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C; symmetry breaking metal-insulator transitions in a flat band in the half-filled
Hubbard model on the decorated honeycomb lattice
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We study the single-orbital Hubbard model on the half-filled decorated honeycomb lattice. In the noninter-
acting theory at half filling the Fermi energy lies within a flat band where strong correlations are enhanced.
The lattice is highly frustrated. We find a correlation driven first-order metal-insulator transition to two different
insulating ground states—a dimer valence bond solid Mott insulator when intertriangle correlations dominate,
and a broken Cs;-symmetry antiferromagnet that arises from frustration when intratriangle correlations dominate.
The metal-insulator transitions into these two phases have very different characters. The metal-broken Cs
antiferromagnetic transition is driven by spontaneous C3 symmetry breaking that lifts the topologically required
degeneracy at the Fermi energy and opens an energy gap in the quasiparticle spectrum. The metal-dimer valence
bond solid transition breaks no symmetries of the Hamiltonian. It is caused by strong correlations renormalizing
the electronic structure into a phase that is adiabatically connected to both the trivial band insulator and the
ground state of the spin-1/2 Heisenberg model in the relevant parameter regime. Therefore, neither of these

metal-insulator transitions can be understood in either the Brinkmann-Rice or Slater paradigms.
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I. INTRODUCTION

There is increasing interest in flat band systems [1].
Strongly correlated physics dominates because all states have
the same kinetic energy due to the narrow energy range of
the flat band. With the recent discovery of strongly correlated
insulators [1-6] and superconductivity [1,7-13] in Moiré flat
bands, an open question is whether the superconductivity is
linked to strongly correlated physics and/or the flat bands. On
the other hand, there is evidence that some Moiré flat bands
have superconductivity that is not linked to a correlated in-
sulator [1,11,13]. Answering these open questions in strongly
correlated physics [14-20] with these systems is difficult be-
cause the physics in many flat band systems are extremely
sensitive to material parameters, making reproducibility and
experimental probes difficult. Hence, tunable materials that
are easy to experimentally probe and that display the above
properties are highly sought after.

Many coordination polymers [21] have elaborate lattices
with large geometric frustration, which often results in flat
bands similar to the kagome lattice [22—-33]. Coordination
polymers are also often strongly correlated, displaying phe-
nomena such as Mott insulators, Kondo physics [32,33], and
unconventional superconductivity [34-36]. Central to our in-
terest is that coordination polymers are highly tunable [37].
Furthermore, coordination polymers often have decorated lat-
tices, and we recently reported that these host a plethora of
strongly correlated phenomena as a consequence of the unique
lattice and strong electronic correlations [38,39].

Of particular interest is the decorated honeycomb lattice,
shown in Fig. 2(a), which hosts many correlated insulators as
well as two flat bands. Importantly, the decorated honeycomb
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lattice has a flat band at half filling, where a Mott insulator
occurs [38]. Additionally, a recent study [40] reported uncon-
ventional strongly correlated superconductivity in the vicinity
of this Mott insulator when doping into the flat band within the
framework of Anderson’s resonating valence bond solid the-
ory [40]. Hence, decorated lattices in coordination polymers
provide a natural path to explore open questions about the
connection between strongly correlated insulators, quantum
spin liquids, and strongly correlated superconductivity.

In this paper we characterize the ground states of the
strongly correlated insulators found in the half-filled Hubbard
model on the decorated honeycomb lattice, which is in the
vicinity of a flat band. We compare four variational wave
functions obtained with mean-field rotationally invariant slave
bosons (RISB) that incorporate different spatial correlations
depending on the cluster choice: a single site cluster, a dimer
cluster that exactly captures short-range intertriangle correla-
tions, and a trimer cluster that exactly captures short-range
intratriangle correlations.

The phase diagram of this model is shown in Fig. 1.
For large enough Coulomb repulsion there are two different
insulating phases that occur via uncommon metal-insulator
transitions. For strong intratriangle hopping the frustration of
the spins on a triangle causes an insulating state with broken
C; symmetry (discussed in Sec. IV B). The first-order metal-
insulator transition is driven by spontaneous C; symmetry
breaking, which lifts the topologically required touching of
a dispersive band and a flat band at the Fermi energy. For
strong intertriangle hopping there is a Mott insulator where
spin singlets form along the intertriangle bonds and the ground
state is a valence bond solid (VBS) (discussed in Sec. V). In
this state no symmetries of the Hamiltonian are broken. The

©2022 American Physical Society
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FIG. 1. Phase diagram of the half-filled Hubbard model on the
decorated honeycomb lattice (see Fig. 2). Strong electronic cor-
relations drive first-order metal-insulator transitions, the insulating
ground state properties of which depend on the ratio of intratriangle
hopping ; and intertriangle hopping f,. For f,/t, < 1 in the insulating
state the C; symmetry of the triangles is broken. Simultaneously
each triangle spin polarizes with antiferromagnetic order between
triangles (Fig. 10(a)). For #,/f, 2 1 the insulating state is instead a
valence bond solid (VBS) that forms spin singlets along the 7, bond
(Fig. 10(b)). No symmetries are broken in this state.

first-order Mott metal-insulator transition occurs via a non-
symmetry-breaking topological change of the Hamiltonian’s
electronic structure. This insulating state is adiabatically con-
nected to both the trivial band insulator and the ground state of
the spin-1/2 Heisenberg model in the parameter regime where
intertriangle interactions are strong. In the large-U limit the
ground states compare qualitatively and quantitatively favor-
ably with studies of the Heisenberg model on the decorated
honeycomb lattice [41-44] (discussed in Sec. IT A).

II. MODEL

The single-orbital Hubbard model on the decorated honey-
comb lattice is given by

_ P A oA
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(ia, ja),0 L, a#p,o
+U Zﬁia¢flia¢, (1)
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where cf” annihilates (creates) an electron with spin o on site

o within triangle i, fiiye = €}, ¢,y te (fx) is the hopping pa-
rameter between (within) triangles, U is the on-site Coulomb
repulsion, and (-) denotes only nearest-neighbor hopping. We
show the lattice in Fig. 2(a).

In Fig. 2(c) we show the noninteracting limit for #,/# <
3/2. There are a number of exotic features when the decorated
honeycomb lattice is at half filling. The Fermi energy lies at
a quadratic band touching point with a flat band at k=0 (the
I point) and the Fermi surface is a single point at I with two
degenerate states [45,46]. The inclusion of spin orbit coupling
opens a gap to a topological quantum spin Hall insulator [47].
At half-filling there is exactly one hole in an infinite peak in
the density of states (i.e., one hole shared by the flat-band plus
the touching dispersive band at the I" point).

—
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FIG. 2. (a) The decorated honeycomb lattice. The intratriangle
hopping parameter is #; and the intertriangle hopping parameter is
t,. The blue oval denotes the three-site trimer cluster and the red
oval denotes the two-site dimer cluster. (b) The Brillouin zone, label-
ing the points of high symmetry. (c) Noninteracting band structure.
When there is on average one electron per site (half filling) the Fermi
energy lies at the quadratic band touching point at I', with the flat
band filled. The gray shaded region denotes the electron filling up to
the Fermi energy.

A. Spin-1/2 Heisenberg model

In the limit U > t,, #; the low-energy effective theory of
the half-filled single-orbital Hubbard model is the spin-1/2
Heisenberg model on the decorated honeycomb lattice, given
by
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where J, = 4z‘g2 /U is the superexchange along the intertriangle

1, bonds and J;, = 412 /U along the intratriangle 7 bonds.
Previous exact diagonalization and mean-field studies of
the spin-1/2 Heisenberg model [41-43] predict two different
VBS states depending on the inter- and intraspin-exchange
coupling of a triangle (J, and J, respectively, denoted by J,
and J; in the cited studies). In the J,/J; > 1 limit (strong
coupling between triangles) they predict dimerization along
the J, bond that forms singlets. In the J,/J; < 1 limit (strong

coupling within a triangle) they predict a +/3 x +/3 ordered
columnar VBS state that forms on a dodecohedron (16-site
unit cell) of the decorated honeycomb lattice that breaks the
C; rotational symmetry of a triangle.

An iPEPS study [44] suggests that the J,/Jy < 1 limit
(strong coupling within a triangle) is instead a VBS with a
six-site unit cell, where singlets form along the J; bonds,
but breaks the C3 symmetry of a triangle. The study finds
that the boundary between the J,-dimer VBS and the broken
C3 symmetry VBS is J,/Jiy ~ 0.9 (t;/t; ~ 0.8) with threefold
ground state degeneracy.

It is remarkable that our mean-field results with the Hub-
bard model capture many of the features of the proposed
ground states of the Heisenberg model, especially the bound-
ary between the f,-dimer VBS and the broken C3 symmetry
insulator (Fig. 1). As we will show in Sec. V, the f,-dimer
VBS that we find is likely capturing the correct qualitative
ground state electronic configuration, with spin singlets along
the #, bonds and large degeneracy. Conversely, the broken C3
symmetry state that we discuss in Sec. IV B simultaneously
has long-range antiferromagnetic order which is not found
in the broken C; symmetry VBS in [44]. However, our in-
sulating state still has strong short-range antiferromagnetic
correlations. The antiferromagnetic state in our paper is likely
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a consequence of the mean-field approximation, which does
not treat intertriangle correlations exactly in the broken C;
symmetry state.

II1I. METHOD

We use mean-field RISB [48-51] to approximate solutions
to Eq. (1) using a single-site approximation, two-site dimer
clusters [red oval in Fig. 2(a)], and three-site trimer clusters
[blue oval in Fig. 2(a)]. For all parameters we compare the
energy of each cluster solution to obtain the ground state. At
the mean-field level RISB is equivalent to the Gutzillwer ap-
proximation [52], which renormalizes a noninteracting wave
function by projecting out energetically unfavorable local
electronic configurations. Hence, RISB describes the low-
energy quasiparticles of a metal and captures metal-insulator
transitions.

We implemented mean-field RISB within the TRIQS library
[53,54] at zero temperature. The k integrals were evaluated
using the linear tetrahedron method [55], and the ground state
of a one bath impurity problem was obtained using exact diag-
onalization with the Arnoldi method in ARPACK-NG [56]. We
enforced the C; symmetry of a triangle and SU(2) symmetry
when investigating the Mott insulator with trimer clusters. We
relaxed these symmetries when investigating the broken C;
symmetry solutions. When investigating the dimer solutions
we did not enforce any symmetries. Further details of our
formalism and implementation are described in [38,39].

In RISB the physical electron operator is mapped to an
enlarged Hilbert space with bosons {®;4,} and auxiliary
fermions { fia}. The bosons keep track of the 2 quasiparticle
electronic configurations {|n;)} within each cluster i and relate
it to the 2™ physical electronic configurations {|A;)}. Here M;
are the number of sites, orbitals, and spins in cluster i. We
restrict our solutions to the set of bosons where the number of
auxiliary fermions in state |n;), denoted N;,, is equivalent to
the number of physical electrons in state |A;), denoted Ni4.

The physical electron in the enlarged Hilbert space is cre-
ated by

étaa - Z Rtaa f’:w” (3)

with the unitary operator

oo A |Cloza|B nllf;aa |ml> AT &
Rtaa = Z Z IVIB CIDzAncI)iBm’ (4)

AB nm

where Nj4 is the number of electrons in state |A;). The con-

straints
Z ol &, =1, (5)

Z<mi|ﬁaaﬁbo’|ni CI)iAncI)iAm = fl;aﬁba’ (6)
Anm

are used to select the physical states out of the enlarged Hilbert
space, where 1 is the identity. The first constraint enforces
that the physical states are those where there is exactly one
boson on every cluster, and the second constraint ensures that
the correct boson is attached to the correct auxiliary fermion
electronic configuration. Any operator X; on cluster i can be

TABLE I. The components of the auxiliary fermion Hamiltonian
that corresponds to the renormalized hopping parameters #;" and 7, for
the three different cluster choices. The quasiparticle weight matrlx
Z = R'R renormalizes intercluster hopping, while the correlation
potential matrix A gives that renormalized intracluster hopping. We
highlight that #;’ and #; are approximate descriptions because Z is a
matrix that may have off-diagonal components. Kotliar-Ruckenstein
(KR) refers to a single-site cluster, “Dimer” is a two-site cluster, and
“Trimer” is a three-site cluster (see Fig. 2).

Hopping parameter KR Dimer Trimer
tf 4211 t[Z]1 —[Ali2
ty t,[Z] —[Ali2 t,[Z]1
written quadratically in the bosons, given by

R, = (AilKiIB) Y B, D, )

AB n

At the mean-field level we assume all clusters are equiv-
alent and that the bosons condense to a ¢ number (ﬁ),-An —
¢an). Under this approximation the auxiliary fermions are
described by an effective noninteracting Hamiltonian of quasi-
particles, given by

- Z Z Z [R]ZU [t’/]“ﬂ [R flao f/ba”
ij «ap,o ab,o’
+ Z [)‘]abf;imf;b(r’
i,ab,oc0’
Z fza AI“U tk Z f;aaflba
(ia, ja),o i,a#b,o
+..., (8)

where 7, and 7 are the renormalized hopping parameters
of Eq. (1) and the ellipsis is negligible off-diagonal terms.
Metallic solutions of Eq. (8) at zero temperature describe
a Landau Fermi liquid with dressed coherent quasiparticles
{f! 1 that are renormalized by the local interaction U, with
the renormalization captured in the mean-field matrices R
and A. Table I summarizes how these mean-field matrices re-
late to the renormalized hopping for different cluster choices.

Hence, we can study the stability of metallic solutions
using Eq. (8) from the perspective of band theory with renor-
malized hopping. Diagonalizing Eq. (8) in reciprocal space

gives
=25 Vi, ©)
kn

is the dispersion of the Landau quasiparticles {wa }

where 81?

at reciprocal lattice vector k and band n. On the other hand,
from Eq. (7), the local properties on a cluster in real space can
be investigated from the condensed bosons.

A. Metal-insulator transitions in RISB

It is useful to understand how a correlation driven metal-
insulator transition is described in the original formulation of
Kotliar-Ruckenstein (KR) slave bosons [48], where a Mott

205119-3



NOURSE, MCKENZIE, AND POWELL

PHYSICAL REVIEW B 105, 205119 (2022)

(a) 1
0.75
§ 0.5
0.25
0 2 4 6 8 10 0 2 4 6 8 10
U/tlc U/tk
C 0 d 2 -~
(©) o ____ @2 =05
-1 : 1.5 ~
« 9 tg/tk - 05 ' i}m \
= , \ =1
—_3 KR — \\ *9/3 )
Dimer —— N 0.5t kagome-like .
-4 Trimer —— AN g/t > 3/2 =
0 2 4 6 8 10 002 4 6 8 10
U/t Uty

FIG. 3. The quasiparticle weight Z and correlation potential ma-
trix A for ¢,/ = 0.5. We show the KR (single site cluster) solution,
the dimer cluster solution, and the trimer cluster solution (see Ta-
ble I) without allowing any symmetries of the Hamiltonian to break.
(a) The diagonal component [Z];; renormalizes the intercluster hop-
ping. In the KR solution the hopping between all sites vanishes at the
metal-insulator transition, in the dimer cluster the hopping #; remains
finite, and in the trimer cluster hopping between triangles #; van-
ishes. (b) The off-diagonal components [Z];, of intercluster hopping
are small in the correlated metal and vanish at the metal-insulator
transition. (¢) The off-diagonal component of [A];; renormalizes the
intracluster hopping. At the metal-insulator transition in the dimer
cluster there is a strong enhancement of t;, and in the trimer cluster
intratriangle hopping #; vanishes. (d) Renormalized hopping ratio
1¢ /t;. The metal-insulator transition occurs in the dimer cluster solu-
tion by discontinuously opening a gap and changing the bands to the
t,/t; > 3/2 regime where it is a band insulator.

insulator (no symmetry breaking) occurs at half filling via
the Brinkmann-Rice mechanism [57]. As the metal-insulator
transition is approached the quasiparticle bands described by
Eq. (9) become renormalized and narrow because intersite
hopping is proportional to the quasiparticle weight Z. In this
case, both # and f, are renormalized by the same amount
(Table I). At the metal-insulator transition the quasiparticle
weight vanishes continuously [Fig. 3(a), dot-dashed green
line] and the bandwidth of the quasiparticle bands goes to
zero [Fig. 4(a)]. In the Brinkmann-Rice insulator the double
occupancy vanishes [Fig. 5(a), dot-dashed green line] with a
spin-1/2 particle isolated on each site [Fig. 5(b), dot-dashed
green line].

Within single-site slave-boson (KR) theory an insulator
occurs without breaking a symmetry through the Brinkmann-
Rice mechanism, where intercluster charge fluctuations van-
ish, as can be seen from its equivalence to the Gutzwiller
approximation [52]. The only other way for a correlated in-
sulator to occur within KR theory is by breaking a symmetry,
such as through the Slater mechanism where spontaneous
magnetization occurs.

However, because cluster extensions to RISB are able
to couple intracluster physical electronic configurations with
other symmetry compatible quasiparticle configurations [see
Eq. (4)], the renormalized quasiparticle bands can be shifted

(a) o5k Single-site (b) Two-site (c) Three-site
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FIG. 4. Renormalized band structure of the KR, dimer cluster,
and trimer cluster solutions for f,/fy = 0.5 without allowing any
symmetries of the Hamiltonian to break. The Mott insulator on
the half-filled decorated honeycomb lattice is captured differently
depending on the cluster choice. In the (a) KR and (c) trimer cluster
solutions the bands narrow and become flat at the metal-insulator
transition. In contrast, in the (b) dimer cluster solution the bands
become kagome-like (7 /t; < 3/2) at the metal-insulator transition
and a gap opens. The dispersion ekQP denotes the eigenenergies of the
quasiparticle Hamiltonian Eq. (9).

and narrowed by differing amounts. Hence, an insulator can
occur within RISB without breaking a symmetry that is not
through the Brinkmann-Rice mechanism, as has been shown
in multiband extensions to the Gutzwiller approximation [58].
In Sec. IV A we discuss a symmetry broken correlated insu-
lator on the half-filled decorated honeycomb lattice, while in
Sec. V we discuss a correlated insulator that does not break
any symmetries of the Hubbard model and does not occur
through the Brinkmann-Rice mechanism.
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FIG. 5. (a) Double occupancy d and (b) effective spin per site S,
for t,/t, = 0.5 without allowing any symmetry of the Hamiltonian to
break. In the insulator there is, on average, one electron localized to
a site, acting as a spin-1/2 degree of freedom. Only in the two-site
and three-site clusters are there intersite charge and spin fluctuations.
Double occupancy per site d is given by d = >, (Rixtfia)) /Ny,
where N, is the number of sites on the lattice. The effective spin
per site is the solution to S,(S, +1)=)_,, (Sia - Sia) /N, where
Siw = 1Y e &l o %Fr0C,.r» and T is the vector of Pauli matrices.
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IV. BROKEN C; SYMMETRY
ANTIFERROMAGNETIC INSULATOR

In this section we investigate the half-filled decorated
honeycomb lattice in the regime where the trimer cluster
[Fig. 2(a)] gives the lowest energy. We find that strong elec-
tronic correlations drive a Mott metal-insulator transition, the
low-energy effective theory of which is the antiferromagnetic
spin-1/2 Heisenberg model on the decorated honeycomb lat-
tice. The intratriangle coupling dominates compared to the
intertriangle coupling and the spins within a triangle are
frustrated. The system further lowers its energy by simultane-
ously breaking the C3 symmetry of a triangle and stabilizing
long-range antiferromagnet order. We will describe how RISB
captures this state.

A. Mott insulator (no spontaneous symmetry breaking)

We first investigate the correlation driven Mott metal-
insulator transition where no symmetries of Eq. (1) are broken
in order to understand the effects of strong correlations. We
enforce the SU(2) and C; symmetry of the Hubbard model
on the decorated honeycomb lattice. In cluster extensions
of mean-field RISB theory the original Hamiltonian Eq. (1)
is mapped to a noninteracting one with different renormal-
ized intertriangle 7;° and intratriangle #;° hopping parameters

[Eq. (8)]. In the three-site cluster the matrix Z = R'R cap-
tures the renormalization of #,, while the matrix A describes
the renormalization of #;, (See Eq. 8 and Table I).

In Fig. 3(a) (solid blue line) we show the renormaliza-
tion of the intertriangle hopping #; = #,[Z],; and in Fig. 3(c)
(solid blue line) the renormalized intratriangle hopping # =
—[A]12 as electronic correlations are increased. Both té’f and
1} decrease as the metal-insulator transition is approached
until the Fermi surface vanishes. In the insulator z; = #; = 0.
In Fig. 4(c) we show the insulator from the perspective of
band theory. Correlations narrow the bands. The upper set
of bands, which have primarily £ molecular orbital character
[38,39], narrows more than the lower set of bands, which have
primarily A molecular orbital character. This asymmetrical
renormalization is captured by small off-diagonal components
of the quasiparticle matrix Z, shown in Fig. 3(b) (solid blue
line). Regardless, at the metal-insulator transition the band-
width of the quasiparticle bands vanishes, indicating electrons
have become localized. Hence, the metal-insulator transition
occurs by the Brinkmann-Rice mechanism.

In Fig. 5(a) (solid blue line) we show the average double
occupancy on a site. In Fig. 5(b) (solid blue line) we show
the effective spin per site, demonstrating that the localized
electrons act as spin-1/2 particles. Even though the renormal-
ized hopping parameters vanish in the insulator (t; = 1 = 0)
there are still intratriangle charge fluctuations. These charge
fluctuations are responsible for the dynamical effects in the
insulator, such as the superexchange between the spin-1/2
particles.

In Fig. 6(a) (solid blue line) we show the sum of the
intratriangle spin exchange between all three sites. In the Mott
insulator the sum of the spin exchange approaches the limit
of an isolated triangle, signifying antiferromagnetic correla-
tion. Hence, spin singlets between adjacent sites are favored.

TCI? -0.2 0.4 - ‘/.(
- -04 So Pt \
s -0.6 ~ 0.3 :
o8 : tg/th, = 0.5 :
S : 02IKR  =—- i
s -1.2 - Hois 0.1tDimer —— :
(N 14 20H79%) /] e Trimer — S~
4 6 8 100 9 2 4 6 8 10
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FIG. 6. (a) Sum of the spin-spin correlations within a cluster
and (b) total spin S on a cluster. Spin singlets are formed be-
tween sites in the insulator. The insulator in the two-site cluster is
a dimer lattice with spin singlets along the intertriangle #, bonds.
In the three-site cluster spin singlets form along the intratriangle #
bonds. The single-site cluster has no spin exchange between sites
because the insulator is adiabatically connected to the atomic limit.
A" is the nearest-neighbor spin-1/2 Heisenberg model [Eq. (2)]
on a N, ring with antiferromagnetic exchange. The effective spin
per cluster is the solution to S(S+ 1) = Zi(S’,- - §)YN./N,, where
S; =Y, Siw» and N, is the number of sites within a cluster.

However, as shown in Fig. 6(b) (solid blue line), because
of the frustration on a triangle spin singlets form along the
intratriangle #; bonds with on average half a spin left over.
In Sec. IV B we will show that this frustration causes the C;
symmetry of a triangle to break and drives a metal-insulator
transition. We highlight that in the true ground state there will
also be a weaker antiferromagnetic spin exchange across the
t, bonds of the lattice, but our results only capture this at the
mean-field level in the three-site cluster approximation.

The resulting picture is a localized electron on each site
behaving as a spin-1/2 particle, with antiferromagnetic spin
exchange between sites generated from virtual charge excita-
tions of doubly occupied sites. That is, the Mott insulator is
described by the spin-1/2 Heisenberg model [Eq. (2)] on the
decorated honeycomb lattice, with short-range antiferromag-
netic correlations within a triangle stabilizing the insulator.

B. Spontaneously broken C; symmetry insulator

We now relax the constraints to allow the SU(2) and C;
symmetries of Eq. (1) to break. We find that there is a first-
order metal-insulator transition where in the insulator each
triangle spin polarizes with antiferromagnetic order between
triangles and different renormalized hopping f; across the
three bonds within a triangle, indicating that the C; symmetry
of a triangle has broken. The metal-insulator transition is
driven by spontaneous C; symmetry breaking.

In Fig. 7(a) we show the staggered magnetization between
triangles, given by

3 A
m= 1 D I=nmss)], (10)

where 1n(i) = 0 (1) for the two inequivalent triangles. A finite
my signifies antiferromagnetic order between triangles due to
spin polarization on a triangle and breaks the SU(2) symmetry
of the Hamiltonian. There is a discontinuous phase transition
to a magnetic state that occurs by increasing U /t;. The state
has on average a leftover polarized spin-1/2 on each triangle
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FIG. 7. (a) The staggered magnetization m, [Eq. (10)]. There
is a discontinuous metal-insulator transition to an antiferromag-
netic state, where the magnetic order is between triangles. (b) The
quasiparticle bands [Eq. (8)]. The insulator occurs by spontaneously
breaking the C; rotational symmetry of a triangle and opening a gap
at k=0 (the T" point). (c) The average z component of spin for
each site in a triangle S5. S =Y ,(=1)"D 3" Afigp — fiay) /N,
The majority (minority) spin is labeled by o (&).

(my — 1/2) for large U. The antiferromagnetic order lifts the
degeneracy of the high symmetry point K (the Dirac point) in
the quasiparticle spectrum because inversion about the #, bond
is broken [39]. Correlation driven antiferromagnetism that is
responsible for opening an energy gap in the quasiparticle
spectrum is known as the Slater mechanism [59]. However,
the Fermi energy is not at the Dirac points and hence the Slater
mechanism, driven by antiferromagnetism, is not sufficient to
drive the metal-insulator transition.

As was previously discussed in Sec. IV A for solutions
with no broken symmetries, the Mott insulator will favor the
formation of spin singlets along the #, bonds of the lattice.
Our calculations do not capture the spin exchange across the
1, bond exactly, the mean-field solution instead describes a
broken symmetry state of the singlet, resulting in long-range
antiferromagnetic order of the triangles. This suggests that in
the true ground state SU(2) may not break and there is instead
a singlet along the #, bond.

Instead, the metal-insulator transition is driven by addition-
ally spontaneously breaking the C;3 symmetry of a triangle. In
Fig. 7(c) we show the average z component of the spin per site
on a triangle. We find that there is a different spin polarization
S% on each site. Hence, each site is not equivalent and the
120° rotational symmetry is broken. Note that this rules out,
e.g., 120° order of the spins on a triangle.

The broken C; symmetry is accompanied by opening a
gap via lifting the twofold degeneracy at the I point (k = 0)
where the flat band touches the dispersive band. In Fig. 7(b)
we show the quasiparticle spectrum [Eq. (9)] of the magnetic
insulator. In the metallic state the Fermi energy is at the
quadratic band touching point at k = 0. There is one hole
per spin flavor shared between the states of the flat band and
the state of the dispersive band that touches at the I" point.
Because the degeneracy at the I' point is a consequence of

0.25 tg/tk =0.5 eoz===
0.2 P
s 0.15 \ tg/tr = 0.5
WD\
0.1 S - L
0.05 A=92=3 ===
074 6 8 2 4 6 8 10
U/l‘,;g U/tk

FIG. 8. (a) Double occupancy on each site d, and (b) total spin
on each site S, for the broken C; symmetry insulator for #,/#, = 0.5.
Increasing correlation causes electrons to localize on each site, with
on average one electron per site with small charge fluctuations. For
large U/t; and in the insulator there is on average one electron per
site acting as a spin-1/2 degree of freedom.

the topology of the lattice [45,46], the only way to break the
degeneracy and open a gap in the quasiparticle spectrum is
by breaking symmetries of the Hamiltonian. Spontaneously
breaking C; symmetry lifts the topological requirement that
the flat band touches the dispersive band and allows a gap to
open at the Fermi energy. Consequently, in the insulator all
quasiparticle bands become isolated from each other, narrow,
and highly localized. We are not aware of other examples
where a metal-insulator transition occurs via the topologically
required degeneracy at the Fermi energy being lifted by strong
electronic correlations.

Similarly to the solutions presented in Sec. IV A, where no
symmetries break, charge fluctuations are heavily suppressed
in the broken C; symmetry insulator because of strong cor-
relations. In Fig. 8(a) we show the double occupancy on a
site. Electrons become localized to each site and form an
effective spin-1/2 degree of freedom [Fig. 8(b)] with small
charge fluctuations.

There are two major differences compared to the Mott
insulator with no broken symmetries. First, the spin-1/2 de-
gree of freedom on each site polarizes [Fig. 7(b)] and the
insulator is stabilized by long-range antiferromagnetic cor-
relations, giving antiferromagnetic order between triangles.
Second, the equally weighted singlet formation along the #;
bonds within a triangle is broken because of the broken C;
symmetry. In Fig. 9(a) we show the spin-spin correlations
between the sites within a triangle. In the Mott insulator with
no broken symmetries frustration makes it difficult to satisfy
spin singlets between neighboring sites within a triangle. In
the broken C; symmetry insulator the state compromises by
polarizing and only antialigning two of the sites, with a fer-
romagnetic spin coupling to the leftover site. We show the
short-range spin correlations schematically in Fig. 10(a). As
shown in Fig. 9(b), the sum of the energy contribution from
the spin correlations on a triangle approaches those found in
the spin-1/2 Heisenberg model on a three-site ring.

In Fig. 11 we show a schematic of the magnetic order on
the lattice. In our results we showed the representative state
shown in Fig. 11(a), but there are other spin configurations
that are degenerate. There are a total of 18 states within a
unit cell that have the same energy. However, the macroscopic
degeneracy is likely a consequence of the three-site cluster.
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FIG. 9. (a) Spin-spin correlation between sites within a triangle
for the broken C3 symmetry insulator for #,/# = 0.5. (b) The sum
of the spin correlations between sites within a cluster approaches the
correlations in the ground state of the spin-1/2 Heisenberg model
on an N, ring [see Eq. (2)], where A, is the number of sites within
a cluster. The spin operator on site « of cluster i is given by S, =
1Y e el Tg0'Cyy, Where T is the vector of Pauli matrices.

Correlations are treated exactly along the #;, bonds, while
correlations along the 7, bonds are only treated at the mean-
field level. Therefore, the superexchange along the 7, bond is
not captured faithfully, where it is expected to favor singlet
correlations. iPEPS calculations [44], which we discussed in
Sec. IT A, suggest that instead of magnetic order there may be
three singlets on a triangle with differing strength. It is likely
that our calculations do not capture this state because of the
finite cluster size, and hence instead the spins polarize and the
SU(2) symmetry of the Hamiltonian breaks.

V. £,-DIMER VALENCE BOND SOLID MOTT INSULATOR

In this section we investigate the effect of strong correla-
tions with a dimer cluster [red oval in Fig. 2(a)] along the ¢,
bonds, treating the correlations along the 7, bonds exactly and
the correlations along the #; bonds at the mean-field level. We
find that there is a true first-order Mott (no broken symmetry
of the Hamiltonian) metal-insulator transition to a state that fa-
vors spin singlets along the #, bonds, which we call a #,-dimer
VBS. However, the mechanism is very different from either
the Brinkmann-Rice or Slater mechanism. The mechanism
that causes the Mott metal-insulator transition is similar to one

Singlets

Broken C3 and

t4-dimer
SU(2) insulator

VBS

FIG. 10. Schematic representation of the singlet formation in the
insulators. (a) In the broken C; symmetry insulator there are singlets
along two of the 7, bonds of a triangle, with the third bond a weaker
§% = £1 triplet. (b) In the t,-dimer VBS singlets form along the ¢,
bonds. The blue ovals represent singlets and the red ovals represent
ferromagnetic correlations. Compare with Fig. 9(a).

FIG. 11. Schematic representation of the degenerate spin config-
urations of a site in the broken C; insulator. There are six other states
by permuting the configurations on one of the triangles, and another
nine states from flipping the spin on each site. There are in total 18
degenerate states.

that occurs in the Hubbard model on the dimer lattice model
[58].

In Fig. 3 (red dashed line) we show the renormalization of
the hopping parameters as U is increased for the bare hopping
ratio t,/ty = 0.5. At U = 0 the system is metallic with the

Fermi energy at the quadratic band touching point at k=0
(the T" point). At a critical U, there is a discontinuous change
of the renormalized hopping parameters #;/1; to the f,/f; >
3/2 regime. At U =0 and t,/t; > 3/2 the system is a band
insulator. Electronic correlations drive a metal-insulator tran-
sition at U, by restructuring the electronic structure into the
band insulator regime. The resulting insulator is adiabatically
connected to the trivial band insulator, and the low-energy ex-
citations remain coherent quasiparticles. Unlike the broken C;
symmetry insulator, the 7,-dimer VBS remains quantum disor-
dered and does not break any symmetries of the Hamiltonian.
Instead, the insulator occurs from a symmetry compatible
topological change of the Hamiltonian, as is shown in the
quasiparticle band structure of Fig. 4(b).

In Fig. 5(a) (red dashed line) we show the double oc-
cupancy per site. Strong electronic correlations suppress
charge fluctuations. In the insulator the charge fluctuations
become small but do not vanish. Because the z,-dimer VBS
does not occur by the Brinkmann-Rice mechanism, there are
still interdimer charge fluctuations. In Fig. 5(b) (red dashed
line) we show the effective spin per site, and in Fig. 6(b)
(red dashed line) we show the effective spin per dimer. In
the insulator there is, on average, one electron localized to
each site acting as a spin-1/2 degree of freedom (S, —
1/2) with nearest-neighbor antiferromagnetic spin exchange.
Hence, a spin singlet forms along the ¢, bond (S — 0).
The resulting picture of the insulator is a VBS with sin-
glets along the 7, bonds, which we schematically show in
Fig. 10(b).

VI. BOUNDARY BETWEEN BROKEN C; SYMMETRY
INSULATOR AND ¢,-DIMER VBS

In the phase diagram shown in Fig. 1 the z,-dimer VBS
occurs for t,/t; 2 1 for a sufficiently large U/f;. As we have
demonstrated, in the half-filled Hubbard model on the dec-
orated honeycomb lattice [Eq. (1)] a Mott metal-insulator
transition occurs, the low-energy effective theory of which is
the spin-1/2 Heisenberg model [Eq. (2)]. An exact solution to
the Hubbard model will correctly capture the superexchange
between sites. However, within RISB and the clusters we
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choose, the superexchanges along the 7, and #; bonds are not
treated on an equal footing.

We can understand the boundary in Fig. 1 by estimating
whether capturing correlations along the #, or #; bond is a
better representation in the insulating phase by considering
the energies of the spin-1/2 Heisenberg model on isolated
two- and three-site rings. The ground state energy for an iso-
lated dimer is (A7) /J, = —3/4 and for an isolated triangle
is (HY<%) /J, = —3/4. Defining N, = N,/2 and N} = N, /3
as the number of two-site and three-site rings on the dec-
orated honeycomb lattice, respectively, an estimation of the
ground state energies of the uncoupled clusters of the spin-1/2
Heisenberg model is given by

3 3 4t
Eg = —Z./\[gjg == —g./\/‘vvg,
3 1 . 47
E, = -~ Ny = —-N,—~. 11
k 4/\/k k 4N 7 (1)
The energies are equal (E, = Ej) when
3, 1,
g 4l
t 2
= £ = \/j ~ 0.816. (12)
173 3

The boundary occurs because for #,/f; 2 0.8 the system
gains more energy by forming singlets along the ¢, bond, while
fort,/t; < 0.8 there is a larger energy gain by forming singlets
along the #; bond. We find the same boundary in our solutions
for the Hubbard model where there are no spontaneously
broken symmetries. However, as shown in Fig. 1, the system
can lower its energy further by breaking the C; symmetry of a

triangle, which extends the trimerized phase to a larger #,/1,
and the boundary becomes a function of U /.

VII. CONCLUSION

A broken C; symmetry insulator and a tg-dimer VBS
occurs from strong electronic correlations on the half-filled
Hubbard model on the decorated honeycomb lattice at zero
temperature. The metal-to-broken C; symmetry insulator oc-
curs via the lifting of the topologically required degeneracy at
the I point and opens an energy gap at the Fermi energy. It is
accompanied by long-range antiferromagnetic order between
triangles. The t,-dimer VBS is a Mott insulator where there
are no broken symmetries, and is adiabatically connected to
both the trivial band insulator and the ground state of the
spin-1/2 Heisenberg model in the regime where intertriangle
spin exchange dominates. The ground states found in our
electronic mean-field study show remarkable similarities to
quantum disordered states in spin models on the decorated
honeycomb lattice [41-44].

Importantly, the insulating states we find occur at half
filling of a flat band, where strong correlations are typically
enhanced. With the recent prediction of unconventional su-
perconductivity on the decorated honeycomb lattice near half
filling [40], there is an open question about the connection
between the strongly correlated insulator found in our paper
and unconventional superconductivity. A useful direction to
explore this connection may be in coordination complexes
and polymers where the decorated honeycomb lattice is often
found [22-33].
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