by applying it to the spin-1 chain. We find that we can
simulate the real-time correlator S(q, t ) at momentum q = π

with high precision up to arbitrary large times with moderate
bond dimension (not shown), which follows directly from the
fact that the quasiparticle ansatz yields quasi-exact results
for the magnon mode [24]. The two-magnon continuum is
potentially more challenging: In Fig. 1, we show the results for
a momentum cut in the two-particle region q = π/10, where
we compare S(q, t ) as evaluated with a real- and momentum-
space window. We have taken sufficiently large window
sizes and the same bond dimension, showing clearly that
the real-space approach becomes inaccurate rather quickly,
whereas the momentum-space approach is still accurate at
long times. In the spectral function S(q, ω), the difference is
equally clear.

IV. INTERPOLATING BETWEEN SPACES

We can explicitly show that momentum states develop
less entanglement than real-space states by considering
wave packet states that interpolate between these two lim-
its. We prepare a Gaussian wave packet centered around
momentum q:

∣∣�α
q,η

〉 =
∑

n

∫
dq′

2π
exp

[
−η

2
(q − q′)2 + iq′n

]
Sα

n |�0〉 , (12)

and evolve it through time using a real-space window MPS, as
described above. In Fig. 2, we plot the evolution of the real-
space bipartite entanglement entropy at the center of the wave
packet, showing that (i) the initial entanglement of a real-
space localized wave packet is smaller, but (ii) the increase
of entanglement through time is a lot larger than for a wave
packet that is strongly localized in momentum space. The
larger initial entanglement occurs because we are representing
a momentum superposition in real space, but this zero-time

FIG. 1. Comparing the accuracy of real- and momentum-space
approaches. We plot the real-time signal S(q, t ) and the resulting
spectral function S(q, ω) for the momentum cut q = π/10 inside
the two-magnon continuum. We have used SU(2)-symmetric matrix
product states (MPS) with total bond dimension D = 50 and one-
sided time evolution for the sake of comparison. The benchmark
result was run with a real-space window MPS at a sufficiently large
bond dimension D ≈ 1500. The inset shows the rescaled spectral
function S̃(q, ω) = S(q, ω)/

∫
dωS(q, ω) in the full Brillouin zone,

showing the magnon mode and the two-magnon continuum.

FIG. 2. Interpolating between real and momentum space. We
show the bipartite entanglement entropy as a function of time,
measured for a cut next to the center of the wave packet. These
simulations were done at D = 320 with a real-space window matrix
product state (MPS) of size Nw = 257.
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FIG. 3. Spectral function for the XXZ chain. We compare real-
and momentum-space computations for S(q, ω) at the same bond
dimension D ≈ 100, with a window size of Nw = 257 and Nw = 64
for the real- and momentum-space windows, respectively. We have
evolved for a total time of T = 128 and used a Gaussian envelope
with α = 3. The vertical line is the edge of the continuum known
exactly from the Bethe ansatz. The inset shows a portion of the real-
time signals. We compare with a benchmark real-space simulation
with bond dimension D = 1568. We have used U(1) symmetry and a
two-site uniform matrix product state (MPS) in these simulations.

offset can be transformed away by performing all calculations
in momentum space directly. This result, therefore, confirms
our previous observation that a momentum-resolved time
evolution requires a smaller bond dimension for the same
accuracy.

V. BENCHMARKS

Let us now perform some benchmarks on more challenging
models. First, we take the spin- 1

2 XXZ chain, defined by the
Hamiltonian:

HXXZ =
∑
〈i j〉

Sx
i Sx

j + Sy
i Sy

j + �Sz
i Sz

j, (13)

where Sα
i are now spin- 1

2 operators. We take � = 1
2 in the

gapless phase and investigate a cut of the spectral function
at momentum q = π/2. It is known from Luttinger-liquid
theory [46] that the spectral function diverges at the edge of
the continuum, which has been confirmed by MPS methods
and Bethe-ansatz techniques [28,47]. Moreover, the contin-
uum consists of multispinon states [47] and is, therefore,
potentially more challenging to resolve using our approach.
In Fig. 3, we show a comparison between the real- and
momentum-space approaches, again showing that the latter is
more precise for the same bond dimension. The inset shows
that the momentum-space window can capture the exact time
evolution for significantly longer times.

FIG. 4. Spectral function for the J1 − J2 model for momentum
q = (π, 0) on a six-leg cylinder. We have evolved until total time
T = 9.5 and applied a Gaussian envelope with α = 4; in both cases,
we have used SU(2) symmetry, a bond dimension around D ≈ 400,
and a window size of Nw = 24.

Finally, we consider the J1 − J2 Heisenberg model on the
square lattice:

H = J1

∑
〈i j〉

�Si · �S j + J2

∑
〈〈i j〉〉

�Si · �S j . (14)

Determining the phase diagram of the full two-dimensional
model has been the subject of many numerical works, and
getting accurate and unbiased results for the spectral function
is important for getting insight into the fractionalized spinon
excitations in the putative spin-liquid phase. Even for the
nearest-neighbor case (J2 = 0), there is the occurrence of a dip
in the magnon dispersion relation at momentum (π, 0) [48]
for which many physical mechanisms have been proposed
[9,49–51]. This dip is expected to further drop in energy,
until it becomes a gapless Dirac cone in the spin-liquid phase
[50,52,53].

Here, we simulate the model on a six-leg cylinder and
use our momentum-space approach to compute a cut of the
spectral function for momentum q = (π, 0) for the unfrus-
trated case (J2 = 0) and for J2/J1 = 0.5; in Fig. 4, the results
are presented. For J2 = 0, we find a gap that agrees with
other methods [9,49–51,54]. We clearly see that the gap has
decreased significantly in the frustrated case and that the spec-
trum is less peaked and more diffuse, which is suggestive of
a fractionalized multispinon continuum. Nonetheless, we find
that the gap is still quite large, and we observe a two-peak
structure in the lineshape, in quantitative agreement with a
variational Monte Carlo result in Ref. [53]. We have also
computed the gap using the quasiparticle ansatz for cylinders
[35] and obtained a similar value (not shown), suggesting that
this is a genuine feature of the six-leg cylinder.

VI. CONCLUSIONS

In this paper, we have introduced an MPS-based method
for calculating spectral functions, relying on an efficient
scheme for time-evolving momentum states. We have bench-
marked our method against the traditional real-space approach
and obtained more accurate results at relatively small bond
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dimensions. We expect that our method will be very useful
in combination with a real-space approach: the latter allows
us to find the full spectral function in a single run, whereas
the former can be used for resolving fine-grained structures
in certain momentum cuts. This strategy can be useful for
tackling quasi-two-dimensional systems with strong correla-
tions such as spin liquids and Hubbard models, for which
MPS simulations are currently limited to cylinders with small
circumference or short evolution times [49,55–59].

In this paper, we have solely relied on time evolution
for computing spectral functions, but we can also explore
the momentum-space version of other strategies such as
the correction-vector method. Note that previous works
have indeed used (quasi-)momentum states on finite systems
[15,16,19,21,59,60] but without exploiting the structure of the
momentum superposition directly in the thermodynamic limit.
It would also be interesting to compare our work to a recent
momentum-resolved method where time-dependent scattering
events are simulated by time-dependent MPS methods [61].

The ability to obtain high-precision results at lower bond
dimensions is of primary importance when applying pro-
jected entangled-pair states (PEPS), the two-dimensional
version of MPS, where computational complexity scales un-
favourably in bond dimension. Following the success of
existing momentum-space methods for PEPS [54,62,63], we
should be able to generalize our momentum-resolved scheme
to higher spatial dimensions and enable the calculation of
high-precision spectral functions with PEPS.
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APPENDIX

The class of momentum-window states on top of uniform
MPS was introduced in Ref. [45], where it was used to sim-
ulate extended bound states of solitons in a spin-1 model. In
this Appendix, we will explain the properties of this class of
variational states in some detail and indicate how to simulate
time evolution.

1. Properties

We start from a uniform MPS (see Ref. [64] for details),
which can be represented in center-site gauge as

(A1)

where Al and Ar are left and right isometries. On top of this
uniform MPS, a momentum-window state can be understood
as the following state:

(A2)

where n denotes the nth site in the chain. This class of states
is a linear subspace in terms of the tensor B and has residual

gauge freedom since the following subclass of states:

(A3)

yields a zero norm. If we assume that the window state is
orthogonal to the ground-state MPS, then we can absorb this
gauge freedom entirely by constraining B to be of the form:

(A4)

with Vl being the null space of Al , satisfying

(A5)

Working with such an extended block tensor, the variational
parameters scale exponentially with the size of the block,
so we make the approximation of decomposing X as a
finite MPS:

(A6)

so that we arrive at our variational class of momentum-
window MPS or q-MPS as

(A7)

This class of q-MPS can be utilized in much the same way
as a usual finite MPS. After all, the overlap of two different
q-MPSs simplifies to the overlap between their respective
windows:

〈	q(X )|	q′ (X ′)〉 = 2πδ(q − q′) 〈	q(X )|	q(X ′)〉finite ,

(A8)

with

(A9)

This means that the orthogonality center can be shifted
through the window by consecutive orthogonal matrix de-
compositions, and we can therefore directly translate most
algorithms from their real-space to the momentum-space
setting.

2. Energy minimization

As a first example, we can consider a direct energy mini-
mization by sweeping through the window, like the standard
density-matrix renormalization group algorithm for ground
states of a finite spin chain [13]. Indeed, we can iteratively
solve eigenvalue problems, pushing the orthogonality center
at site n around

(Heff )nnXn = λXn. (A10)

Because our ansatz has a well-defined momentum and is by
construction orthogonal to the ground state, we will be di-
rectly targeting the lowest-lying excitations. This algorithm
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was used in Ref. [45] for simulating dispersion relations of
broad bound states in a spin chain.

The calculation of Heff is quite straightforward; it is
defined as

(Heff )i j = ∂2

∂X̄i∂Xj
〈	q(X )| H |	q(X )〉finite , (A11)

where we are typically only interested in the diagonal entries:
when sweeping through the window, we only vary one tensor,
see Eq. (A10).

Here, the energy expectation value is the momentum sum
of all possible different positions of a window in the top and
bottom layers. For two normalized q-MPS parameterized by
X and X ′ and the Hamiltonian represented as a MPO [13], we
would require the following sums:

(A12)

Here, the first two sums are over n, whereas the index n′
is an arbitrary site in the lattice; the prescription 〈· · ·〉finite
denotes that we have taken out one infinite sum that occurs
when taking overlaps of momentum states, see Eq. (A8). The
first two sums contain an infinite amount of terms and can be
summed by solving the linear problem:

(A13)

This type of infinite summation always occurs when working
with momentum states on top of uniform MPS, and details

can be found in Ref. [64]. This linear problem has to be
recomputed every time any Xn changes, which makes some
sweeping algorithms more expensive than their finite MPS
counterparts. Importantly, however, if a tensor in the bra
changes, we do not have to recompute these contributions.

3. Initial state

In the main text, we have looked at real-time evolution
within the class of momentum-window MPS, where the initial
state is a momentum operator on the ground state. The initial
state is of the form:

(A14)

which can be brought under the form of Eq. (A7) by max-
imizing the overlap with a two-site window. Since this
optimization problem is linear in X1, the solution is simply

X1 = ∂

∂X̄1
〈	q(X1)|

∑
n

eiqnOn |�0〉 . (A15)

The overlap in question is given by the terms:

(A16)

where the latter terms can be summed as

(A17)

Again, this type of infinite summation is usual when working
with momentum states on top of uniform MPS [64].

After having reformulated the initial state as a q-MPS, we
can perform the actual time evolution. Here, we can choose
between applying the TDVP [24,42] or applying an MPO
representation for the time-evolution operator with variational
truncation.

4. TDVP

For applying the TDVP, we require the same Heff as in
q-MPS energy minimization. The resulting algorithm is iden-
tical to the well-known finite-MPS variant as in Ref. [42],
where for every time step δt , one sweeps through the tensors
and evolves the tensors as (i) evolve the current orthogonality
center as

exp

(
− iδt

2
Heff

)
(Xi ) = X ′

i , (A18)

(ii) using QR or RQ decompositions, we can then left- or
right-orthogonalize X ′

i , (iii) subsequently evolve the resulting
R backwards in time:

exp

(
− iδt

2
Heff

)
(R) = R′, (A19)
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and (iv) absorb R′ in the next tensor. Note that the exponen-
tials can be implemented iteratively such that only the action
of Heff is needed on a given tensor; the action of Heff on
the tensor Xi is the same as the one in Eq. (A10), whereas
the action on a link matrix R can be found by projecting the
same Heff [42]. After a full forward and backward sweep, we
have evolved the entire window forward with one time step δt .

We note that this algorithm is rather expensive, as every
exponentiation step must be done iteratively, and Heff (X )
can reuse very little information between applications on the
different Xi in the window. This is in contrast to the usual
finite-MPS setting, where Heff (X ) can be updated by a single
contraction to the next site in the chain.

5. MPO time evolution

Applying an MPO to a q-MPS goes as follows. In each
time step, we want to update the X tensors as

|	q(X ′)〉 ≈ U (δt ) |	q(X )〉 , (A20)

where the ≈ sign can be interpreted variationally as min-
imizing the norm between these two states. Solving this
minimization problem can be done, again, by a sweeping
algorithm, where we sweep over the X ′ tensors until con-
vergence. By shifting the orthogonality center accordingly,
the minimization problem for a single X ′ tensor is simply
solved as

X ′
i = ∂

∂X̄ ′
i

〈	q(X ′)|U (δt ) |	q(X )〉finite . (A21)

This quantity is a sum of different terms: Because the MPO
is between bra and ket layers, one does not have the nice
property that only one term survives as in Eq. (A8). The term
where the two windows are located on the same region is
proportional to

(A22)

where the U tensor encodes the MPO representation of the
time-evolution operator, and with Gl , the fixed point of the
channel:

(A23)

and a similar equation for Gr . If the uniform MPS is close to
the ground state and U (δ) is close to an exact representation
of exp[−i(H − E0)δt], then the eigenvalue λ is ∼1. It is con-
venient to explicitly rescale the MPO tensor for U (δt ) such
that this eigenvalue is exactly equal to one. We also require
the fixed points to be normalized as

(A24)

Then the above diagram in Eq. (A22) also appears as a term
without a prefactor.

Other terms are of the form:

(A25)

and should all be summed. The infinite number of discon-
nected terms can be explicitly summed by solving a linear
problem:

(A26)

as is usual for working with momentum states on uniform
MPS, see Ref. [64] for details. Summing up all these terms
allows us to compute the expression in Eq. (A21) and to
update the tensor X ′

i .
Note that, in the course of sweeping through the window,

the different contributions to Eq. (A21) do not need to be
computed from scratch, but the environments can be updated
by a single contraction. This is very similar to a real-space
window optimization, only are there a number of different
terms to consider. These updates can be performed in parallel,
so with enough parallel workers, the optimization in each
time step does not need to take more time than the real-space
approach. Given that we can reduce the bond dimension sig-
nificantly in momentum space (as shown in the main text), the
momentum-space approach is more efficient for obtaining a
single momentum cut of the spectral function.

6. Larger unit cells

Until now, we have explained everything for uniform MPS
with a single-site unit cell, but larger unit cells often need to
be considered, particularly if we consider multileg ladders or
cylindrical geometries. The extension to larger unit cells is
mainly a matter of more intricate bookkeeping, but it is useful
to write down the expressions for a q-MPS. We will describe
the case of two-site unit cells; larger unit cells follow trivially.

A two-site uniform MPS is given by

(A27)

As explained in Ref. [65], a momentum state on top of such
an MPS is given by

(A28)
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i.e., we take two different B tensors for each of two sites within
the unit cell. The extension of this to a momentum-window
state is of the form:

(A29)

Note that an alternative choice would consist of taking a
single window that represents the sum of the two windows,
but this would require a larger bond dimension. A momentum
operator can be represented using the above expression with-
out changing the bond dimension, whereas representing this

with a single window would require us to double the bond
dimension within the window.

The definition of the q-MPS with inclusion of the null-
space projectors V i

l makes sure that the inner product remains
of a simple Euclidean form:

(A30)

Therefore, a sweeping algorithm can still be used for energy
minimization and MPO time evolution. For the former, the
effective Hamiltonian does not diagonalize in the different
windows, and cross terms need to be considered. For the
MPO time-evolution, however, the sweeping procedure over
the tensors in each window is completely independent from
the others, so we can parallelize these completely.
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