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Coupled hydrodynamics in dipole-conserving quantum systems
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We investigate the coupled dynamics of charge and energy in interacting lattice models with dipole conserva-
tion. We formulate a generic hydrodynamic theory for this combination of fractonic constraints and numerically
verify its applicability to the late-time dynamics of a specific bosonic quantum system by developing a micro-
scopic nonequilibrium quantum field theory. Employing a self-consistent 1/N approximation in the number of
field components, we extract all entries of a generalized diffusion matrix and determine their dependence on
microscopic model parameters. We discuss the relation of our results to experiments in ultracold atom quantum
simulators.
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I. INTRODUCTION

Understanding the nonequilibrium dynamics of interact-
ing quantum many-body systems and their general governing
principles is a fundamental challenge. Conventional wisdom
holds that global conserved quantities in such systems lead
to diffusive transport at late times [1–5]. However, recently
a variety of systems with unconventional transport properties
have been identified, including superdiffusion in integrable
systems [6–8] and in the presence of long-range interac-
tions [9–11], as well as subdiffusive transport in disordered
many-body systems [12–16]. In this context, novel quantum
systems with constraints have recently attracted much atten-
tion. In particular, fracton models [17–23] that conserve a
global U (1) charge and its associated dipole moment [24–27]
display a variety of exotic nonequilibrium phenomena: At
sufficiently sparse filling, ergodicity is broken due to a “strong
fragmentation” of the many-body Hilbert space into disjoint
subsectors [28–32], limiting the growth of entanglement and
inducing slow spreading of operators [33]. Even in more
generic ergodic situations, the conservation of the dipole mo-
ment qualitatively changes the dynamics, giving rise to a new
universality class of subdiffusive hydrodynamics [34–37]. Ex-
perimentally, these aspects of constrained dynamics can be
probed in ultracold atom quantum simulators where a strong,
linearly tilted potential enforces the conservation of the dipole
moment [31,32,34].

Recent theoretical works have derived universal transport
properties in charge- and dipole-conserving systems starting
directly from effective hydrodynamic equations, with [38–41]
and without [35,36] momentum conservation. A verifica-
tion of these results has been mostly limited to random
unitary circuit dynamics in the absence of energy conser-
vation [36,37,42]; see however [38]. Therefore, it remains
an open challenge to investigate the coupled hydrodynamics
of charge and energy emerging in microscopic Hamiltonian
lattice systems with energy and dipole conservation.

In this work we provide such an analysis by studying the
nonequilibrium dynamics of a one-dimensional (1D) system
of lattice bosons with charge, dipole and energy conservation.
We derive a general set of equations within the framework of
linear fluctuating hydrodynamics that take into account cou-
plings between charge and energy excitations in the presence
of dipole conservation; Sec. II. This results in a subdiffusive
mode of mixed charge-energy excitations as well as a dif-
fusive pure energy mode; see Fig. 1(b) for the former. We
compare this effective hydrodynamic picture with the quan-
tum time evolution of a specific bosonic lattice model. To
this end we develop a nonequilibrium quantum field theory
starting from the microscopic Hamiltonian in Sec. III. Using
the two-particle-irreducible (2PI) effective action approach,
we derive equations of motion for Green’s functions that
describe the relaxation of densities associated with conserved
quantities. Solving these equations numerically, we verify the
applicability of our mode-coupled hydrodynamics in Sec. IV
and extract all components of a generalized diffusion matrix.
An outlook and a discussion of how our results are related
to quantum simulation experiments are provided in Sec. V.
Technical details are deferred to the Appendixes.

II. MODE-COUPLED HYDRODYNAMICS

We consider a one-dimensional quantum system whose
time evolution is generated by a microscopic lattice Hamil-
tonian Ĥ that conserves a global U (1) charge Q̂ as well as
its associated dipole moment P̂. Expressed in terms of micro-
scopic charge and energy densities n̂x and ĥx, the conserved
quantities read

Ĥ =
∑

x

ĥx, Q̂ =
∑

x

n̂x, P̂ =
∑

x

x n̂x. (1)

Our goal is to formulate a long-wavelength description of
transport for the set of conserved quantities (1) within linear
fluctuating hydrodynamics. In this approach, hydrodynamic
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FIG. 1. Coupled hydrodynamics in fractonic quantum matter.
(a) Illustration of the dipole-conserving dynamics within our micro-
scopic field theory. Bosons (blue circles) situated on lattice sites need
to coordinate with other bosons in order to move. This coordinated
hopping, as well as the local boson-boson repulsion, are mediated
by exchange field propagators D and O, respectively. (b) Decay
of an energy excitation including a small charge-density excitation
obtained from dipole-conserving hydrodynamics. A diffusive regime
with dynamical exponent z = 2 emerges at intermediate times and
crosses over to a subdiffusive regime with z = 4 at late times. The
latter arises from the charge contribution to the excitation and is
a signature of dipole conservation. Insets: Spatial profiles of the
excitation at intermediate (blue) and late (red) times.

equations for the conserved macroscopic densities are com-
bined with noise terms accounting for fluctuations that are
generated by the underlying microscopic degrees of freedom.

Let us first consider the continuity equation of a single
conserved quantity, such as energy

∂t e(x, t ) = −∂x je(x, t ), (2)

where e(x, t ) and je(x, t ) are the coarse-grained energy and
current densities. Taking the long-wavelength limit, a gradient
expansion of the current can be performed. The first order
term leads to Fick’s law je(x, t ) = −De∂xe(x, t ). Including
current fluctuations ξ e(x, t ), we obtain the fluctuating hydro-
dynamic equation for a single diffusive mode,

∂t e(x, t ) − De∂
2
x e(x, t ) = ∂xξ

e(x, t ), (3)

where space and time are related by the dynamical exponent
z = 2 and 〈ξ e(x, t )ξ e(x′, t ′)〉 = B2

eδ(x − x′)δ(t − t ′) describes
uncorrelated Gaussian white noise with noise strength Be.

The time evolution of the coarse-grained charge density
n(x, t ) is drastically modified by dipole conservation. The
fundamental dynamical objects in the system are dipoles, a
fact we can incorporate by introducing a coarse-grained dipole
current jd (x, t ). Importantly, as opposed to a more conven-
tional charge current, jd (x, t ) is even under spatial inversion
Î , i.e., Î jd (x, t )Î = jd (−x, t ). Thus, the current transforms un-
der inversion in the same way as the underlying charge density
n(x, t ), and the corresponding continuity equation assumes the

form [35,36]

∂t n(x, t ) = ∂2
x jd (x, t ). (4)

In the absence of energy conservation, the generalized Fick’s
law jd (x, t ) = −Dn∂

2
x n(x, t ) then preserves inversion invari-

ance of the resulting hydrodynamic equation

∂t n(x, t ) + Dn∂
4
x n(x, t ) = ∂2

x ξ d (x, t ). (5)

Here we included dipole-current fluctuations ξ d (x, t ) with
〈ξ d (x, t )ξ d (x′, t ′)〉 = B2

nδ(x − x′)δ(t − t ′). Equation (5) de-
scribes a subdiffusive mode with dynamical exponent z = 4
and has previously been observed numerically in unitary cir-
cuit models without energy conservation [36,42,43].

In systems exhibiting the full set of conserved quanti-
ties (1), we must find a description that combines Eqs. (3)
and (5) while taking into account possible couplings between
the charge and energy densities. This amounts to including
cross terms in the derivative expansion of the currents jd

and je:

jd = −Dnn∂
2
x n − Dne∂

2
x e. je = −Den∂xn − Dee∂xe. (6)

Equation (6) includes the most relevant (i.e., fewest deriva-
tives) terms compatible with inversion symmetry of the
resulting hydrodynamic equations. A potential coupling be-
tween the microscopic current fluctuations vanishes: ξ eξ d is
odd under inversion according to our previous considerations,
such that the expectation value 〈ξ eξ d〉 = 0 in an inversion
invariant equilibrium ensemble. Combining Eq. (6) with the
continuity equations (2) and (4) and switching to momentum
space, our ansatz becomes

[∂t + k2D(k)]

(
n
e

)
= ikB(k)

(
ξ d

ξ e

)
, (7)

where we have defined the matrices

D(k) =
(

k2Dnn k2Dne

Den Dee

)
, B(k) =

(
ikBn 0

0 Be

)
. (8)

As dipole conservation implies a diagonal matrix B(k), only
two of the diffusion constants entering D(k) are independent.
This can be seen by considering the fluctuation-dissipation
relation associated with Eq. (7) (see also Appendix A):

D(k)C + C DT (k) = B(k)BT (−k), (9)

where C is the matrix of static equilibrium correlations. The
Onsager relations for kinetic coefficients require that D(k)C is
symmetric. Using Eq. (9), this is equivalent to

CnnDen + CenDee = 0, (10)

which further implies

CenDnn + CeeDne = 0. (11)

When the equilibrium correlations are known (see Ap-
pendix C), Eqs. (10) and (11) can be used to determine two
of the diffusion constants entering Eq. (8).

Solving the coupled hydrodynamic equations (7) in the
long-wavelength limit predicts the existence of two inde-
pendent modes, a diffusive energy-only mode as well as

205127-2



COUPLED HYDRODYNAMICS IN DIPOLE-CONSERVING … PHYSICAL REVIEW B 105, 205127 (2022)

a subdiffusive energy-charge mode. In particular, inhomo-
geneities of the initial state decay according to(

n(k, t )
e(k, t )

)
= a e−Deek2t

(
0
1

)
+ b e−D̃nnk4t

(
1

−Den
Dee

)
, (12)

where D̃nn = Dnn − DneDen
Dee

is the renormalized subdiffusion
constant governing the decay of the mixed energy-charge
mode and the constants a, b are fixed by the initial state. In the
following we will study the dynamics of a specific, strongly
interacting bosonic system using nonequilibrium quantum
field theory. Within this approach we verify that Eq. (12)
provides an accurate description of the quantum evolution
emerging at late times. Furthermore, comparing the micro-
scopic dynamics to Eq. (12) we can extract the two constants
Dee and D̃nn. Together with Eqs. (10) and (11) this allows us
to directly link all entries of the diffusion matrix (8) to model
parameters of the microscopic Hamiltonian.

III. MODEL AND MICROSCOPIC FIELD THEORY

We study the dipole-conserving lattice Hamiltonian

H = J
( ∑

i

φ̂
†
i−1φ̂

2
i φ̂

†
i+1 + H.c.

)
︸ ︷︷ ︸

Hpair

+U
∑

i

n̂i(n̂i − 1)

︸ ︷︷ ︸
HU

, (13)

where φ̂
†
i /φ̂i denote the bosonic creation/annihilation oper-

ators and n̂i = φ̂
†
i φ̂i is the occupation number operator on

site i. The first term describes a short-ranged and dipole-
conserving hopping of bosons which can be interpreted as
a kinetic term for particle-hole pairs. The second term cap-
tures local repulsion between bosons which competes with
the hopping strength. The equilibrium phase diagram of such
dipole-conserving Bose-Hubbard models has recently been
discussed in Ref. [44]. We consider fillings above unity, where
hydrodynamic behavior is not expected to be inhibited by ef-
fects such as strong Hilbert space fragmentation [28,37]. This
regime is challenging to investigate by numerical methods
such as exact diagonalization and matrix product states due to
the unrestricted local Hilbert space dimension, the rapid build
up of entanglement, as well as the large systems and late times
required to reach the hydrodynamic regime. Our microscopic,
nonequilibrium field theoretic approach overcomes these lim-
itations at the expense of approximating interaction effects.

A. Nonequilibrium field theory

In the following we will derive self-consistent equations of
motion for the correlations that characterize transport of
charge and energy. Here we outline our approach and defer
further technical details to Appendix D. We start from the
microscopic action

S[φ] =
∫
C

dt φii∂t1φi − H (φ, φ), (14)

where C indicates integration along the Schwinger-Keldysh
contour and H (φ, φ) denotes the normal-ordered Hamiltonian
with operators φ̂i (φ̂†

i ) replaced by complex fields φi (φ̄i). We
remove all quartic terms by introducing a complex decoupling
field χ , which removes the quartic term Hpair, as well as a real

field � removing the term HU . This yields the modified action

S[φ, χ,�] =
∫
C

dt φii∂tφi + χ iV
−1

i j χ j + 1

2
�iU

−1�i

−
√

2(χ iφiφi+1 + φ j+1φ jχ j + φiφi�i ), (15)

where Vi j = 1
2 (δi j+1 + δi j−1). The fundamental dynamical

objects for which we derive equations of motion are the con-
nected field correlators

(16)

where TC describes time ordering on the Keldysh contour. The
correlator Gi j characterizes the dynamics of bosons and en-
ergy (see Appendix E), while Di j and Oi j contain information
related to the “dipole-dipole” and density-density correlators
〈TC φi(t1)φi+1(t1)φ j (t2)φ j−1(t2)〉 and 〈TC n̂i(t1)n̂ j (t2)〉, respec-
tively.

Our approach is based on deriving equations of motion for
these correlators. This is achieved via the 2PI effective action
�2PI, which may be thought of as a quantum analog of the
classical action S [45]: Classical actions generate equations of
motion via a stationarity condition with respect to a classical
systems’ path through phase space. Similarly, the 2PI effective
action yields equations of motion for Green’s functions from
a set of stationarity conditions with respect to these Green’s
functions [46]. More specifically,

δ�2PI[G, D, O]

δKi j (t1, t2)
= 0, (17)

for K = G, D, O. Here we implicitly assume symmetry un-
broken initial states with 〈φ̂i(t )〉 = 0, which also implies
〈χ〉 = 0, and further omit the dependence of �2PI on 〈�〉
through the exact relation 〈�i(t )〉 = √

2UGi(t, t ). The result-
ing equations of motion for the full set of correlators G, D, O
can be solved by using a predictor-corrector method to prop-
agate a square in the t1-t2 plane. All propagator components
needed for the forward propagation are known after bringing
the equations of motion into explicitly causal form [47] (see
Appendix D). �2PI can be decomposed into up to 1-loop
parts, containing the mean-field contributions, plus higher
order parts �2PI = �(1loop) + �2. While the 1-loop parts pos-
sess a closed-form expression, the higher order parts �2 are
given by the sum over all vacuum 2PI diagrams and include
scattering contributions necessary to describe the approach
to thermal equilibrium [48,49]. Approximating this expres-
sion by any subset of such diagrams constitutes a conserving
approximation which respects the underlying microscopic
symmetries and therefore global conservation laws [50]. This
is an important feature required to accurately describe late-
time hydrodynamical behavior.

We approximate �2 ≈ �NLO
2 + �cross. Here �NLO

2 corre-
sponds to a 1/N expansion of �2 in the number of real field
components in the original action (N = 2 for the considered
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(a) (b) (c)

FIG. 2. Evolution of a nonequilibrium initial state with a sharply peaked charge excitation. (a) Charge profile at various times. (b) The
rescaled charge profile collapses to the scaling function F (1). (c) The local excitation decays algebraically with exponent close to 1/4. The
short-time dynamics agree with exact results obtained up to quadratic order.

model) to next-to-leading order (NLO)

. (18)

These diagrams correspond to bosons scattering with mobile
dipoles and a dynamical screening of local interactions as
illustrated in Fig. 1(a). Large-N expansions provide a sys-
tematic, nonperturbative approximation which does not rely
on the weakness of any interaction strength as it contains
diagrams of arbitrary order in J and U [46,49,51]. They
have been used to study nonequilibrium dynamics in a va-
riety of systems such as relativistic O(N ) theories [52–54],
ultracold Fermi [55] and Bose [56,57] gases, as well as spin
systems [9,47,58], and give reliable results already for small
values of N [52,59]. We include an additional cross diagram,
the lowest order diagram not contained in �NLO

2 , through
�cross in order to fully capture dynamics up to terms quadratic
in interactions and correctly reproduce the short-time charge
dynamics. Within this approximation and due to the rapid loss
of memory of the initial state present in our system, the time
complexity of our numerics scales linearly with the simulated
time and quadratically in the number of lattice sites.

B. Initial states

Specifying the correlation function Gi j (t1, t2) at a single
point t1, t2 = 0 corresponds to approximating the initial state
as a Gaussian density matrix [46]. In this work we only con-
sider uncorrelated initial states Gi j (0, 0) ∝ δi j . Restricting to
such a subset significantly reduces numerical effort as the two-
point function Gi j remains diagonal in lattice indices for all
times due to the form of the interactions. In order to construct
initial states with freely variable charge and energy profiles,
we also go beyond Gaussian initial states by self-consistently
solving the Kadanoff-Baym (KB) equations (17) for the lo-
cal part of the Hamiltonian HU on each lattice site while
enforcing fluctuation-dissipation relations (see Appendix F).
This enables us to represent states ρ = ⊗

i exp {−βi[Un̂i(n̂i −
1) − μin̂i]} with arbitrary profiles of the inverse temperature
β and chemical potential μ fully within the given 2PI ap-
proximation. Since states featuring no correlations between
different lattice sites carry no energy under the dipole-hopping
part of the full Hamiltonian, varying the temperature and
chemical potential profiles allows us to independently tune the

initial charge and energy profiles. All initial states discussed
in this work correspond to states either at or close to infinite
temperature.

IV. NUMERICAL ANALYSIS

A. Coupled hydrodynamics

We investigate charge dynamics in the system by preparing
Gaussian far-from-equilibrium initial states featuring a homo-
geneous density profile. On top of this background we create
a local particle excitation, leading to a charge density profile
of the form 〈ni〉 = nB + δi0. The time evolution of this initial
state is shown in Fig. 2. At times up to tJ = O(1) we find a
quantum coherent regime where the dynamics is dominated
by the buildup of correlations between neighboring lattice
sites, establishing local equilibrium; Fig. 2(c). The numerical
results agree with an exact solution of the dynamics to order
O(t2) (see Appendix G). After this regime, hydrodynamic
behavior emerges with an algebraic decay of the particle exci-
tation. The dynamical exponent z = 4 indicates subdiffusive
transport. We further verify in Fig. 2(a) that the full spatial
profile of the charge density predicted in Eq. (12) emerges
at late times. In particular, the charge density exhibits clear
signatures of dipole-conserving hydrodynamics including a
non-Gaussian profile featuring dips next to the main peak.
More quantitatively, as demonstrated in Fig. 2(b), the charge
density profile at different times collapses to a scaling form
of generalized hypergeometric functions F (1) [60], which has
been previously established as a signature of dipole con-
servation [35,36]. We point out that the emergence of the
subdiffusive dynamical exponent z = 4 is very robust within
our simulations. In fact, we numerically extract exponents in
the range of 0.248–0.253 for a variety of initial states with
fillings in the range of nB = 1 to 3 and interaction strengths
ranging from U = 0 to 10. Both the filling and the interaction
strength affect the effective diffusion constants as we discuss
below.

In the presence of a finite on-site boson-boson repulsion
U > 0, a charge excitation generally also leads to an exci-
tation in energy density. In our hydrodynamic description,
the dynamics of the charge density are only modified by a
renormalization of the diffusion coefficient; see Eq. (12). By
contrast, the nonzero interaction U qualitatively modifies the
dynamics of energy as depicted in Fig. 1(b). As a nonzero
U couples energy to charge density, the subdiffusive charge
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(a) (b) (c)

FIG. 3. Evolution of nonequilibrium initial states with a homogeneous charge profile and a sharply peaked energy profile. (a) Energy
profile at various times. (b) The rescaled energy profiles collapse to a Gaussian F (0). Here the excitation has been normalized to unity. (c) The
excitation decays algebraically with exponent close to 1/2.

dominates the dynamics of energy at late times. This confirms
the presence of a mixed charge-energy subdiffusive mode as
described in Eq. (12).

In order to probe the emergence of a second, diffusive pure
energy mode, we prepare states with homogeneous filling
fraction nB and a highly localized energy inhomogeneity.
The time evolution of the energy profile is depicted in Fig. 3.
The pure-energy excitation decays as t−1/2 and exhibits a
scaling collapse to a Gaussian F (0)(x) = 1√

2π
e−x2/2. These

results qualitatively confirm the validity of the coupled
hydrodynamic description (12). Physically, the diffusive
pure energy mode, which becomes the only energy mode for
U = 0, is consistent with the diffusive motion of dipoles in the
system: While there is no microscopic local dipole density in
the system that directly reflects this process, diffusive dipole
motion formally manifests itself in a finite dipole-conductivity
σdd = limω→0

β

2 〈 jd (k = 0, ω) jd (k = 0,−ω)〉 = CnnD̃nn/T
(see Appendix B).

B. Diffusion matrix

The qualitative hydrodynamic behavior of the dipole con-
serving system (13) is given in terms of the effective model
Eq. (7). A full hydrodynamic description further requires
knowledge of all diffusion constants. Since diffusion con-
stants are nonuniversal properties of a quantum system,
extracting them requires a direct connection between mi-
croscopic and macroscopic physical descriptions, which we
obtain through our 2PI effective action approximation. We
extract the (sub)diffusion constants D̃nn and Dee according to
Eq. (12) by fitting algebraic curves c t−1/z to the late-time be-
havior of δ 〈n〉 (t, 0) and δ 〈E〉 (t, 0), the local charge-energy
and energy-only excitations. As previously discussed, this
robustly yields dynamical exponents of z = 2 and 4 for energy
and charge-energy modes, respectively.

The off-diagonal diffusion constant Den may be obtained
by evolving the system to very late times towards its steady
state, which is characterized by vanishing currents jd = je =
0. Using this condition in the hydrodynamic expansion (6)
yields linearly tilted energy and charge profiles in the long-
time limit, i.e., neq(x) = nB + tnx and εeq(x) = εB + tεx. The
ratio of both tilts is related to elements of the diffusion
matrix as

Den

Dεε

= − tε
tn

. (19)

For same-sign tilts of the charge and energy densities, which
we observe, this implies Den < 0. Numerically we find a pa-
rameter dependence of steady state tilt ratios as Den/Dee =
−tε/tn ≈ −4UnB. We emphasize that this coincides precisely
with the Onsager symmetry Eq. (10) upon inserting the equi-
librium correlations at infinite temperature (see Appendix C).
We have thus directly shown the emergence of Onsager’s
relations in our microscopic approach. Accordingly, within
our hydrodynamic model, we can use Eq. (11) to determine
the diffusion constants Dnn, Dne in terms of the numerically
determined D̃nn, Dee, Den. We show all diffusion constants as
functions of interaction strength U and for different back-
ground fillings in Fig. 4

At constant filling, Dee decays with increasing on-site in-
teractions, in agreement with the intuition that the dynamics
should become slower toward the Mott limit of U → ∞,
where all many-body eigenstates are completely localized. We
note that while the bare charge-charge diffusion constant Dnn

shows a slight increase at small values of U/J in Fig. 4(a), the
renormalized diffusion constant D̃nn decreases monotonically
with increasing interaction. Furthermore, both off-diagonal
diffusion constants vanish at U = 0 leading to a decoupling
of charge and energy modes in the absence of boson-boson
repulsion as expected.

As the filling increases, excitations becomes more mobile
and we find both diagonal diffusion constants increase linearly
with nB for nB � 1 as seen in the inset of Fig. 4(a). This
can be understood as increased particle mobility at higher
fillings due to Bose enhancement. By contrast, at decreasing
filling direct hopping processes can become infeasible, as
no particles may be nearby to coordinate movement with.
At sufficiently low filling the dynamics must eventually be-
come frozen due to a strong Hilbert space fragmentation
into disjoint sectors [28,37]. This fragmentation transition
cannot be resolved by the methods developed in this work,
as exact identities in the product state basis must be re-
produced, which is notoriously difficult for field theoretic
approaches.

V. DISCUSSION AND OUTLOOK

We have studied the emergent, coupled hydrodynamics of
charge and energy in a system of dipole-conserving lattice
bosons at infinite temperature. We have confirmed subdif-
fusive dynamics of the charge density while in the absence

205127-5



BURCHARDS, FELDMEIER, SCHUCKERT, AND KNAP PHYSICAL REVIEW B 105, 205127 (2022)

(a) (b)

(c) (d)

FIG. 4. Diffusion matrix. Numerical values of the infinite temperature diffusion coefficients as a function of the local interaction strength
U/J and filling fraction nB. (a) Charge-charge diffusion constant Dnn governing the subdiffusive decay of charge excitations. Inset: Dnn as a
function of filling for two values of U/J . (b) Charge-energy diffusion constant as computed from Onsager relations. (c) Off-diagonal energy-
charge diffusion constant. (d) Energy-energy diffusion constant. Dashed lines are obtained by applying Eq. (A5) to linearly interpolated
simulation data.

of charge inhomogeneities energy spreads diffusively at late
times. Our quantum field theoretic results are well captured by
an effective hydrodynamic model whose generalized diffusion
matrix can be extracted from our numerics as a function of
filling fraction and interaction strength.

We emphasize that our hydrodynamic description is qual-
itatively independent of microscopic details. In particular,
as noted in previous works on dipole-conserving hydrody-
namics [35,36], the subdiffusion of charge with z = 4 is in
agreement with an experimental study in a two-dimensional
(2D) fermionic system in the presence of a tilted poten-
tial [34]. The associated Hamiltonian is given by Ĥ = ĤFH +
F

∑
r rxn̂r, where ĤFH is the usual Fermi-Hubbard model.

More generally and independent of whether we consider
bosons or fermions and 1D or 2D, the center of mass (or
dipole moment) in such a tilted setup is expected to be
a conserved quantity up to times τ ∼ exp(F/t ), i.e., ex-
ponentially long in the tilt strength, by the arguments of
prethermalization [29,31,32,61] (t is the usual single-particle
hopping). Within this timescale the dynamics is governed by a
dipole-conserving effective Hamiltonian, such as E. (13), with
correlated hopping strength J ∼ U (t/F )2 in a basis obtained
from the Schrieffer-Wolff transformation. Both the number of
particles as well as their nontilt energy are conserved densities
in this basis. If the prethermal timescale τ is longer than
the local thermalization time of the resulting effective dipole
Hamiltonian, the coupled hydrodynamic theory of Eq. (7) will
be applicable to these two modes. Our results should then be
viewed as the system’s “prethermal hydrodynamics.” Whether
the above condition is satisfied might be verified in quantum
gas microscopes by measuring the fluctuations of the dipole
moment. In addition, it is an interesting open question how the
dynamics of the off-diagonal correlated hopping, and thus the
energy, could be measured in cold atom quantum simulation
experiments.

After the timescale of prethermalization the dipole moment
is no longer strictly conserved; tilt energy and nontilt energy
of the effective Hamiltonian will then be converted into one
another. Therefore, at the longest times the diffusive nontilt
energy ceases to be a well defined hydrodynamic mode as
shown in Ref. [35]. Nevertheless, in this late-time regime
the coarse-grained charge dynamics is still governed by an
emergent hydrodynamic description equivalent to the hydro-
dynamics of dipole-moment conserving systems, leading to
a subdiffusive mode with z = 4 [34,35]. It is an interesting
question for future work to determine whether this dynamical
crossover has an impact on the value of the subdiffusion con-
stant D̃nn. For future research, it would further be interesting to
consider within our nonequilibrium field theory a continuum
system in which momentum is conserved in addition to the
conservation laws considered here [38–40]. Moreover, the
effect of dissipation could be incorporated in an effective hy-
drodynamic description, which constitutes another promising
research direction building on our studies.

Simulation codes are available on Zenodo [62].
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APPENDIX A: FLUCTUATION-DISSIPATION RELATIONS

In this Appendix we derive the fluctuation-dissipation rela-
tions (FDRs) Eq. (9) from the hydrodynamic equation (7). We
will show that in combination with the Onsager symmetry re-
lations (see Appendix B) these FDRs lead to the relations (10)
and (11) between different diffusion constants.

We start with the general real-space solutions to the fluctu-
ating hydrodynamic equation (7), which can be written as

ua(t, x) =
∫ ∞

−∞
dx′ Gab(t, x − x′)ub(0, x′)

+
∫ t

0
dt ′

∫ ∞

−∞
dx′ Gab(t − t ′, x − x′)∂αb

x ξb(t ′, x′).

(A1)

Here u(x) = (n(x), e(x))T is the vector of conserved densi-
ties, αb=n,e = 2, 1 denotes the number of derivatives in the
associated continuity equations, and a sum over repeated sub-
script indices is implied. G corresponds to the hydrodynamic
retarded Green’s function, which in Fourier space reads

G(t, q) = e−k2D(k)tθ (t ), (A2)

with the “scale-dependent” diffusion matrix D(k) de-
fined in Eq. (8). We introduce the 2 × 2 matrix C of
static equilibrium correlations defined as Cab(x1 − x2) =
limt→∞〈ua(t, x1)ub(t, x2)〉. Since contributions from initial
configurations vanish at t → ∞ and the sources satisfy
〈ξa(t1, x1)ξb(t2, x2)〉 = B2

aδabδ(t1 − t2)δ(x1 − x2), these corre-
lations may be written as

Cab(x1 − x2) =
∫ ∞

0
dt ′

∫ ∞

−∞
dx′ ∂αc

x1
Gac(t ′, x1 − x′)

× ∂αc
x2

Gbc(t ′, x2 − x′) B2
c . (A3)

Their Fourier is then given by

Cab(k) =
∫ ∞

0
dt (e−k2D(k)t )ac(e−k2D(k)t )bc B2

c k2αc . (A4)

Taking a time derivative immediately yields the FDRs
D(k)C(k) + C(k)D(k)T = B(k)B(−k)T of Eq. (9).

We notice that, a priori, the static correlations in E. (A4)
appear to depend on the wave vector k, which is equivalent
to real space correlations different from delta-function form.
However, Onsager symmetry of the kinetic coefficients (see
Appendix B) implies that the matrix D(k)C(k) is symmet-
ric [63,64]. Applying this symmetry condition to the explicit
form of the correlations that can be obtained from E. (A4)
leads to static correlations independent of wave vector k as
expected. Combining the Onsager relations with the above
FDRs then leads to the relations (10) and (11) of the main
text. In particular, we can obtain the coefficient Dne entering
the diffusion matrix D(k) through the relation

Dne = − CenD̃nn

Cee + CenDen/Dee
, (A5)

expressed entirely in terms of constants or correlations that
can be extracted directly from our numerical method (at infi-
nite temperature).

APPENDIX B: LINEAR RESPONSE CONDUCTIVITIES
FROM NONEQUILIBRIUM TRANSPORT

In the main text we have calculated transport coefficients
from nonequilibrium quenches. Here we bring these results
into contact with transport considered within linear response.
Of central importance is the conductivity matrix, whose com-
ponents in the high-temperature limit can be written as [65]

σab(k, ω) = β

2
〈 ja(k, ω) jb(−k,−ω)〉β . (B1)

Here ja=n,e are the current densities of charge [which is ob-
tained from the dipole current through a derivative according
to Eq. (4)] and energy and β is the inverse temperature. In
the following we derive these conductivities from the solution
of the coupled hydrodynamics in Eq. (12). Onsager symmetry
then amounts to requiring a symmetric conductivity matrix
and will be shown to be equivalent to Eq. (10).

To begin, we note that due to the continuity equations,

〈 ja(k, ω), jb(−k,−ω)〉β = ω2

k2
〈ua(k, ω)ub(−k,−ω)〉β

= ω2

k2
Cab(k, ω), (B2)

where the ua=n,e, are again the densities corresponding to the
conserved densities.

We consider then a density profile δ 〈ua(k, t = 0)〉 created
via an adiabatic switch-on of a perturbation at times t < 0.
For t > 0, the external perturbation is switched off and the
system relaxes back to equilibrium. It can be shown from
linear response (see, e.g., book by Forster [66]) that the
Laplace transform δ 〈ua(k, z)〉 = ∫ ∞

0 dteiztδ 〈ua(k, t )〉 of the
time evolved density perturbations δ 〈ua(k, t )〉 = 〈ua(k, t )〉 −
〈ua(k)〉eq is given by

δ 〈ua(k, z)〉 = β[S(k, z)χ−1(k)]abδ 〈ua(k, t = 0)〉 , (B3)

where χ (k) is the matrix of static susceptibilities at inverse
temperature β and S is the Kubo correlation function. χ (k)
and S are connected to the imaginary part of the suscepti-
bility by χ (k) = ∫

dωχ ′′(k, ω)/(πω) and Im[S(k, ω + iε)] =
χ ′′(k, ω)/(βω). Linear response written as in Eq. (B3) can
be directly compared to our long-wavelength solution ob-
tained from linear fluctuating hydrodynamics in Eq. (12). The
Laplace transform of this solution is given by

(
nk (z)
ek (z)

)
=

(
i

z+iD̃nnk4 0
Den
Dee

(
i

z+iDeek2 − i
z+iD̃nnk4

)
i

z+iDeek2

)

×
(

nk (t = 0)
ek (t = 0)

)
. (B4)
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Hence, the matrix M on the right-hand side corresponds to βS(k, z)χ−1(k). Furthermore, we use the classical fluctuation-
dissipation relation C(k, ω) = 2χ ′′(k, ω)/(βω), which implies χ (k) = βC(k) for the static susceptibility. Assembling all of
the above relations, we finally obtain the conductivity matrix as σ (k, ω) = ω2

k2 Im[M(k,w + iε)]C(k), or more explicitly

σ (k, ω) = β

(
CnnD̃nn(ωk)2

ω2+(D̃nnk4 )2
CneD̃nn(ωk)2

ω2+(D̃nnk4 )2

DenCnn
Dee

( Deeω
2

ω2+(Deek2 )2 − D̃nn(ωk)2

ω2+(D̃nnk4 )2

) + CenDeeω
2

ω2+(Deek2 )2
DenCne

Dee

( Deeω
2

ω2+(Deek2 )2 − D̃nn(ωk)2

ω2+(D̃nnk4 )2

) + CeeDeeω
2

ω2+(Deek2 )2

)
, (B5)

where we suppressed the k dependence of the static correlations [at β = 0, C(k) = C exactly as shown below]. In particular, we
find for the zero momentum conductivity in the static limit

lim
ω→0

σ (k = 0, ω) = β

(
0 0

CnnDen + DeeCen CneDen + DeeCee.

)
, (B6)

which gives the generalized Einstein relations for the diffusive
energy mode and a vanishing conductivity for the subdiffusive
charge density. From E. (B6) we thus find that demanding the
conductivity matrix to be symmetric leads to Eq. (10) of the
main text, i.e.,

CnnDen + CenDee = 0. (B7)

Inserting this condition back into the FDRs of Eq. (12) then
yields Eq. (11), i.e., CenDnn + CeeDne = 0, which further im-
plies that D(k)C is a symmetric matrix.

Finally, we notice that we can formally also define a
“dipole conductivity” via the correlations of the dipole current
jd , σdd := limω→0 limk→0

β

2 〈 jd (k, ω) jd (−k,−ω)〉. Evaluat-
ing this expression yields a finite dipole conductivity σdd =
βCnnD̃nn, consistent with a diffusive motion of dipoles
through the system.

APPENDIX C: INFINITE-TEMPERATURE
EQUILIBRIUM CORRELATIONS

The static infinite temperature correlators Cab can be cal-
culated analytically. The static connected correlations are
defined as

Cnn = 〈n̂in̂i〉, Cne = Cen = 〈êin̂i〉, Cee = 〈êiêi〉, (C1)

with energy-density operator êi = hU
i + ( 1

4 (ĥD
i−1 + ĥD

i−1) +
1
2 ĥD

i + H.c.).
Exploiting the fact that the infinite temperature density

matrix is given as ρ = 1/N e−κn with κ = −βμ fixed by the
particle expectation value 〈n〉 = nB(κ ) = (eκ − 1)−1 and N a
normalization constant, we obtain the static correlations

Cnn = n2
B + nB, Cen = U

(
4n3

B + 4n2
B

)
,

Cee = 4U 2
(
5n4

B + 6n3
B + n2

B

) + 4J2n2
B

(
n2

B + 2nB + 1
)
.

(C2)

APPENDIX D: EQUATIONS OF MOTION FROM 2PI
EFFECTIVE ACTION

1. Constructing the nonequilibrium partition function

The action on the Schwinger-Keldysh contour correspond-
ing to the Hamiltonian (13) with normalization J = 1 is

S[φ] =
∫
C

φ j i∂t1φ j − φiφ jVi jklφkφl − Uφ
2
i φ

2
i , (D1)

with a symmetrized interaction tensor

Vl jkm = 1
2 (δlk j+1m−1 + δlk j−1m+1 + δ jmk+1l−1 + δ jmk−1l+1),

(D2)
where δi jkl is equal to unity if and only if all index val-
ues are identical. Due to the fact that the tensor V vanishes
whenever the first or last two indices denote nonconsecutive
lattice sites it is useful to introduce an additional bond index
denoting ordered, consecutive pairs of lattice sites. Formally
we define these bond indices as tuples of consecutive lattice
sites (i, i ± 1) and consider them left/rightward oriented if the
second lattice index is smaller/larger than the right one. For
clarity we denote the bond indices by lower-case Greek letters
in summations, marking with a dot rightward oriented bond
indices while lattice indices will be denoted by lower-case
Latin letters. Furthermore, the lattice sites to the right and left
of a bond are denoted by the bond index subscripted with a
+ and − sign, respectively. For example if σ = 4 denotes the
fourth bond of the system from the left, then σ− denotes the
fourth lattice site while σ+ denotes the fifth. This is illustrated
in Fig. 5. Using this notation the tensor V can be expressed in
the form

Vαμ̇ = Vα̇μ = 1
2 (δαμ+1 + δαμ−1), Vαμ = Vα̇μ̇ = 0, (D3)

and the partition function reads

Z =
∫

Dφ exp i

(∫
C

φ j i∂tφ j − 2φσ−φσ+Vσμ̇φμ−φμ+

−Uφ
2
i φ

2
i + sources

)
. (D4)

We continue by decoupling both quartic terms in the action via
introduction of a complex-valued Hubbard-Stratonovich field
χ localized on the bonds as well as a real-valued Hubbard-

FIG. 5. Labeling of lattice sites and bonds in a system of size
L. Lattice sites and bonds are numbered from left to right beginning
with 0. The first lattice site may also be labeled as 1− since it is to
the left of the first bond, similarly 2+ refers to the third lattice site.
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Stratonovich field � localized on the lattice, obtaining the
final action

S[φ, χ,�] =
∫
C

φii∂tφi + χσ̇V −1
σ̇μ χμ + 1

2
�iU

−1
i �i

−
√

2(χα̇φα−φα+ + φα+φα−χα + φiφi�i ),
(D5)

sources → sources + χσ̇ Jχ
σ̇ + J

χ

σ χσ + χσ̇ Rχ
σ̇μχμ + �iJ

�
i

+ 1
2�iR

�
i j� j . (D6)

Formally this transformation is achieved by multiplication of
the partition function with the two unities

1 =
∫

d χ 0dχ0 exp i

(∫
C

χ 0
σ̇V −1

σ̇μ χ0
μ

)
,

1 =
∫

d�0 exp i

(∫
C

1

2
�0

i U
−1
i �0

i

)
, (D7)

and consecutive field shifts

χ 0
σ̇ → χσ̇ −

√
2 φα+φα−Vασ̇ , (D8)

χ0
σ → χσ −

√
2 φα−φα+Vα̇σ , (D9)

�0
i → �i −

√
2 φiφiUi. (D10)

2. Causal equations of motion via 2PI effective action

The 2PI effective action is obtained as the Legendre transform of the connected generating functional W = i logZ with
respect to the local source terms J, J�, Jχ as well as the nonlocal sources R, R�, Rχ . It may be regarded as a functional of the field
expectation values ϕi(t ) = 〈φi(t )〉, Xσ (t ) = 〈χσ (t )〉, Ni(t ) = 〈�i(t )〉 and the full, connected, nonequilibrium field correlators
Gi j (t1, t2) = 〈φi(t1)φ j (t2)〉, Dσ̇μ(t1, t2) = 〈χσ̇ (t1)χμ(t2)〉, Oi j (t1, t2) = 〈�i(t1)� j (t2)〉 on the Schwinger-Keldysh contour. The
2PI effective action may be split into up to 1-loop contributions and higher order contributions contained in �2 as follows:

�2PI[φ, χ,�, G, D, O] = S[φ, χ, δ]+ i tr log G−1+ i tr G−1,T
0 G+ i tr log D−1+ i trD−1,T

0 D+ i

2
tr log O−1+ i

2
tr O−1

0 O+ �2,

(D11)
where the free propagators have been defined as

iG0,i j (t1, t2) = δ2S[φ, χ,�]

δφ j (t2)δφi(t1)
, (D12)

iD0,σ̇μ(t1, t2) = δ2S[φ, χ,�]

δχμ(t2)δχσ (t1)
, (D13)

iO0,i j (t1, t2) = 1

2

δ2S[φ, χ,�]

δ�i(t1)δ� j (t2)
. (D14)

Since the macroscopic fields φ and χ vanish at all times for the initial states considered in this text and all information contained
in the field expectation value Ni may be reexpressed in terms of G(t, t ), we drop them in subsequent equations. At this point the
equations of motion may be determined explicitly from the stationarity conditions

δ�2PI[G, D, O]

δGi j (t1, t2)
= 0,

δ�2PI[G, D, O]

δDσ̇μ(t1, t2)
= 0,

δ�2PI[G, D, O]

δOi j (t1, t2)
= 0. (D15)

Defining self-energies for each correlator by

�i j (t1, t2) = δ�2

δGji(t2, t1)
, �σ̇μ(t1, t2) = δ�2

δDμσ̇ (t2, t1)
, �i j (t1, t2) = δ�2

δOi j (t1, t2)
, (D16)

the equations of motion can be rewritten in integral form

∂t1 Gi j (t1, t2) = δC (t1, t2)δi j −
∫
C

dt �il (t1, t )Gl j (t, t2), (D17)

Dσ̇μ(t1, t2) = iVσ̇μδC (t1, t2) + iVσ̇ α

∫
C

dt �αβ̇ (t1, t )Dβ̇μ(t, t2), (D18)

Oi j (t1, t2) = iUiδi jδC (t1, t2) − iUi

∫
C

dt �il (t1, t )Ol j (t, t2). (D19)
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As discussed in the main text, �2 is equal to the sum over all closed, two-particle irreducible Feynman diagrams. We employ the
approximation �2 = �NLO

2 + �cross
2 with

= 2i
∫
C

dt1dt2 Vσ̇ κDκν̇ (t1, t2)Vν̇μGμ−σ− (t2, t1)Gσ+μ+ (t1, t2)

+ i
∫
C

dt1dt2 U 2
i Gii(t1, t2)Gii(t2, t1)Oii(t1, t2), (D20)

= 2i
∫∫∫∫

C
dt1...4 Vσ̇μVν̇κGσ−ν+ (t4, t3)Gν−μ+ (t3, t2)Gμ−κ+ (t2, t1)Gκ−σ+ (t1, t4)

+ i
∫∫∫∫

C
dt1...4 U 2

i Gii(t1, t2)Gii(t2, t1)Gii(t1, t2)Gii(t2, t1).. (D21)

Where we have made use of the Feynman rules

,

(D22)

, (D23)

. (D24)

Additionally, we split off a time-local part from G, �, �, and � as follows:

A(t1, t2) = −iδC (t1 − t2)A(0)(t1) + iA(t1, t2), (D25)

with a slightly different decomposition for the propagators D and O:

D(t1, t2) = −iδC (t1 − t2)D(0)(t1) + 2iV D(t1, t2)V, (D26)

O(t1, t2) = −iδC (t1 − t2)O(0)(t1) + 2iUO(t1, t2)U . (D27)

The nonlocal parts of propagators and self-energies are further decomposed into statistical and spectral components

A(t1, t2) = AF (t1, t2) − i

2
Aρ (t1, t2)sgnC (t1 − t2). (D28)

We note that the time-local contributions G(0), �(0). and �(0) vanish and that the statistical and spectral components of G are
denoted by F, ρ instead of GF , Gρ . The above decomposition removes explicit reference to the closed time contour since the
resulting spectral and statistical components are independent of the contour part.

3. Full set of evolution equations

Making use of these decompositions and Eqs. (D17)–(D19) we obtain the final and explicitly causal equations of motion for
the two-point Green’s function

∂t1 Fi(t1, t2) = i

(
�

(0)
i (t1)Fi(t1, t2) +

∫ t1

t0

dt �
ρ
i (t1, t )Fi(t, t2) −

∫ t2

t0

dt �F
i (t1, t )ρi(t, t2)

)
, (D29)

∂t1ρi(t1, t2) = i

(
�

(0)
i (t1)ρi(t1, t2) +

∫ t1

t2

dt �
ρ
i (t1, t )ρi(t, t2)

)
, (D30)

the corresponding self-energies

�
(0)
i (t ) = 4Ui

(
Fi(t, t ) − 1

2

)
, (D31)

�NLO,F
l (t1, t2) = −4i

{
U 2

l Fl (t1, t2)OF (t1, t2)l + V ˙l−1μVl−1σ̇ DF
μσ̇ (t1, t2)Fl−1(t1, t2) + Vlμ̇Vl̇σ DF

μ̇σ (t1, t2)Fl+1(t1, t2)

− 1
4

(
U 2

l ρl (t1, t2)Oρ

l (t1, t2) + V ˙l−1μVl−1σ̇ Dρ
μσ̇ (t1, t2)ρl−1(t1, t2) + Vlμ̇Vl̇σ Dρ

μ̇σ (t1, t2)ρl+1(t1, t2)
)}

, (D32)
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�
NLO,ρ

l (t1, t2) = 4i
{
U 2

l ρl (t1, t2)OF
l (t1, t2) + V ˙l−1μVl−1σ̇ Dρ

μσ̇ (t1, t2)Fl−1(t1, t2) + Vlμ̇Vl̇σ DF
μ̇σ (t1, t2)ρl+1(t1, t2)

+ U 2
l Fl (t1, t2)Oρ

l (t1, t2) + V ˙l−1μVl−1σ̇ DF
μσ̇ (t1, t2)ρl−1(t1, t2) + Vlμ̇Vl̇σ Dρ

μ̇σ (t1, t2)Fl+1(t1, t2)
}
, (D33)

�cross,F
l (t1, t2) = −4i

{
U 2

l Fl (t1, t2)�F (t1, t2)l + V ˙l−1μVl−1σ̇ �F
μσ̇ (t1, t2)Fl−1(t1, t2) + Vlμ̇Vl̇σ�F

μ̇σ (t1, t2)Fl+1(t1, t2)

− 1
4

(
U 2

l ρl (t1, t2)�ρ

l (t1, t2) + V ˙l−1μVl−1σ̇ �
ρ
μσ̇ (t1, t2)ρl−1(t1, t2) + Vlμ̇Vl̇σ�

ρ
μ̇σ (t1, t2)ρl+1(t1, t2)

)}
, (D34)

�
cross,ρ
l (t1, t2) = 4i

{
U 2

l ρl (t1, t2)�F
l (t1, t2) + V ˙l−1μVl−1σ̇ �

ρ
μσ̇ (t1, t2)Fl−1(t1, t2) + Vlμ̇Vl̇σ�F

μ̇σ (t1, t2)ρl+1(t1, t2)

+ U 2
l Fl (t1, t2)�ρ

l (t1, t2) + V ˙l−1μVl−1σ̇�F
μσ̇ (t1, t2)ρl−1(t1, t2) + Vlμ̇Vl̇σ�

ρ
μ̇σ (t1, t2)Fl+1(t1, t2)

}
, (D35)

where �F/ρ = �NLO,F/ρ + �cross,F/ρ . The Hubbard-Stratonovich field mediating on-site interactions

O(0)
i j = −Uiδi j, (D36)

OF
i j (t1, t2) = i

2
�F

j (t1, t2)δi j + Ui

(∫ t1

0
dt �

ρ
i (t1, t )OF

i j (t, t2) −
∫ t2

0
dt �F

i (t1, t )Oρ
i j (t, t2)

)
, (D37)

Oρ
i j (t1, t2) = i

2
�

ρ
j (t1, t2)δi j + Ui

∫ t1

t2

dt �
ρ
i (t1, t )ONLO,ρ

i j (t, t2), (D38)

its corresponding self-energies

�F
j (t1, t2) = −2

(
Fj (t1, t2)F ∗

j (t1, t2) − 1
4ρ j (t1, t2)ρ∗

j (t1, t2)
)
, (D39)

�
ρ
j (t1, t2) = −2(ρ j (t1, t2)F ∗

j (t1, t2) + Fj (t1, t2)ρ∗
j (t1, t2)), (D40)

the Hubbard-Stratonovich field mediating dipole hopping

D(0)
α̇μ = −Vα̇μ, (D41)

DF
α̇μ(t1, t2) = i

2
�F

α̇α (t1, t2)δαμ +
(∫ t1

0
dt �

ρ
α̇σ (t1, t )Vσ β̇DF

β̇μ
(t, t2) −

∫ t2

0
dt �F

α̇σ (t1, t )Vσ β̇Dρ

β̇μ
(t, t2)

)
, (D42)

Dρ
α̇μ(t1, t2) = i

2
�

ρ
α̇α (t1, t2)δαμ +

∫ t1

t2

dt �
ρ
α̇σ (t1, t )Vσ β̇Dρ

β̇μ
(t, t2), (D43)

and its corresponding self-energies

�F
σ̇ σ (t1, t2) = −2

(
Fσ− (t1, t2)F ∗

σ+ (t1, t2) − 1
4ρσ− (t1, t2)ρ∗

σ+ (t1, t2)
)
, (D44)

�
ρ
σ̇σ (t1, t2) = −2(ρσ− (t1, t2)F ∗

σ+ (t1, t2) + Fσ− (t1, t2)ρ∗
σ+ (t1, t2)). (D45)

When making use of the relations between left-dotted and right-dotted quantities collected in the following section, these form
a closed set of equations allowing for numerical time evolution. We have made use of the fact that G, �, O, �, and � are
diagonal in spatial indices for all times when starting from initial states where this holds, as is the case for all initial states
considered in this work.

4. Green’s function symmetries

We collect some symmetries between different matrix ele-
ments of Green’s functions as well as consequences for their
matrix elements following from the EOMs at NLO in this Ap-
pendix. From their respective operator expression it follows
immediately that

F (t2, t1) = F (t2, t1)∗, ρ(t2, t1) = −ρ(t1, t2)∗ (D46)

and as a consequence via the KB equations

�F (t2, t1) = �F (t1, t2), �ρ (t2, t1) = −�ρ (t1, t2)∗. (D47)

From their KB equations (D39) and (D40) we further ob-
serve �F ,�ρ ∈ R. One may use Eq. (D15) to derive KB
equations for �F

σ σ̇ ,�
ρ
σσ̇ in addition to those for �F

σ̇ σ ,�
ρ
σ̇σ .

However, these turn out to be redundant and equivalent to the
relations

�
F/ρ
σ σ̇ = �

F/ρ ∗
σ̇ σ . (D48)

Making use of these equations it follows that

�F (t2, t1) = �F (t1, t2), �ρ (t2, t1) = −�ρ (t1, t2)∗ (D49)
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and then via induction over the KB equations that

DF/ρ
σ σ̇ = −DF/ρ ∗

σ̇ σ , (D50)

DF (t2, t1) = −DF (t1, t2)∗, Dρ (t2, t1) = Dρ (t1, t2)∗,
(D51)

OF (t2, t1) = OF (t1, t2), Oρ (t2, t1) = −Oρ (t1, t2). (D52)

For the family of initial states considered in this work, it is
also a notable consequence that OF/ρ

i j ∝ δi j for all times as
is simple to prove via induction by making use of the KB
equations.

APPENDIX E: ENERGY DENSITY IN 2PI FROM
GALITSKII-MIGDAL FORMULA

We compute different conserved densities of interest. Not-
ing that the time derivative of the statistical two-point function
is given by

∂t1 Fj (t1, t2)|t1=t2 = 1
2 〈[H, a†

1]a1 + a1[H, a†
1]〉 (E1)

and making use of the commutation relations for creation and
annihilation operators one obtains the relation

∂t1 Fj (t1, t2)|t1=t2 = i
〈
hD

j−1 + 2hD†
j + h j+1 + 2hU

j + 2Unj
〉
,

(E2)

where hD
l = al−1a†2

l al+1 and hU
j = Unj (n j − 1) represent the

dipole and density-density interaction parts of the Hamilto-
nian

H =
∑

j

(hD
j + hD†

j ) + hU
j . (E3)

Combining these relations we observe the fact that

E = 〈H〉 = 1

2i

∑
j

∂t1 Fj (t1, t2)|t1=t2 − U
∑

j

〈n j〉 (E4)

allowing us to define a local energy density as

Ej (t1) = Re

[
1

2i
∂t1 Fj (t1, t2)|t1=t2 − Uj

(
Fj (t1, t1) − 1

2

)]
.

(E5)

APPENDIX F: PREPARATION OF NON-GAUSSIAN
INITIAL STATES

We go beyond initial states with Gaussian density matrix
by solving self-consistently the Kadanoff-Baym equations in
equilibrium. This restriction to equilibrium is achieved by the
fact that two-time functions like F (t1, t2) and OF/ρ (t1, t2) are
independent of the central time T = (t1 + t2)/2 and depend
only on the relative time τ = t1 − t2. Furthermore, in equilib-
rium propagators fulfill their respective fluctuation-dissipation
relations, that is after Fourier transforming with respect
to τ we have F (ω) = i[nβ,μ(ω) − 1

2 ]ρ(ω) with nβ,μ(ω) =
1/(eβ(ω−μ) − 1). The auxiliary correlators D and O fulfill
identical relations with μ = 0 since their corresponding oper-
ators carry no charge under the particle-number operator. We
further restrict to J = 0 which corresponds to dropping the

dipole-hopping mediating auxiliary field, i.e., D = 0. Intro-
ducing retarded propagator components as AR(t ) = Aρ (t )θ (t )
the Kadanoff-Baym equations in equilibrium become

ρR(ω) = 1

2π
[ω + �(0) + 2π�R(ω)]−1δi j, (F1)

OR(ω) = [1 − 2πU�R(ω)]−1iU�R(ω)U, (F2)

OF (ω) = [1 − 2πU�R(ω)]−1U�F (ω)[iU + 2πOR(−ω)].

(F3)

We solve these equations self-consistently by iterative
schemes. The resulting propagators are then inserted into
a t1-t2 plane subset {(t1, t2)|t1, t2 < T }, where T denotes a
time by which the relative-time propagators have sufficiently
decayed, and taken as initial conditions for the real-time
evolution. In the present work we prepare local thermal
states under the on-site interacting part of the Hamilto-
nian HU = Un(n − 1). The energy and charge profiles are
tuned by varying the conjugate parameters β,μ which enter
the solver through FDRs. The obtained product states have
identical energy profiles under both the full and restricted
Hamiltonians. While this method does not allow us to di-
rectly prepare thermal states for U = 0, diffusion constants
for vanishing U are obtained by time evolving for a short
time under Hamiltonian with U = 1 and quenching to U = 0
after some potential energy has been converted to kinetic
energy.

APPENDIX G: SHORT-TIME EXPANSION

Here we derive the short-time expansion for the density
profile of a Gaussian initial state with a local inhomogene-
ity. In an uncorrelated Gaussian initial state ρ = ⊗

i ρi the
short-time dynamics of charges can be calculated explicitly.
We assume that the considered state exhibits a homogeneous
profile of the charge expectation value with a single inho-
mogeneity localized on one lattice site, i.e., 〈n̂i(t = 0)〉 =
nB + δi0δn, as considered in the main text.

In general, the short-time expansion for the charge expec-
tation values is given by

〈n̂i(t )〉 = Trρn̂i + it Trρ[H, n̂i]

+ (it )2

2
Trρ[H, [H, n̂i]] + · · · . (G1)

Using the decomposition of the Hamiltonian (E3) some alge-
bra reveals the relations∑

i

[
hD

i , n j
] = (�hD) j ≡ hD

j+1 − 2hD
j + hD

j−1,

∑
i

[
hD†

i , n j
] = −(�hD†) j . (G2)

Since [hU
i , n̂ j] = 0 and expectation values of hD and hD†

vanish in product states the linear term in the above ex-
pansion (G1) must vanish. The relevant commutator for the
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quadratic term is then

[
hD

i , hD†
i

] = n̂i(n̂i − 1)(n̂i+1 + 1) + n̂i−1(n̂i + 1)(n̂i + 2)

− 2n̂i−1(2n̂i + 1)(n̂i+1 + 1), (G3)

since expectation values of the same commutator on differ-
ent sites vanish, i.e., i �= j ⇒ [hD

i , hD†
j ] = 0. Making use of

Wick’s theorem, which for Gaussian product states implies
〈n̂2

i 〉 = 2〈n̂i〉2 + 〈n̂i〉, as well as the density profile of the ini-

tial state, we obtain the short-time expansion for the charge
dynamics on the center site as

〈n̂0(t )〉 = nB + δn − t2

× 2[6δn n2
B + nB(4δn2 + 6δn) + 2δn2] + O(t3).

(G4)
This expansion agrees with simulation results due to the fact
that all Feynman diagrams contributing orders up to t2 have
been included in the 2PI approximation. A comparison is
shown in Fig. 2.
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