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Magnetic phase transition in disordered interacting Dirac fermion systems via the Zeeman field
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Using the determinant quantum Monte Carlo method, we investigate the antiferromagnetic phase transition
that is induced by the Zeeman field in a disordered interacting two-dimensional Dirac fermion system. At a fixed
interaction strength U , the antiferromagnetic correlation is enhanced as the magnetic field increases and, when
the magnetic field is larger than a Bc(U ), the antiferromagnetic correlation shall be suppressed by the increased
magnetic field. The impact of Zeeman field B, Coulomb repulsion U , and disorder � is not isolated. The intensity
of magnetic field effect on the antiferromagnetic correlation shall be strongly suppressed by disorder. Differently,
it will be promoted by weak interaction, but, when U becomes larger than Uc = 4.5, the increased interaction will
suppress the intensity of this effect and here Uc = 4.5 coincides with the critical strength inducing the metal-Mott
insulator transition in a clean system. Moreover, at a fixed magnetic field B, strong interaction shall suppress the
antiferromagnetic phase rather than promote it.

DOI: 10.1103/PhysRevB.105.205121

I. INTRODUCTION

According to studies on the widely investigated Dirac
fermion systems, graphene is one of the most promising
2D materials [1,2] due to its unique characteristics, such as
excellent electrochemical performance [3] and ultrahigh elec-
trical conductivity [4,5]. With the emergence of a series of
novel phenomena, such as the Pomeranchuk effect [6], tun-
able strongly coupled superconductivity [7], and the spin-Hall
effect [8], the honeycomb lattice that is applied in strong
correlation physics is expected to be associated with break-
through results. To increase the similarity between the model
and the actual material and enhance the reliability of the
results, we considered both interaction and disorder in our
research. Their interplay led to more complex physical mech-
anisms, thereby inducing a series of valuable discoveries.
For example, the hopping disorder closes the Mott gap [9]
and induces a novel nonmagnetic insulating phase which is
found to emerge from the zero-temperature quantum critical
point [10], and disordered impurities can drive the ordered
state by electron-mediated interaction at a transition tempera-
ture [11]. For this reason, the study of disordered interacting
Dirac fermion systems, with the graphene lattice considered
as an example, has far-reaching significance and value.

As the basic property of crystal lattices, magnetism has
always received extensive attention due to its reflection on
the physics of systems. For example, transport phase transi-
tions are accompanied by the antiferromagnetism [10,12] or
the magnetostriction is induced by the broken time reversal
symmetry [13]. Since a variety of fascinating properties are
closely connected with magnetism (such as superconductiv-
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ity [14,15] and topological band insulator properties [16]),
research on magnetism has become increasingly richer. As
a system that has particle-hole symmetry at half filling,
the honeycomb lattice provides an excellent research plat-
form for promoting interesting phenomena in this dynamic
field [17,18], especially antiferromagnetic (AFM) phase tran-
sitions, which have long been a central and controversial issue.
The Zeeman field can create a better environment for studying
this topic: it will couple only to the spin, not to the orbital
motion of electrons [19,20], and polarize the graphene carriers
to affect the density of states [21]. In the continuum limit, an
in-plane magnetic field has been proven to facilitate sponta-
neous symmetry breaking [22]. Therefore, how the magnetic
field, interaction, and disorder affect one another and work
together is an essential and interesting issue.

In this paper, we use the exact determinant quantum Monte
Carlo (DQMC) method and study the Hubbard model on a
honeycomb lattice. By examining the staggered transverse
AFM structure factor, we focus on the AFM phase in a
more interesting direction parallel to the lattice plane. The
Zeeman field initially induces and subsequently suppresses
the AFM phase in this direction, which is different from the
strong inhibitory effect in the vertical direction. The inter-
play of interaction, disorder, and the parallel field is reflected
as complex magnetic effects. First, the effect of disorder is
confined to a limited range of field strengths. Second, the
Zeeman field causes an effect that is contrary to conventional
understanding, namely, the AFM phase will be suppressed by
the strong interaction. These impacts are not unidirectional.
Increasing disorder renders the influence of the parallel field
more hidden and sufficiently strong disorder leads to the
absence of the AFM phase regardless of the magnetic field.
With increasing interaction, the induction-inhibition effect of
the magnetic field on the staggered transverse AFM structure
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factor becomes more likely to be produced and the effect
intensity also changes—it initially increases and subsequently
decreases. Notably, the interaction strength at which the mag-
netic field effect is most obvious is the critical value that
induces the AFM Mott insulating phase transition in the clean
system. Overall, complex and interesting magnetism occurs in
the disordered interacting Dirac Fermi system via a magnetic
field, which is induced by the combined effect of three factors.

II. MODEL AND METHOD

The Hamiltonian of the disordered Hubbard model on a
honeycomb lattice in the presence of a magnetic field is de-
fined as follows:

Ĥ = −
∑
〈ij〉σ

tij(ĉ
†
iσ ĉjσ + ĉ†

jσ ĉiσ ) + U
∑

j

(
n̂j↑ − 1

2

)(
n̂j↓ − 1

2

)

−
∑

jσ

(μ − σB)n̂jσ , (1)

where ĉ†
iσ (ĉiσ ) is the spin-σ electron creation (annihilation)

operator at site i and n̂iσ = ĉ†
iσ ĉiσ is the occupation number

operator. Here, tij is the nearest-neighbor (NN) hopping inte-
gral, U > 0 is the on-site Coulomb repulsive interaction, μ

is the chemical potential, and B is the Zeeman field along
the x direction which is parallel to the lattice plane (thus
orbital contributions are not generated [19]). By selecting the
hopping parameters tij from the probability distribution P (tij)
= 1/� for tij ∈ [t − �/2, t + �/2] and setting them to zero
otherwise, disorder is introduced into the system. � describes
the strength of the disorder and t = 1 sets the energy scale in
the following. By choosing μ = 0, we obtained a half filled
system with particle-hole symmetry [23].

We adopt the DQMC method [24] to study the magnetic
phase transition in the model that is defined by Eq. (1), in
which the Hamiltonian is mapped onto free fermions in 2D +
1 dimensions that are coupled to space- and imaginary-time-
dependent bosonic (Ising-like) fields. By using Monte Carlo
sampling, we can carry out the integration over a relevant
sample of field configurations, which are selected until the sta-
tistical errors become negligible. The discretization mesh �τ

of the inverse temperature β = 1/T should be small enough to
ensure that the qualified Trotter errors are less than those that
are associated with statistical sampling. This approach enables
us to compute static and dynamic observables at a specified
temperature T . Due to the particle-hole symmetry even in
the presence of the hopping-quenched disorder, the system
avoids the infamous minus-sign problem and the simulation
can be performed at a large enough value of β to obtain prop-
erties that converge to the ground-state properties [10,25]. We
choose an L = 12 honeycomb lattice with periodic boundary
conditions, for which the total number of sites is N = 2 × L2.
In the presence of disorder, we average over 20 disorder real-
izations [10,26–29].

To study the magnetic phase transition, particularly to char-
acterize the AFM phase, we compute the staggered transverse
antiferromagnetic structure factor in the direction parallel to
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FIG. 1. Staggered transverse antiferromagnetic (AFM) structure
factor Sxx

AFM. (a) As a function of the lattice size L for various values
of the magnetic field B. As the magnetic field increases, Sxx

AFM is
increased at each L. As the curve intercept gradually increases from
zero to positive, the system reaches the AFM phase. The critical
strength for the magnetic phase transition is approximately B = 0.45.
(b) As a function of B for various values of L. The pink curve, which
represents L = ∞, namely, 1/L = 0, is made up of intercepts that
were obtained by Sxx

AFM(L) curve fitting under each magnetic field.
This curve shows the appearance/disappearance of the AFM phase.
The induction of the AFM phase requires a large value of B and
will be eliminated by the magnetic field if its strength continues
to increase. Calculations are performed on 2 × L × L lattices for
U = 3.0 and � = 0.0.

the lattice plane as

Sxx
AFM = 1

N

∑
i, j

(−1)(i+ j)
(
Sx

i Sx
j + Sy

i Sy
j

)
, (2)

where Sx
i (Sy

i ) is the x (y)-component spin operator and
the phase factor is +1(−1) for sites i, j that belong to
the same (different) sublattices of the honeycomb struc-
ture. Similarly, the longitudinal structure factor Szz

AFM ≡
(1/N )

∑
i, j (−1)(i+ j)Sz

i Sz
j describes the magnetic order in the

z direction. Finally, we introduce the parameter P = |n↓ −
n↑|/(n↓ + n↑) to study the spin polarization of electrons,
where n↓ and n↑ are the averaged spin-resolved densities of
the corresponding number operators in Eq. (1) and ↑ (↓) is
parallel (antiparallel) to the x or z direction. In addition, since
the AFM phase disappears at high temperatures, we choose
T = 1/12, which is small enough to avoid this temperature
effect, as shown in Fig. 2(c).
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FIG. 2. (a) Staggered transverse AFM structure factor Sxx
AFM as a function of the spin polarization P at various values of L. With P as the

abscissa, the curve has a more dramatic change. (b) P as a function of B, where the function relationship depends on the interaction U : the
P(B) curve under a large value of U enters the ascending stage faster and reaches 1 (the fully spin-polarized state) first. (c) Sxx

AFM as a function
of L for various values of the inverse temperature β. The temperature effect is exhibited as the AFM phase is eliminated by the large T , which
is accompanied by the disappearance of the intercept. (d) Sxx

AFM as a function of B for various values of β. The influence of T is obvious as
Sxx

AFM increases with increasing β under each B.

III. RESULTS AND DISCUSSION

We start from a clean system without disorder, where a
parallel magnetic field induces the antiferromagnetic (AFM)
transition in the system. The lattice is insulating at interaction
U/t = 3, disorder � = 0, and magnetic field B = 0.4 (see
Appendix A). At this time, as shown in Fig. 1(a), the stag-
gered transverse AFM structure factor Sxx

AFM tends to 0 when
1/L → 0 (namely, L → ∞), which suggests that the structure
factor is not extensive, thereby resulting in only short-range
ordering. When B grows to a sufficiently large value, such
as B = 0.6, the Sxx

AFM curve is predicted to have a positive
intercept at 1/L = 0, which corresponds to the appearance of
the AFM phase. Interestingly, the induction of AFM by the
magnetic field does not happen immediately, even though B
is large enough to induce the MIT (more details are provided
in Appendix A). In addition, in Fig. 1(b), the pink curve is
made up of intercepts of Sxx

AFM(L) under several values of B;
hence the AFM phase only exists in the area where the curve
is above the horizontal axis. The magnetic field hardly affects
the value of Sxx

AFM until B = 0.4. This indicates that a fairly
strong magnetic field is needed to cause symmetry breaking
of the lattice. Notably, Sxx

AFM is not always positively corre-
lated with the magnetic field: with an increase in large B, the
system becomes increasingly close to full-spin polarization;
thus Sxx

AFM continues to decrease until = 0.
In Figs. 2(a) and 2(b), we show the results for Sxx

AFM as a
function of the degree of spin polarization P and P as a func-
tion of B, which is in accord with the results of the previous

study and supports our conclusions. Because the semimetallic
state under an in-plane magnetic field is considered unstable,
Sxx

AFM curves quickly enter the upward phase with P as the
abscissa [30]. The phenomena in Fig. 1(a) and Fig. 2(a) differ
because the relationship between polarization and the mag-
netic field is not linear: as shown in Fig. 2(b), with an increase
in B, P first increases slowly, then rises gradually at a faster
rate, and finally converges to 1 to reach a fully spin-polarized
state. The behavior of P is also affected by U , which is also re-
flected in Ref. [30]. Notably, the increase in spin polarization
by the interaction only occurs in the presence of a magnetic
field. In addition, the temperature effect is shown in panels (c)
and (d), where Sxx

AFM is a function of L or B, and the AFM
phase is shown to be eliminated at high temperature.

In contrast to the interesting effect of Sxx
AFM, the parallel

magnetic field is proven to effectively suppress the AFM
phase in the z direction perpendicular to the lattice plane.
In Fig. 3(a), we report the staggered longitudinal AFM
structure factor Szz

AFM(B) computed across several represen-
tative interactions U . As U increases, the transition from the
(semi)metallic phase to the Mott insulating phase occurs on
the graphene lattice (see the Appendixes). Because U sig-
nificantly increases the value of Szz

AFM at B = 0 in Fig. 3(a),
its ability to induce antiferromagnetism is proven and the
critical value is approximately 4.5 [31–33]. In the direction
perpendicular to the lattice plane, the spin is extremely sen-
sitive to the parallel field and the original magnetic order is
soon destroyed by the Zeeman field, which corresponds to a
rapid decline of the Szz

AFM curve with the introduction of B.
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FIG. 3. Staggered longitudinal antiferromagnetic structure factor Szz
AFM in the clean system. (a) As a function of B at various values of U .

Szz
AFM are effectively suppressed and reduced to 0 by the magnetic field. (b) As a function of L for various values of B. The suppression of B in

the AFM phase is more clearly shown through the intercept of the Szz
AFM(L) curve, which quickly drops to 0 even under a weak magnetic field.

A more evident display of the magnetic field is obtained in
Fig. 3(b), where Szz

AFM at various values of the magnetic field
B is plotted as a function of 1/L. To make the effect of B more
obvious, we choose the system in the AFM phase at U = 5.0.
In contrast to Sxx

AFM, Szz
AFM is extremely sensitive to changes

in the magnetic field: at B = 0, the Sxx
AFM curve has a positive

intercept on the vertical axis, and a very small magnetic field
(for example, B = 0.05) can make the intercept tend to zero.
The suppression of Sxx

AFM by the magnetic field will continue
until the value tends to zero.

Since the suppression of B on Szz
AFM is so obvious and

direct, we focus on the more interesting transverse direction.
For antiferromagnetism, while the conflict between disorder
and interaction has received widespread attention, the effect of
their interplay with a magnetic field remains to be elucidated.
We show the complex changes in magnetic order under the
combination of interaction U and a magnetic field B in Fig. 4,
which shows that they substantially influence each other’s
effect on Sxx

AFM.
First, the interaction U comprehensively affects the induc-

tion and inhibition of the AFM phase that is induced by the
Zeeman field B, including the strength of the magnetic field
effect and the effective range of B. As discussed previously,
the magnetic field needs to be strong enough to increase Sxx

AFM
and a peak value appears in the process of induction and
subsequent inhibition of the AFM phase by magnetic field.
We denote the magnetic field strength at this time as Bc and
the peak value as Smax. As shown in Figs. 4(a) and 4(b), as
U increases, the value of dSxx

AFM/dB at B = 0 increases from
zero and Bc gradually decreases. This phenomenon indicates
that interaction makes it easier for the magnetic field to impact
and accelerate the emergence of peaks due to its promotion
on Sxx

AFM, namely, the AFM phase. In addition, Smax is another
factor that merits discussion, which is decided by not B but
U . In panels (a) and (b), we plot the intervals where Smax

increases and decreases with U , and their dividing point is
approximately Uc = 4.5, which is proven to be the critical
value for the U -induced AFM phase transition in the graphene
system [31–33]. Under weak interactions, such as the curve of
U = 1 in panel (a), the magnetic field hardly promotes Sxx

AFM,
nor can it induce an AFM phase transition. As U increases,
the effect of B gradually becomes obvious and Smax increases.
When U reaches 4.5, the critical value, namely, Smax, reaches
the maximum and gradually weakens as U increases. These

results all show that the interaction is closely related to the
intensity of the magnetic field effect. If we use Smax to char-
acterize the intensity of magnetic field effect on the AFM
correlations, one can see that this effect will be promoted by
weak interaction but suppressed by strong interaction, where
Uc = 4.5 distinguishes these two interaction regions.

Second, the magnetic field changes the functional relation-
ship between Sxx

AFM and U to suppress Sxx
AFM in some ranges.

As shown in Fig. 4(d), in contrast to the condition at B = 0
that Sxx

AFM always has a positive correlation with U , with an
increasing magnetic field, Sxx

AFM as a function of U has a
decreasing area, and this area gradually expands. This is more
clearly displayed in Fig. 4(c), where Sxx

AFM is plotted a function
of 1/L under several values of U at B = 0.6. In this panel,
we observe that U initially moves up (from 3.0 to 4.5) and
subsequently moves down (from 4.5 to 6.0) the intercepts of
the Sxx

AFM curves. As the intercepts of the curves decrease, the
antiferromagnetic phase is inhibited by the interaction rather
than promoted. We posit that the effect of interaction enhanc-
ing the spin polarization only in a system with a magnetic
field [as shown in Fig. 2(b)] [34] will cause a system with
B 
= 0 to gradually approach the fully spin-polarized state
as U increases and is the reason for the novel phenomena
regarding the change in the AFM phase.

Now, we further introduce disorder �. We found that,
for the clean system, applying disorder suppresses the AFM
phase. Under sufficiently strong �, the AFM phase does not
exist in the system regardless of how strong of a magnetic
field is applied. This phenomenon is visually demonstrated
in Fig. 5. In panel (a), in the process of Sxx

AFM(B) increas-
ing initially and subsequently decreasing, |dSxx

AFM/dB|, which
represents the degree of influence of the magnetic field on
AFM, is greatly reduced or even eliminated by �. When �

reaches 1.2, there is almost no change in the Sxx
AFM curve. The

results with various lattice sizes are shown in panel (b), where
Sxx

AFM is a monotonically decreasing function of �. This can
be interpreted as the “screening effect” of the magnetic field,
or the AFM phase, by the disorder �. The change law of Sxx

AFM
with � can be regarded as basically the same under different
lattice sizes. The behavior with lattice sizes of L = 6, 9, 12 in
the entire range of magnetic fields until full spin polarization
is shown in Fig. 6. Since the relationship between Sxx

AFM and
L determines the existence of the AFM phase, Fig. 6 gener-
ally proves that the disorder suppresses the AFM phase. The
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FIG. 4. Sxx
AFM as a function of B at L = 12, � = 0.0, and U in the following ranges: (a) U = 1.0 to 4.5. Each Sxx

AFM(B) curve has a special
magnetic field strength Bc for the peak value Smax. As U increases from 0 to 4.5, Smax always increases, which is accompanied by a decrease in
Bc. (b) U = 4.5 to 6.0. When the increased interaction exceeds 4.5, although Bc continues to decrease, Smax has a decreasing trend, in contrast
to the previous stage. The point that separates the two stages is at U = 4.5, which is the critical value for the interaction-induced AFM phase
transition. (c) Sxx

AFM as a function of L at � = 0.0. At B = 0.6, starting from the AFM phase at U = 3.0, the effect of the interaction on the
AFM phase presents a transition from prompting to inhibiting (the intercept of the Sxx

AFM curve initially increases and subsequently decreases).
(d) Sxx

AFM as a function of U at various values of B. As B increases, the effect of the interaction promoting the AFM phase is gradually reversed.
When B 
= 0, the Sxx

AFM(U ) curve shows a trend of rising initially and subsequently falling instead of a monotonic increase.

increase in � directly leads to the pink curve, which reflects
the intercepts of the Sxx

AFM(1/L) curves, tending to zero. The
pink curves of � = 0.9 and 1.2 in panels (c) and (d) are com-
pletely below the horizontal axis; it represents the complete
disappearance of the AFM phase. A similar effect of disorder
was also confirmed in the Mott insulator, which was found
to be caused by strong interaction [10,35,36], by showing the
lack of an ordering wave vector in the randomness-dominated
regime.

Although strong disorder always suppresses the AFM
phase, its direct influence on the staggered transverse anti-

ferromagnetic structure factor still needs to be examined in
detail. In Fig. 7, we report Sxx

AFM under several values of the
disorder � as a function of 1/L. For the metallic phase at U =
3 and B = 0 or the band insulating state at U = 3 and B = 0.3
(see Appendix A) in the clean system, Sxx

AFM curves under
various values of � are almost coincident, which shows that
the effect of disorder can be considered nonexistent regardless
of whether there is a phase transition or not. As B continues
to increase to 0.6, disorder reduces the value to which the
Sxx

AFM(L) curve tends as T → 0; thus the randomness it causes
disrupts the magnetic order. Even at the stage in which B
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FIG. 5. (a) Sxx
AFM as a function of B for various values of � at U = 3.0 and L = 12. As � increases from 0, Sxx

AFM is suppressed, and the
peak of the curve gradually disappears. When � = 1.2, the magnetic field has almost no effect on Sxx

AFM. (b) Sxx
AFM as a function of � for various

values of L. Starting from the AFM phase at U = 3.0, � = 0.0, and B = 0.6 in Fig. 1(a), an increase in � leads to a decrease in Sxx
AFM under

each L; namely, disorder fully suppresses the AFM phase.

205121-5



MENG, ZHANG, MA, AND LIN PHYSICAL REVIEW B 105, 205121 (2022)

B
0.0 0.4 0.8 1.2 1.6 2.0

S
A

F
M

x
x

0.00

0.04

0.08

0.12
L=6

L=9

L=12

L=15

L=

(b) U=3.0 =0.6

B
0.0 0.4 0.8 1.2 1.6 2.0

S
A

F
M

x
x

0.00

0.04

0.08

0.12
L=6

L=9

L=12

L=15

L=

(a) U=3.0 =0.3

B
0.0 0.4 0.8 1.2 1.6 2.0

S
A

F
M

x
x

0.00

0.04

0.08

0.12
L=6

L=9

L=12

L=15

(c) U=3.0 =0.9

0.0 0.4 0.8 1.2 1.6 2.0
S

A
F

M

x
x

0.00

0.04

0.08

0.12
L=6

L=9

L=12

L=15

(d) U=3.0 =1.2

AFM

  

FIG. 6. Sxx
AFM as a function of B for various values of L. The pink curve, which represents L = ∞, is the combination of the values to

which Sxx
AFM − 1/L curves (under each value of B) tend when 1/L = 0. Therefore, its decline due to increasing � intuitively represents the

suppression of the AFM phase by disorder. Calculations are performed at U = 3.0 and � = 0.3 (a), 0.6 (b), 0.9 (c), and 1.2 (d).

reduces Sxx
AFM, this phenomenon of inhibiting the AFM phase

is still effective, namely, the effect of disorder on Sxx
AFM is

not affected by the transport phases and only occurs when
B has a significant impact on the magnetic properties of the
system.

IV. SUMMARY

Using DQMC simulations, we studied the magnetic phase
transition of the disordered Hubbard model that is induced
by a Zeeman field on a honeycomb lattice. For the magnetic
order perpendicular to the lattice, applying a parallel field
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FIG. 7. Sxx
AFM as a function of L for various values of � at U = 3.0. The magnetic fields in panels (a), (b), (c), and (d) are 0.0, 0.3, 0.6, and

0.9, respectively, and the systems without � are the metallic phase (a), band insulating phase (b), and AFM phase (c),(d), respectively. The
disorder effect only appears under a strong enough B, which is manifested as a decrease in the intercepts of curves.
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suppresses the possible AFM phase effectively, which can
be induced by the Coulomb interaction. In the lattice plane,
increasing B first causes symmetry breaking and finally drives
the system into a fully spin-polarized state, thereby leading
to the trend of the Sxx

AFM(B) curve initially rising and subse-
quently falling, which reflects the induction and inhibition of
B on the AFM phase.

In contrast to the weakening of the magnetic field effect
by disorder, the interplay of U and B leads to more com-
plex phenomena. The magnetic field completely changes the
monotonic increase of Sxx

AFM with U . Moreover, the peak value
of the Sxx

AFM curve, namely, Smax, and its corresponding mag-
netic field Bc are both determined by the interaction, and
the critical interaction for the AFM Mott insulating phase
transition in the clean system also shows its particularity in
this coupling effect: above and below this critical value Uc,
Smax has different functional relationships with the interaction.
Uc is approximately 4.5. Although this interaction is always
greater than that in an actual material, the B-induced magnetic
phase transition that occurs under small values of U still
provides a possibility for novel discoveries in experiments.
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APPENDIX A: DC CONDUCTIVITY

To characterize the transport phase, we compute the T -
dependent dc conductivity σdc via a proxy of the momentum
q and imaginary time τ -dependent current-current correlation
function:

σdc(T ) = β2

π
�xx

(
q = 0, τ = β

2

)
. (A1)

Here, �xx(q, τ ) = 〈 ĵx(q, τ ) ĵx(−q, 0)〉 and ĵx(q, τ ) is the
current operator in the x direction. This form, which avoids
the analytic continuation of the QMC data, has been shown
to provide satisfactory results [37–39]. We implement the
approach that is proposed in Ref. [26], which is based on
the following argument. The fluctuation-dissipation theorem
yields the following:

�xx(q, τ ) = 1

π

∫
dω

e−ωτ

1 − e−βω
Im�xx(q, ω), (A2)

where �xx is the current-current correlation function along
the x direction. While Im�xx(q, ω) could be computed by
a numerical analytic continuation of �xx(q, τ ) data that are
obtained via the DQMC method, we instead assume here
that Im�xx ∼ ωσdc below an energy scale ω < ω∗. If the
temperature T is sufficiently smaller than ω∗, the above equa-
tion simplifies to

�xx

(
q = 0, τ = β

2

)
= π

β2
σdc, (A3)

which is the form in Eq. (A1).
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FIG. 8. Conductivity σdc is shown as a function of (a) temper-
ature T and (b) magnetic field B at half filling. Conductivity has
different behaviors with the magnetic field greater/less than the
critical value Bc for the phase transition and Bc at U = 3.0, � = 0
is about 0.14.

This approach may not be valid for a Fermi liq-
uid [26] when the characteristic energy scale is set by ω∗ ∼
N (0)T 2 and the requirement T < ω∗ will never be satis-
fied. However, in our system, the energy scale is set by the
temperature-independent hopping-disorder strength ω∗ ∼ �;
hence Eq. (A3) is valid at low temperatures.

As shown in Fig. 8, we use the low-temperature behavior
of σdc to distinguish various transport properties. The system
at U = 3.0 and � = 0.0 changes from metal (σdc decreases
with T ) to insulator (σdc increases with T ) as the magnetic
field B reaches 0.14, and it has been suggested that the phase
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FIG. 9. Sxx
AFM computed in the system with β = 12, U = 5, � =

0.5, and B = 0.5. For a specified value of L, the data that are obtained
from an ensemble with an increasing number of disorder realizations
are consistent within the statistical errors.
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transition is accompanied by the appearance of an energy
gap [38]. However, although B = 0.14 is sufficient to cause
metal-insulator transition, it is too small to induce an AFM
phase transition. As shown in Fig. 1(b), when B < 0.45, the
AFM order does not appear and the magnetic field had little
effect on Sxx

AFM. Overall, B = 0.14 is proven to introduce a
band insulating phase into the system at U = 3 and � = 0.

Different from the magnetic field, the critical interac-
tion approximately equal to 4.5 can not only induce the
AFM phase transition, but also open the Mott gap [10,32].
References [31,33] have shown that the interaction will in-
duce a metal-Mott insulator transition in the honeycomb
lattice.

APPENDIX B: CONCERNING THE NUMBER OF
DISORDER REALIZATIONS

In general, the required number of realizations in simu-
lations with disorder must be determined empirically, which
depends on a complex interplay among “self-averaging” on
sufficiently large lattices, the disorder strength, and the lo-
cation in the phase diagram. In Fig. 9, we show the results
of Sxx

AFM averaged over various numbers of random disorder
realizations. For any specified lattice size L, the averaged
Sxx

AFM values are already consistent when >10 realizations are
used. This justifies the use of 20 realizations to obtain the
results in the main text.
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