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Spin-polarized Majorana zero modes in double zigzag honeycomb nanoribbons
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We study the emergence of Majorana zero modes (MZMs) at the ends of a finite double zigzag honeycomb
nanoribbon (zHNR), considering a minimal model composed of the first nearest neighbor hopping term, Rashba
spin-orbit coupling (RSOC), p-wave superconducting pairing, and an applied external magnetic field (EMF).
The energy spectrum profiles reveal regions with either spin up or down MZMs belonging to distinct topological
phase transitions, which are characterized by their corresponding winding numbers and can be accessed by tuning
the chemical potential of the nanoribbons. Hybrid systems constituted by zHNRs deposited on conventional
s-wave superconductors are potential candidates for experimentally realizing our proposal. The spin discrimina-
tion of MZMs suggests a possible route for performing topological-conventional qubit operations using Majorana
spintronics.
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I. INTRODUCTION

Starting from the seminal work of Read and Green [1] on
two-dimensional p-wave superconductors, Kitaev proposed a
simplified one-dimensional (1D) toy model [2]. In this model,
unpaired Majorana zero modes (MZMs) appear at opposite
ends of a p-wave superconducting tight-binding chain. Re-
markably, it took less than a decade [3] to understand that
Kitaev’s original proposal could be experimentally realized.
Some setups [4–6] employed hybrid devices composed of a
1D semiconductor nanowire with strong Rashba spin-orbit
coupling (RSOC), in contact with a conventional s-wave su-
perconductor and under an external magnetic field (EMF)
longitudinal to the nanowire. Topological protected MZMs
emerge at the nanowire ends [7] when the nanowire chemical
potential lies on the bulk p-wave superconducting induced
gap.

Another kind of setup came up after the development of
epitaxially grown hybrid semiconductor-superconductor sys-
tems in which two or three facets of the hexagonal InAs
nanowire core were covered by Al [8]. This setup is a hy-
brid platform that employs a naturally occurring quantum dot
(QD) at the end of the nanowire as a spectrometer [9–12] to
measure the nonlocality degree and the spin canting angles
of the nonlocal MZMs [13,14]. A chain of ferromagnetic
atoms aligned over a conventional s-wave superconductor
with strong RSOC also was considered as a hybrid system
supporting the existence of MZMs [15,16]. In this scenario,
the essential ingredients to generate MZMs at the ends of
the chain are the ferromagnetic interaction between atoms
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that compose the chain and the RSOC induced on the chain
by the superconducting substrate. A helpful review of the
experimental state of the art on this subject can be found in
Refs. [17,18].

The manifestation of MZMs in 1D hybrid semiconductor-
superconductor nanowires, known as Majorana nanowires,
and magnetic chains on top of s-wave superconductors are
fully understood from a theoretical point of view [7,19,20].
Recent works have been pointing out the need to fabricate
cleaner and disorder-free Majorana nanowires with an in-
duced hard superconducting gap [21–23], in which distinct
measurements have to be performed to corroborate the ex-
istence of topologically protected MZMs [24–26]. In this
scenario, alternative 2D honeycomb lattice setups offer a
prolific and little-explored platform wherein topological Ma-
jorana quasiparticle excitations can emerge. Between them,
we can indicate two theoretical precursor works: One pro-
poses the generation of MZMs on quantum wires formed
in bilayer graphene by electrostatic confinement [27] and
the other studied the formation of MZMs on an armchair
nanoribbon in the presence of spatially varying magnetic
fields [28]. Both systems are put in contact with an s
superconductor.

We also draw attention to zigzag honeycomb nanoribbons
(zHNRs) built up from Xenes graphene-like family [29–31],
where X represents single elements from group III to group
VI of the periodic table. Despite the challenges of growing
zHNRs of the Xenes family in conventional s-wave supercon-
ductors [32–34], such kinds of 2D lattice offer an alternative
for engineering the p-wave superconducting pairing required
to realize MZMs. Probably, silicene (X = Si) is the most
promising candidate of this family for obtaining a zHNR
geometry with the ability to host MZMs [35,36]. Its energy
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spectra [37] can be spin polarized by applying an external
electric field perpendicular to the zHNR sheet plane [38–40],
giving rise to an effective extrinsic RSOC that breaks its
mirror symmetry [see Eq. (7)]. Silicene also presents an ex-
cellent potential to produce half-metallic transport and pure
spin current [41–43].

Another possibility discussed in Sec. IV to realize p-wave
superconductivity to produce a Kitaev chain is related to the
property of zHNRs from Xenes materials to exhibit ferromag-
netic ordering at their edges [44] due to internal repulsive
Coulombic interactions [31]. Thus, this inborn spin alignment
at the zHNR edges can be employed to induce the supercon-
ducting pairing with p-wave symmetry when the zHNRs are
put in proximity with a s-wave superconductor. This proce-
dure is similar to previous works with ferromagnetic chains
from Yazdani’s group [15,16], but we do not theoretically
implement it in this paper.

Despite the spinless nature of Kitaev’s work, some propos-
als have explored the spin properties of MZMs in different
contexts. Jeon et al. [16], employed a spin-polarized STM
for distinguishing between topological MZMs and other triv-
ial in-gap states in chains of Fe atoms deposited on top of
superconducting Pb. Spin polarization of MZMs was also
accounted for to investigate the Kondo effect in a QD coupled
to a metallic contact and a pair of MZMs [45] and to study
the transport properties of a finite-length Majorana nanowire
placed between a dot and a metallic lead [14,46].

Since the theoretical work by Fu and Kane that MZMs was
predicted to be present inside a core of vortex topological su-
perconductors [47], the possibility of spin polarizing them was
pointed out in Ref, [48]. Its experimental detection was real-
ized in a topological insulator-superconductor Bi2Te3/NbSe2

heterostructure [49]. The spin polarization of those core states
can be probed by measuring the local polarized density of
states (LDOS) employing scanning tunneling microscopy and
spectroscopy (STM/STS) via excitations in the vortex state
[50,51]. Moreover, the MZMs was also employed as an al-
ternative way of performing quantum computing operations
[52–54], allowing the transference of spin qubits QDs and
unpolarized MZMs, and also realizing nontrivial two-qubit
gates. As proposed in this work, the discrimination of the spin
degrees of freedom of the MZMs in topological superconduc-
tor vortices or zigzag nanoribbons can contribute to building
topological quantum gates employing the spins of both MZMs
and QDs simultaneously.

In this work, we report the possibility of spin discrim-
inating MZMs in zHNRs geometry [Fig. 1(a)], which we
refer to as double-spin Kitaev zigzag honeycomb nanoribbons
(KzHNR). This double nanoribbon structure mimics two par-
allel Kitaev chains connected by the hopping t , as indicated
in Fig. 1(c). Our findings reveal that we can access the spin
species of the MZMs in a double-spin KzHNR by tuning the
chemical potential of the chains, which is not feasible in stan-
dard 1D Majorana nanowires. In this scenario, we suggest an
experimental proposal to discriminate spin-polarized MZMs
in zHNRs structures of silicene grown over a Pb supercon-
ductor in the presence of RSOC and an EMF. Our findings
could contribute to paving the way for studying hybrid
topological-conventional polarized QD qubits using Majorana
spintronics.

FIG. 1. (a) Sketch of the 2D zHNR geometry adopted here,
where N represents its width (n = 1, . . . , N). The region within
the red dashed area composed of 2N nonequivalent A (blue) and
B (orange) sites along the y direction represents the unit cell em-
ployed in the numerical simulations. The M number of unit cells
defines the nanoribbon length (m = 1, . . . , M). (b) Representation
of the nearest neighbor hopping t , which is adopted as the energy
unit. (c) Schematic of a double-spin KzHNR of width N = 2. The
equivalent B (A) atoms of the upper (lower) KzHNR are paired with
each other via a p-wave superconducting parameter �.

II. SPINLESS MODEL AND TOPOLOGICAL
PHASE TRANSITIONS

We first consider a double-spinless KzHNR as a general-
ization of the Kitaev chain [2] to characterize the topological
phase transitions (TPT) of the system through corresponding
winding numbers [55], computed for the infinite case (more
details in Appendix A). By considering a tight-binding chain
in a zHNR geometry, we define a spinless phenomenological
model as a Kitaev ladder type [56]. We represent in Fig. 1(c),
the first nearest neighbor (NN) hopping t between nonequiv-
alent sites A and B and the p-wave superconducting pairing,
indicated by arrows, between equivalent sites A or B located
at the edges of the KzHNR. The Hamiltonian describing such
a model reads

H = Ht + H�, (1)

where

Ht =
∑
m,n

[t (a†
m,nbm,n−1 + a†

m,nbm−1/2,n + a†
m,nbm+1/2,n)

−
∑

n

μ[a†
n,nan,n + b†

n,nbn,n] + H.c.], (2)
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FIG. 2. (a) Energy spectrum of a 2D double-spinless KzHNR
[Eq. (1)] as a function of μ and p-wave pairing � = 0.5t , for a
KzHNR of width N = 2 and length M = 200. The numbers on the
real axis represent the W associated with the corresponding topolog-
ical region. (b) Schematic representation of the emergence of MZMs
at the ends of the KzHNR for each associated W . Each semicircle
represents an MZM generated on the site of the active border of
the KzHNR. The two Majoranas connected with the dotted ellipses
form a standard fermion. In the topological phase, unpaired Majorana
fermions emerge at both ends of each KzHNR, as represented by the
semicircles outside the dotted ellipses. The situations (I) and (III)
describe W = 1, where only the top or bottom KzHNR generates
one MZM at each of its ends. Otherwise, in (II) W = 2, indicating
that both the KzHNRs generate MZMs simultaneously at their cor-
responding ends.

corresponds to the NN hopping term t , as indicated in
Fig. 1(b), where μ is the chemical potential and the operators
a†

m,n (or bm,n) creates (annihilates) an electron at site A (B) of
the unit cell. Moreover, the Hamiltonian

H� =
∑
m,n

�[a†
m,na†

m+1,n − a†
m,na†

m−1,n + b†
m,n+1b†

m+1,n+1

− b†
m,n+1b†

m−1,n+1 + H.c.] (3)

describes the p-wave superconducting pairing of the double-
spinless KzHNR, where � is the pairing strength between
sites B in the top and between sites A in the bottom of
each KzHNR, as indicated in Fig. 1(c). Once particle-hole,
time-reversal, and chiral symmetries are preserved by the
Hamiltonian [Eqs. (1)–(3)], it belongs to the BDI symmetry
group class with Z index [57,58] (see Appendix A). For sim-
plicity, we only have considered a double-spinless KzHNR
of width N = 2 in our numerical simulations. However, the
results presented here are also valid for nanoribbons of larger
widths.

Figure 2(a) shows the bulk energy spectrum E/t of the
double-spinless KzHNR [Eq. (1)] as a function of the chem-
ical potential μ/t . Several TPTs characterized by the closing
and reopening of superconducting-induced gap appear at the
μ = −1.28t , −0.78t , −0.50t , and −0.02t , respectively. Ac-
cording to the bulk-boundary correspondence principle [59],
the multiplicities of modes on the boundaries associated with
the TPTs in bulk are characterized by topological invariants
of the bulk energy bands, as the so-called winding number
W , for instance. Here, we have found W = 0, W = 1 and
W = 2 [see Figs. 6(a)–6(d)], which are indicated in the cor-
responding regions of Fig. 2(a). Following the bulk-boundary

FIG. 3. Scheme of the basis adopted in the Hamiltonian given by
the Eqs. (4)–(8) describing the finite double-spin KzHNR chain of
width N = 2. The unit cell B, represented by the dashed rectangular
area is built with four distinct atoms ai, bi, ci, and di.

principle, W = 0 (μ > |1.28t |) characterizes the trivial phase,
where MZMs are absent at the ends of both the KzHNRs.
Between μ = −1.28t and μ = −0.78t , a topological region is
characterized by W = 1, indicating the emergence of MZMs
at opposite ends of either bottom or top KzHNR [Fig. 2(b),
cases (I) and (III)].

Figure 2(a) also exhibits another topological region char-
acterized by W = 2 in the interval −0.78t < μ < −0.50t ,
for instance, corresponding to the situation in which the
MZMs arises simultaneously in the ends of both top and
bottom KzHNR, as indicated in the sketch (II) of Fig. 2(b). In
Fig. 2(a), we also can notice that the same TPTs which occur
for μ < 0 appear for positive values of μ due to the particle-
hole symmetry exhibited by the Hamiltonian of Eq. (1) [60].

III. SPIN FULL MODEL AND EMERGENCE
OF SPIN-POLARIZED MZMS

To analyze the possibility of distinguishing the spin species
of the MZMs, we now discuss the emergence of MZMs at
the double-spin KzHNR geometry edges, considering both
spin orientations explicitly. We account for the infinite version
of the whole spin case in Appendix A [see Figs. 6(e)–6(k)].
Here we discuss the finite version of the model. To properly
break the spin degeneracy of the system, we introduce two
additional effects in the Hamiltonian of Eq. (1): the extrinsic
RSOC and an EMF. The extrinsic RSOC lifts the correspond-
ing bands’ spin degeneracy, unless at k = 0. Additionally, the
EMF applied perpendicularly to the ribbon plane drives the
system through TPTs exhibiting spin-polarized MZMs. In this
situation, spin-discriminated MZMs emerge at the ends of the
double-spin KzHNR structure. The corresponding generalized
Hamiltonian is given by

H = Ht + H� + HR + Hz, (4)

which can be written in a new basis of four distinct atoms as
indicated in Fig. 3.

On this basis, the Hamiltonian describing the NN hopping
and the p-wave superconducting pairing reads

Ht = −μ

2

M∑
i,σ

(a†
iσ aiσ − aiσ a†

iσ + b†
iσ biσ − biσ b†

iσ

+ c†
iσ ciσ − ciσ c†

iσ + d†
iσ diσ − diσ d†

iσ )
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− t

4

M∑
i

(a†
iσ biσ − biσ a†

iσ + b†
iσ ciσ

− ciσ b†
iσ + d†

iσ ciσ − ciσ d†
iσ )

−
M−1∑

i

t

4
(a†

iσ bi+1σ − bi+1σ a†
iσ

+ d†
iσ ci+1σ − ci+1σ d†

iσ ) + H.c. (5)

and

H� =
M−1∑

i

[�(aiσ ai+1σ − ai+1σ aiσ

+ diσ di+1σ − di+1σ diσ ) + H.c.], (6)

respectively.
The extrinsic RSOC induced in the KzHNR can be gen-

erated by breaking the inversion symmetry due to either a
substrate with strong spin-orbit interaction [15] or modulated
by the action of an external electric field �E applied per-
pendicularly to the nanoribbon plane [38–40,42,61,62]. Its
corresponding general Hamiltonian reads

HR =
∑
i, j,σ

[ia†
i,σ (�ui j .�σ )a j,σ + H.c.], (7)

where �ui j = ( e
2m2av f

) �E × �δi j = − λR
a k̂ × �δi j , with e and m

being the charge and mass of the electron, respectively. More-
over, v f is the Fermi velocity, the lattice constant is given by
a, and the vector-position �δi j corresponds to the three nearest
neighbors, as represented in Fig. 1(b). Writing Eq. (7) in the
basis defined in Fig. 3, we can write the Rashba Hamiltonian
as

HR =
M∑
i,σ

iλRsign(σ )
[
γ1(a†

iσ biσ − biσ a†
iσ )

+
(

−1

2

)
(b†

iσ ciσ − ciσ b†
iσ ) + γ2(c†

iσ diσ − diσ c†
iσ )

]

+
M−1∑
i,σ

iλRsign(σ )
[
γ2(b†

iσ ai+1σ − ai+1σ b†
iσ )

+ γ1(d†
iσ ci+1σ − ci+1σ d†

iσ )
] + H.c., (8)

where γ1 = ( 1
2 + i

√
3

2 ), γ2 = ( 1
2 − i

√
3

2 ), λR is the extrinsic
RSOC parameter and σ =↑,↓ is the spin index for each
operator. The last term of Eq. (4)

Hz = 1

2

M∑
i,σ

λZsign(σ )[(a†
i,σ ai,σ − ai,σ a†

i,σ )

+ (b†
i,σ bi,σ − bi,σ b†

i,σ ) + (c†
i,σ ci,σ − cic

†
i,σ )

+ (d†
i,σ di,σ − di,σ d†

i,σ )] + H.c., (9)

represents an EMF with the magnetization vector pointing to
the azimuthal direction [63,64], where λZ is the EMF strength.

Now, we perform a detailed analysis of how the KzHNR
length M, the extrinsic RSOC λR, the superconducting pairing

�, and the EMF λZ affect the emergence of MZMs on the
real axis. The Hamiltonian given by Eqs. (4)–(8) is solved
numerically using the basis represented in Fig. 3. The cal-
culation becomes more time-consuming as the Hamiltonian
matrix dimension grows with the value of M.

In Figs. 4(I)–4(IV), we plot the energy spectra as a func-
tion of μ of a double-spin KzHNR with width N = 2 and
length M = 100, for distinct parameters of the Hamiltonian:
� = 0.5t , λR = 0.05t , and λZ = 0.1t except the correspond-
ing varied parameter. We explicitly indicate it in the panels.

The emergence of polarized MZMs at the edges of the
double-spin KzHNR is calculated by computing the mean
value of 〈Sz〉 = 〈ψ | Ŝz |ψ〉 of MZMs solutions. The label ψ

represents eigenvectors of the total Hamiltonian given by
Eq. (4) and Ŝz is the Pauli matrix in the ẑ direction.

Figure 4(I) shows the dependence of the energy spectra
as a function of μ/t for lengths M = 10 (a), 50 (b), and
100 (c) of the double-spin KzHNR, respectively. In Fig. 4(a),
we can verify oscillatory patterns for the smallest double-
spin KzHNR structure. The oscillating behavior is expected
to appear for short Majorana nanowires due to overlapping
MZMs of opposite edges. For M = 50 [Fig. 4(b)], we observe
the appearance of MZMs at the real axis around μ = 0 and
in the inferior band region in the range μ = [−1.2,−1.3].
Figure 4(c) depicts the case of M = 100, showing the MZMs
on the real axis in all the available topological regions.

Figure 4(II) shows the dependence of the energy spectra as
a function of μ/t with the extrinsic RSOC parameters λR =
0.01t , 0.03t , and 0.05t . The result shows that a low value of
λR is sufficient to generate well-defined MZMs on the real axis
in all the topological regions.

In Fig. 4(III), we observe the dependence of the energy
spectra as a function of μ/t for � = 0.1t , 0.3t , and 0.5t ,
in Figs. 4(a)–4(c), respectively. These profiles indicate that
the p-wave paring � strongly affects the MZMs formation
on the real axis. The MZMs are formed first for � = 0.1t
[Fig. 4(a)] in the range μ = [−1.2,−1.3]. Only when � =
0.5t [Fig. 4(b)] does the MZMs emerge around μ = 0. Well-
defined MZMs arises in the region of μ � 0 only for higher
values of �.

Figure 4(IV) shows the dependence of the energy spectra
with the EMF for λZ = 0005t (a), 003t (b), and 008t (c) as a
function of μ/t . The EMF acts uniformly over the MZMs for-
mation for all μ values. The enhancement of λZ also increases
the number of MZMs over the real axis.

The parameter analysis presented in Fig. 4 helps us
to chose the parameters used in Fig. 5, which shows the
high-resolution energy spectrum E/t of a finite double-spin
KzHNR with N = 2, M = 200, � = 0.5t , λR = 0.05t , and
λZ = 0.1t as a function of μ/t . Figure 5(a) has the same shape
of the double-spinless case [Fig. 2(a)], but with spin-polarized
energies resolved into spin-up (blue color) and spin-down
(red color) regions at the real axis. A mirror spin-symmetry
concerning μ = 0 is observed in the plot: a spin-up MZMs
for μ < 0 changes to spin-down for μ > 0. Moreover, spin-
polarized MZMs can be accessed by tuning μ slightly below
or above μ = 0.

Figure 5(b) shows the enlarged region of Fig. 5(a) around
E = 0 for μ < 0, where it is possible to see in detail the
emergence of spin-polarized MZMs as μ changes. We can
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FIG. 4. Formation of MZMs parameter study: Energy spectra for a N = 2 finite double-spin KzHNR as a function of μ. We employed the
same parameters set used in all the simulations of the paper: � = 0.5t , λR = 0.05t , and λZ = 0.1t , but only changing the particular parameter
indicated in the figure: (I) Length: M = 10, 50, 100. (II) Extrinsic Rashba spin-orbit coupling λR = 0.01t, 0.03t, 0.05t . (III) Superconductor
pairing � = 0.1t, 0.3t, 0.5t . (IV) EMF λZ = 0.005t, 0.03, 0.08t .

detect these MZMs with well-defined spin orientation via
spin-polarized STM measurements [16]. The green lines de-
picted in both panels of Fig. 5 do not represent MZMs, but
ordinary fermions, resulting from the combination of MZMs
localized at the ends of opposite KzHNRs. This effect tends

FIG. 5. (a) Energy spectra of a finite double-spin KzHNR
[Eq. (4)] as a function of μ, N = 2, and M = 200. The model
parameters are � = 0.5t , λR = 0.05t , and λZ = 0.1t . The blue and
red colors correspond to spin up and down regions at the real axis,
respectively. The green lines describe the formation of a regular
fermion coming from the combination of Majorana excitations be-
longing to opposite KzHNRs. (b) Enlarged region of (a) around
E = 0 for μ < 0, showing in detail the formation of spin-polarized
MZMs.

to disappear as the width N of the double-spin KzHNR
increases.

As discussed in the spinless case of Fig. 2, the emergence
of spin-polarized MZMs on the real axis depicted in Fig. 5 is
also related to TPTs in the bulk gap. However, each value of μ

related to a TPT in the spinless scenario splits into two values
of μ, describing TPTs for both spin-up and spin-down com-
ponents. The strength of this splitting is given by the RSOC
parameter λR. For details, see Fig. 6 and related discussion in
Appendix A.

IV. EXPERIMENTAL PERSPECTIVES

Among available experimental results for realizing a
double-spin KzHNR structure, we suggest the silicene de-
posited on a Pb superconducting substrate as a possible
candidate. In the superconducting phase, under the presence
of a strong RSOC coming from the Pb and an applied EMF,
the Cooper pairs of the Pb substrate can enter into the silicene
region via proximity effect, giving rise to a p-wave-induced
pairing in the double KzHNR structure.

The growth of silicene under Pb substrates was experi-
mentally investigated using guidelines of DFT simulations
results [65–68]. However, the production of silicene nanorib-
bons inducing Pb reconstructions on Si(111) surface [69] was
not successful. It was obtained short silicene-like nanoribbons
directly bonded to the Si(111) layers, and Pb only acted as a
surfactant.

A possible route to produce silicene nanoribbons [70] is to
use Pb layers on vicinal Si surfaces [32–34], like Si(553) or
Si(557). In the case of Pb/Si(553), Pb forms a dense layer.
The Pb layer is electronically decoupled from the substrate to
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FIG. 6. Panels (a)–(d): band structure for a N = 2 infinity double-spinless KzHNR, considering μ values where the TPTs occur. Panels
(e)–(k): the same as top panels, but considering both spin components (infinite double-spin KzHNR). The energies are measured in units of t as
described in the main text, and we fix the p-wave superconducting pairing parameter � = 0.5t . Additionally, the parameters of the double-spin
case (middle and bottom panels) are λR = 0.05t and λZ = 0.1t . In the double-spinless case, we have four TPTs occurring at (a) μ = −1.28t ,
(b) μ = −0.78t , (c) μ = −0.50t , (d) μ = 0. For the double-spin case, the TPTs occur at (e) μ = −1.33t with spin down, (f) μ = −1.23t with
spin up, (g) μ = −0.84t with spin down, (h) μ = −0.73t with spin up, (i) μ = −0.55t with spin down, (j) μ = −0.45t with spin up, and (k)
μ = −0.05t with spin down. The density of states, corresponding to the band structure depicted in panel (k), is plotted in panel (l), where we
can observe the half-metallicity characteristic of those TPTs.

a large extent. This is entirely different from the case of Pb-
induced Si(111) reconstruction. Strong Pb-Pb bonding within
the layer should favor the growth of Si on it without migration
of Pb atoms on top of silicene.

Moreover, several previous theoretical works have shown
that the zHNRs accumulate electrons to form localized mag-
netic moments [71] at its edges. The coupling of atoms
belonging to the same edge is ferromagnetic and between
atoms from different edges is antiferromagnetic [72–75]. This
situation is depicted in Fig. 1(c). In particular, narrow-width
silicene nanoribbons are predicted to have an antiferromag-
netic ground state [76,77]. Another possibility to experimen-
tally realize a double-spin-polarized KzHNR is following the
recipe of Ref. [15]: growing an antiferromagnetic nanoribbon
or some artificial antiferromagnetic ladder over a strong spin-
orbit conventional s-wave superconductor. In Appendix B, we
present an estimative about the possibilities to experimentally
realize a double-spin KzHNR based on silicene layers de-
posited on top of a Pb superconducting substrate.

V. CONCLUSIONS

This work reports the possibility of obtaining spin-
polarized MZMs at opposite edges of a double-spin KzHNR

structure. The regions of energy spectrum E/t with MZMs
having well-defined either spin-up or spin-down orientations
can be accessed by tunning the μ/t of the KzHNRs. More-
over, these spin-polarized intervals in the E/t × μ/t profile
are associated with distinct topological phases, characterized
by the topological invariant winding number W = 1 or W =
2. Interestingly enough, for the situation wherein W = 2 four
MZMs emerge in the double KzHNR geometry: two at the
opposite ends of the top zHNR and two at the opposite ends
of the bottom one. In this scenario, it should be emphasized
that at least four MZMs are required for defining a qubit
[78–81]. Thus, the proposal is a natural candidate for realizing
hybrid quantum computing operations [52,53] between con-
ventional spin qubits and topological qubits based on MZMs
with well-defined spin orientation, suggesting a possible route
for performing Majorana spintronics.
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APPENDIX A: INFINITE DOUBLE KZHNR

1. Spinless case

In this Appendix, we will consider the infinite double
KzHNR case. We are interested in calculating the winding
numbers, the band structure, and the topological phase tran-
sitions exhibited by the system. In the main text of the work,
we use this information as guidelines to interpret the emer-
gence of MZMs in the finite case. By considering the Fourier
transform of Eqs. (2) and (3), the total Hamiltonian can be
written as

H = Ht + H�, (A1)

with the first nearest neighbor hopping and the superconductor
pairing term. In the momentum representation, the Hamilto-
nian can be written as

Ht = −
∑
k,n

[μ(a†
k,nak,n + b†

k,nbk,n)

+ t (a†
k,nbk,n−1 − 2a†

k,nbk,n cos(ka/2)) + H.c.],

H� =
∑
k,n

[2i� sin(k)(a†
k,na†

−k,n + b†
k,n+1b†

−k,n+1) + H.c.],

(A2)

where n = 1, 2, corresponding to the top and bottom chain
index. In the Bogoliubov–de Gennes (BdG) form, we
can express the Hamiltonian as 1

2

∑
k �†h(k)�, with � ≡

(ak,1, a†
−k,1, bk,1, b†

−k,1, ak,2, a†
−k,2, bk,2, b†

−k,2). We obtain the

total Hamiltonian in the following matrix form,

h(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2μ �k −ε 0 0 0 0 0
�k∗ +2μ 0 ε 0 0 0 0
−ε 0 −2μ �k −t 0 0 0
0 ε �k∗ +2μ 0 t 0 0
0 0 −t 0 −2μ �k −ε 0
0 0 0 t �k∗ +2μ 0 ε

0 0 0 0 −ε 0 −2μ �k

0 0 0 0 0 ε �k∗ +2μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A3)
where �k = 2i� sin(k) and ε = −2t cos(k/2). This Hamilto-
nian has the dispersion relations given by

E1,2,3,4 = ±
√

−2�2 + 2ζ1 + t2 ± ε̃(4μ + t )

2
,

E5,6 = ±
√

−2�2 + 2ζ2 + t2 − ε̃(4μ − t )

2
,

and E7,8 = ±
√

−�2 + ε2 + 2ζ3 + ε̃(2μ − t/2),

(A4)

with ζ1 = ε2 + 2μ2 + 2μt , ζ2 = ε2 + 4μ2 − 2μt , ζ3 =
2μ2 − μt + t2, and ε̃ = √

4ε2 + t2. It is worth noting that
Eq. (A3) satisfies both the particle-hole and time-reversal
symmetries, since

Ch(k)C−1 = −h(−k) (A5)

and

T h(k)T −1 = h(−k), (A6)

where C and T are charge conjugation and time-reversal op-
erators [57,58], respectively. Equation (A3) also satisfies the
chiral symmetry

Kh(k)K−1 = −h(k), (A7)

in which the chiral operator is defined by the anticommutation
relation [K, h(k)]+ = 0. Thus, one can write h(k) in its cor-
responding chiral form by performing the following unitary
transformation:

h̃(k) = U†h(k)U =
[

0 A(k)
A∗(k) 0

]
, (A8)

where A(k) is a 4 × 4 chiral matrix given by

A(k) =

⎡
⎢⎢⎢⎣

−4i� sin (k) + 4μ −4t cos
(

k
2

)
0 0

−4t cos
(

k
2

) −4i� sin (k) + 4μ 2t 0

0 2t −4i� sin (k) + 4μ −4t cos
(

k
2

)
0 0 −4t cos

(
k
2

) −4i� sin (k) + 4μ

⎤
⎥⎥⎥⎦. (A9)

Once particle-hole, time-reversal, and chiral symmetries are
preserved by h(k), the corresponding system belongs to the
BDI symmetry group class with Z index [57,58], with its
topology being characterized by the associated Chern number
invariant [82], i.e., the winding number [55,56]

W = Tr
∫ π

−π

dk

2π i
A−1

k ∂kAk = −
∫ π

−π

dk

2π i
∂kln[Det(Ak )],

(A10)

which gives the number of MZMs at the edges of the spinless
KzHNR, as discussed in Fig. 2.

In Figs. 6(a)–6(d), we plot the band relation dispersion
[Eq. (A4)] for a N = 2 infinity double-spinless KzHNR, con-
sidering μ/t values where the TPTs occur. For [Fig. 6(a)]
μ = −1.28t and for [Fig. 6(b)] μ = −0.78t , the gap closes
at k = 0, defining two TPTs and forming a topological phase
in this interval with winding number equal to W = 1. A new
TPT occurs at [Fig. 6(c)] μ = −0.50t , with the gap closing
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at �k = π , and defining a new topological region with wind-
ing number equal to W = 2 between μ = −0.78t and μ =
−0.50t . Finally, at [Fig. 6(d)] μ = 0 the gap closes again at
�k = π , defining another TPT, and forming a topological phase
with winding number equal to W = 1 between μ = −0.50t
and μ = 0. The same transitions appear at the same values
for positive chemical potentials, once the system described by
Eq. (A3) exhibits a particle-hole symmetry.

2. Spinfull case

Considering the Fourier transform of the total Hamiltonian
given by Eq. 4, we calculate the topological phase transitions
for the infinite spinfull case as a function of the chemical po-
tential. By considering again n = 1, 2, as the top and bottom
chain indexes,

Ht = −
N∑

k,n,σ

μ(a†
k,n,σ

ak,n,σ + b†
k,n,σ

bk,n,σ )

+ t (a†
k,n,σ

bk,n−1,σ − 2a†
k,n,σ

bk,n,σ cos(ka/2)) + H.c.,
(A11)

H� =
N∑

k,n,σ

�k (a†
k,n,σ

a†
−k,n,σ

+ b†
k,n+1,σ

b†
−k,n+1,σ

) + H.c.,

�k = 2i� sin(k), (A12)

HR =
N∑

k,n,σ


Rσ

[
−a†

k,n,σ
bk,n−1,σ

− 2 cos

(
k/2 − 2π

3

)
a†

k,n,σ
bk,n,σ

+ b†
k,n,σ

ak,n+1,σ + 2 cos

(
k/2 + 2π

3

)
b†

k,n,σ
ak,n,σ

]

+ H.c.,


Rσ = iλRsign(σ ), (A13)

and

Hz =
N∑

k,n,σ

sign(σ )λZ (a†
k,n,σ

ak,n,σ + b†
k,n,σ

bk,n,σ ) + H.c..

(A14)
In Figs. 6(e)–6(k), we plot the band structure [Eqs. (A11)–
(A14)] for a N = 2 infinity double-spin KzHNR, considering
μ values where the TPTs occur. To discriminate the two
possible spin orientations in the edges of the KzHNR, we
introduce two new physical effects: the extrinsic RSOC and
the EMF given by Eqs. (A13) and (A14). When compared
to the previous case, each transition splits into two, one with
spin up and the other with spin down, where the split is tuned

by the λR = ±0.05t parameter. For example, the TPT that
occurs at Fig. 6(a) μ = −1.28t , for the spinless case splits
into μ → μ ± λR = −1.33t ; −1.23t in Figs. 6(e) and 6(f),
respectively. However, in the double-spin case, we did not
obtain the winding numbers due to the involved complexity
of the calculations.

In Fig. 6(l), we plot a typical density of states for μ =
−0.05t in a point where a TPT occurs and that exhibits
half-metallicity, which is another striking characteristic that
occurs in all the other Majorana TPTs of the system. This
effect leads the double-spin KzHNR into a half-metallic state
as indicated in Fig. 6(l), resulting in insulating behavior
for one spin component and metallic behavior for the other
component [83,84].

APPENDIX B: EXPERIMENTAL PROSPECTS ABOUT A
DOUBLE-SPIN KZHNR BASED ON SILICENE LAYERS
DEPOSITED ON TOP OF A PB SUPERCONDUCTING

SUBSTRATE

Silicene layers were grown on Ag, Ir, Ca, and Pb, among
other metallic substrates [85]. However, due to the consider-
able band hybridization between silicene and the substrate,
the absence of Dirac cones is a characteristic feature, except
for Ca and Pb, which preserves the Dirac cone below the
Fermi surface [65]. Interesting enough, Pb is a conventional
Bardeen-Cooper-Schrieffer (BCS) superconductor, with a rel-
atively high critical temperature of TC = 7.2 K and a strong
intrinsic RSOC around 1 me V [37].

Due to its buckled structure and large silicon ionic radius,
silicene has a relatively large effective intrinsic spin-orbit
coupling of 1.55 me V, and an intrinsic RSOC of 0.7 me V
[37]. However, this intrinsic RSOC is not enough to break the
spin degeneracy of the energy spectra. Based on Ref. [17],
we estimate the corresponding parameters for a silicene
double-spin KzHNR structure on top of a Pb superconducting
substrate.

To develop a topological phase in the silicene-Pb supercon-
ducting hybrid structure, the Zeeman energy λZ should satisfy

the relation λZ >

√
�2

ind + μ2, where �2
ind is the induced

superconducting gap in the silicene layers due to proximity
effect and λZ = 1

2 gSiμBB, with the silicene g factor gSi and the
Bohr magneton μB. On the other hand, the Pb superconduct-
ing quasiparticle excitation spectrum exhibits a gap of width
Eg = 2�S � 2.73 me V around the Fermi level [86], with �S

being the binding energy of the Cooper pairs. Thus, λZ should
not assume values bigger than Pb superconducting energy
gap, i.e., 1

2 gPbμBB < Eg. Considering gSi � 2.0 associated
to the free-electron silicene conduction band and gPb = 1.5,
associated to the 3P1 configuration of Pb [87], we estimate that

3.64 me V >

√
�2

ind + μ2, which turns our proposal feasible
from the experimental point of view.
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