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We investigate the evolution of the Mott insulators in the triangular lattice Hubbard Model, as a function
of hole doping § in both the strong and intermediate coupling limits. Using the advanced density matrix
renormalization group (DMRG) method, at light hole doping § < 10%, we find a significant difference between
strong and intermediate couplings. Notably, at intermediate coupling an unusual metallic state emerges, with
short ranged spin correlations but long ranged spin-chirality order. Moreover, no clear Fermi surface or wave
vector is observed, this chiral metal also exhibits staggered loop current, which breaks the translational symmetry.
These features disappear on increasing interaction strength or on further doping. At strong coupling, the 120
degree magnetic order of the insulating magnet persists for light doping, and produces hole pockets with a
well-defined Fermi surface. On further doping, 6 = 10%~20% SDW order and coherent hole Fermi pockets are
found at both strong and intermediate couplings. At even higher doping § 2> 20%, the SDW order is suppressed
and the spin-singlet Cooper pair correlations are simultaneously enhanced. We also briefly comment on the

strong particle-hole asymmetry of the model.
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I. INTRODUCTION

A central issue in the physics of strongly correlated materi-
als is the nature of the correlated phases that emerge on doping
a Mott insulator. Given its relevance to the high-temperature
cuprate superconductors, much effort have been devoted to
doped Mott insulators in the square lattice Hubbard model
[1-4]. However, the analogous problem on the triangular lat-
tice is equally interesting and likely to exhibit new and distinct
physics, due to magnetic frustration and the absence of nesting
and particle-hole symmetry in the minimal models.

Experimentally, the discovery of the spin liquids [5,6]
in organic materials [7-12] like «-(BEDT-TTF),Cu;,(CN);3,
EtMe;Sb[Pd(dmit),], and «-H3(Cat-EDT-TTF), has trig-
gered substantial efforts on the triangular lattice Hubbard
model, which is suggested to be the simplest model to
understand unconventional correlated physics in these sys-
tems. More recently, the triangular lattice magnets includ-
illg Ba3Cqu209 [13], szTi207 [14], CSQCUC14 [15,16],
Ba3;CoSb,09 [17], YbMgGaO, [18], TbInO; [19], NaYbO,
[20,21], the transition-metal dichalcogenide (TMD) [22,23],
as well as twisted bilayers of TMD [24-26] have been
successively suggested to realize triangular lattice Hubbard
models or their effective Heisenberg models. In a different
background, the triangular Hubbard model was recently re-
alized on optical lattices [27] with loading ultracold fermions
[28-30]. In these platforms, both the coupling strength U/t
and charge concentration are widely tunable and accurately
controllable, which allow for probing the correlated electron
physics on frustrated lattices.

Theoretically, the triangular lattice Hubbard model still
poses a great challenge. At half filling, mean field approaches
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[31-35] and numerical studies [36—58] have identified the
metal-insulator transition (MIT) around U./t ~ 5 ~ 8, and
two distinct Mott insulators: a 120° Néel ordered phase in the
strong coupling U > ¢ limit, and a quantum disordered state,
potentially a spin liquid phase, around the MIT. Away from
half filling, the slave-boson mean field [59-62], renormal-
ization group [63], and numerical calculations [64—69] have
mainly focused on superconductivity and its pairing symme-
try. Nevertheless, a systematic study of the correlated phases
emerging from doped Mott insulators is a much-needed
endeavor, where many open questions are of equivalent im-
portance as the intensively investigated square lattice [2—4].
Motivated by the above, here we study the emergent correlated
phases obtained on doping the distinct Mott insulators, which
appear in the intermediate and strong coupling regimes, in the
triangular lattice Hubbard model. We focus on hole doping the
t > 0 model in Eq. (1) below.

II. MODEL AND METHOD

We consider the doped Hubbard model on a triangular
lattice described by

H=—tY (clcio+He)+UY nymy, (1)

(i.j),0 i

where (i, j) denotes the nearest neighbor links, cjg (¢is) and
n;; represent the electron creation (annihilation) operators and
number operators at site i with spin o (¢ = 1, |), respec-
tively, and we take t > 0; U > 0. We perform a comparative
study of the doped Mott insulators with distinct emergent
spin backgrounds [50,52-56]: (i) a quantum disordered spin
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FIG. 1. Triangular lattice and the corresponding Brillouin zone.
(a) The triangular lattice is spanned by the primitive vectors e, =
(1,0) and ey, = (1/2, V3/2) with size N = L, x L,. (b) The ac-
cessible momenta (black dots) in the first Brillouin zone and the
high-symmetry points are shown in (b) for L, =3 (left), L, =4
(middle), and L, = 6 (right) cylinders. The number of independent
momenta equals to size N, panel (b) shows three examples: L, = 36
(left), L, = 30 (middle), and L, = 12 (right).

background (“spin liquid”) that emerges at intermediate cou-
pling strength and (ii) the magnetic ordered spin background
with larger coupling strength. In this paper, we mainly focus
on the hole doped side and identify the nature of various
doping-induced phases. Considering the possible shift of the
intermediate phase boundaries with system size [50,52-56],
we choose different typical parameters of U/t for the doped
magnetic disordered spin background and the doped magnetic
ordered spin background.

Because of the lack of well-controlled theoretical methods
in two-dimensional strongly correlated systems, quasi-one-
dimensional systems have become a good starting point,
allowing two-dimensional characteristics to emerge on grow-
ing the degrees of freedom compared to one dimension. More
crucially, they allow performing accurate numerical density
matrix renormalization group (DMRG) simulations, which
have proved to be one of the most powerful numerical meth-
ods for strongly correlated systems such as the doped Mott
insulators on the square lattice. Since the computational cost
of DMRG [70,71] increases exponentially with system width,
we focus on cylinders, similar to earlier DMRG studies on
the square lattice. The cylinder is spanned by vectors L,ey =
L.(1,0) and Lyey = L,(1/2, +/3/2) with circumference Ly, as
illustrated in Fig. 1(a).

Figure 1(b) depicts the corresponding Brillouin zone for
L, = 3,4, 6 cylinders, and the black dots represent the ac-
cessible momenta points on systems with size N = L, x L,.
Because of the fact that the spin long-range ordered phase
becomes gapped for even L, [72], it requires odd L, and
integral multiple of 3 for both L, and L, in order to capture
the nature of the 120° Néel order. In particular, K points are
inaccessible on cylinders with L, = 4, as shown in Fig. 1(b),
we can only access K’ points, which are the closest momen-
tum to K. In the present paper, we mainly focus on L, = 3 and

L, = 4 in most cases, but also compare with L, = 6 cylinders
when identifying the wave vectors of the spin density waves
(SDWs).

Depending on system size and physical quantity, the bond
dimension is set up to D = 45000 when implementing
U(1) x U(1) symmetry in the DMRG program, and up to
D = 23000 when implementing U (1) x SU(2) symmetry
[~D =69000in U (1) x U(1) program]. The cylinder length
is pushed up to L, = 72. We remark that the longer length
also requires much larger bond dimension to get converged
results for quantities such as the chiral correlations. For ex-
ample, for the chiral-chiral correlations on L, = 4 cylinders,
we find that, at light doping, the converged measurement can
only be obtained at D = 23000 with using U (1) x SU(2)
symmetry, which roughly corresponds to D &~ 69 000 when
using U(1) x U(1) symmetry in the program. In particular,
for the fast decay of the correlation functions, both power
law and exponential function could fit the data well; to see
it more clearly, we present both semilogarithmic and double-
logarithmic plots for the same data to compare. To gain the
indication of superconductivity for 2D, we look for power-law
decay " with n < 2, which would lead to the divergence of
superconductivity susceptibility.

III. RESULTS

A. Evolution of spin correlations with hole doping

We begin with probing the ground-state properties of the
model Hamiltonian (1) as a function of hole doping § in the
spin channel by examining the spin structure factor

1 ,
$q(Q) = N Z (S?Sj)ng'(ri*rj)- o)

ij

Here, we have confirmed that (S7) is vanishingly small on
each site. In our calculation, the hole doping is realized by
removing equal number of spin-up and spin-down electrons,
and we target the sector with total spin $* = 0. Figures 2(al)—
2(a3), 2(b1)-2(b3), and 2(c1)-2(c3) show the contour plot of
Sq at three typical hole doping concentrations for U/t = 7.5,
U/t =9,and U/t = 18, respectively. The spin structure factor
for U/t = 7.5 and U/t = 9 exhibit similar behavior.

Spin correlations at intermediate coupling for L, = 3. For
U/t =75 and U/t =9, S are featureless at light doping
[see Figs. 2(al) and 2(bl) for § = 1/18], consistent with a
spin disordered phase. With further doping, Sq exhibits sharp
peaks at Q = K for moderate doping [see Figs. 2(a2) and
2(b2) for 6 = 1/6], suggesting a doping induced commen-
surate SDW. The intermediate SDWs are finally suppressed
on further increasing doping beyond 20% [see Figs. 2(a3)
and 2(b3) for 6 =2/9]. To probe the evolution of SDWs
with hole doping, we keep track of Sq(K) as a function of
d, as shown in Figs. 2(a4) and 2(b4), Sq(K) is independent
of L, for § < 10% at intermediate coupling, consistent with a
nonmagnetic spin background. However, on further increasing
doping to & ~ 10%~20%, Sq(K) is significantly enhanced,
and its height also increases with system size, indicating the
doping induced SDW, which finally disappears at § = 20%.

Spin correlations at strong coupling for L, = 3. In contrast,
on doping holes into the strong coupling U/t = 18 model,
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FIG. 2. The static spin structure factor Sq(Q) as a function of hole doping concentration § on L, = 3 cylinders. Panels (a), (b), and (c) show
the contour plot of Sq(Q) for U/t = 7.5 [(al)—(a4)], U/t = 9 [(b1)—~(b4)], and U/t = 18 [(c1)—(c4)] with different 6. From left to right in each
row, we consider three typical hole doping concentrations: 6 = 1/18 [(al),(bl),(c1)], § = 1/6 [(a2),(b2),(c2)] and § = 2/9[ (a3),(b3),(c3)].
The black dots represent the accessible momenta in the Brillouin zone (dashed line) for N = 24 x 3 cylinders, and the contour plot is created
by using triangulation interpolation. Panels (a4), (b4), and (c4) show Sq(Q) at Q = K as a function of § for U/t = 7.5, U/t =9,and U/t = 18,
respectively. The bond dimension of such calculation is set up to 6000~10 000.

a 120° Néel ordered spin background with sharp peaks in
Sq(K) survives until § ~ 20% for L, = 3 [see Figs. 2(c1)-
2(c3)]. Furthermore, the height of these peaks also increase
with system sizes [see Fig. 2(c4)], indicating that the com-
mensurate SDW order remains robust against hole doping in
the strong coupling limit. At § > 20%, the spin correlations
become short ranged and are indistinguishable for all coupling
strengths.

Spin correlations for L, = 4. For wider cylinders with L, =
4, we find the spin backgrounds at § < 10% also resemble the
ones at half filling, as shown in Figs. 3(a) and 3(d). Although
the momenta K are inaccessible for L, = 4 and the spin or-
dered phase becomes spin gapped due to the even-leg effect,
the intensity of Sg is concentrated at the momentum closest
to K (i.e., K') in the strong coupling limit (at § < 10%).
These facts indicate the nature of spin background at light
doping is mainly determined by coupling strength U/t. At
moderate doping § &~ 10%~20%, the commensurate SDWs
exhibits competing wave vector M, as shown in Figs. 3(b)
and 3(e). To show it more clearly, we study Sq at M and
in the vicinity of K as a function of hole doping, as shown
in Figs. 3(a) and 3(d), the intensity of Sq(M) is enhanced at
moderate doping, while the SDWs are finally suppressed for
larger doping § 2 20%.

We also notice the competing wave vectors of the SDW,
which is determined by the coupling strength U/¢. The SDW
with wave vector Q = M is dominant at moderate coupling
strength, however, with the increase of coupling strength U /1,
the SDW with Q = K’ becomes competitive, as indicated

from Figs. 3(a) and 3(d). We also have checked the t —J
model, which corresponds to the effective Hamiltonian of
Hubbard model in the U/t — oo limit, and confirmed that the
dominant wave vector of SDW is Q = K’ in the strong cou-
pling limit. Such competition might be induced by the special
feature of L, = 4 cylinders, where K points are inaccessible.
To further confirm it, we also check L, = 6 cylinders and find
that when both the momenta K and M are accessible, the
commensurate SDW with wave vector Q = K is dominant at
these dopings, as shown in Figs. 3(c) and 3(f).

B. Evolution of spin chirality with hole doping

To further investigate the nature of magnetic disordered
spin background at § < 10% with intermediate coupling
strength, we examine the spin chiral order by computing the
chiral-chiral correlations [(Cp,C Ao s where the chiral oper-
ator Cp, =8S;, - (S;, X S;) is defined on the triangle formed
by three nearest neighboring sites i;, i, and i3. As shown in
Fig. 4(a) for L, = 3 cylinders and Fig. 4(b) for L, = 4 cylin-
ders at three typical hole doping concentrations: § = 1/18,
§=1/6,and § = 1/3.

At light doping 8 < 10%, the chiral correlations decay
much slower than r~' [see the orange line in Fig. 4(a)] for
L, =3 atU/t = 7.5 and slightly slower than r~? [see the red
line in Fig. 4(b)] for L, =4 at U/t = 9. The blue lines in
Figs. 4(a) and 4(b) follow the amplitude of the chiral corre-
lations, which can directly compare with the decay rate r~!
(orange line) and r~2 (red line), respectively. These results
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FIG. 3. The static spin structure factor S4(Q) on L, = 4 and L, = 6 cylinders. Panel (a) and (d) show S as a function of hole doping §

forU/t =9 and U/t =
(b)and U/t =

18 at momentum M and K’ on N = 24 x 4 cylinders. Panel (b) and (e) show the contour plot of Sq(Q) for U/t =9
18 (e) with § = 1/6 and N = 24 x 4. Panel (c) and (f) show the similar plot of Sq(Q) to (b) and (e) but on L, = 6 cylinders with

L, = 12. The black dots represent the accessible momenta points in the Brillouin zone (dashed line) and the contour plot is created by using
triangulation interpolation. The bond dimension of these calculations is set up to 30 000~35 000.

suggest the (quasi-)long range chiral order at light doping.
We also check U/t =9 for L, =3 and U/t =10 for L, = 4,
as shown in Fig. 4(c), which exhibit similar quasi-long-range
chiral correlations decaying in a power-law fashion. Here we
point out that U/t =9 and U/t = 10 are similar for L, = 4,
while the chiral correlations at U/t =9 decay faster than
U/t = 7.5 but comparable to r—2, which indicates the increase
of the coupling strength U/t would suppress the chiral corre-
lations, but the spin background is still nonmagnetic according
to the featureless spin structure factor Sq in Fig. 2(al). When
we increase the doping to § 2 10%, the chiral correlations are
strongly suppressed and decay faster than =2, as shown in
Figs. 4(a) and 4(b).

We also point out that the chiral correlations have sign
fluctuations for L, = 3 but not for L, =4 for half filling,
consistent with Refs. [53,54], however at light doping, both
cases exhibit the change of sign with distance r. In particular,
we notice that, the claim of absence of chiral spin liquid at
half-filling for L, = 3 in Ref. [73] also conflicts with other
DMRG studies [53,54,74].

C. SDW vs CDW

For the doped Mott insulators on square lattice, the doped
charge would suppress the Néel order at light doping, and the
CDW, such as the unidirectional stripes, would emerge around
8 =~ 1/8. Here, on the triangular lattice, from the above results
of the spin structure factor Sq(Q) and the chiral-chiral correla-
tions [(Cp.C Aj) |, we find the nature of the spin background is
robust against hole doping and also find the robust spin density

waves at moderate doping § & 10%~20%. In this section, we
directly compare the spin-spin correlations |(S7S7, )| with the
charge density-density correlations |(n;n;1,) — (n;)(ni1,)| to
examine the dominant correlations.

At light doping § < 10%, as shown in Figs. 5(a) and
5(b), the spin-spin correlations decay slightly slower than the
charge density-density correlations or with comparable rate,
the amplitude of the spin-spin correlations is also larger. The
red lines in Figs. 5 represent the decay rate ~r—2, which
can be used for guidance. With increasing the hole doping
to moderate level § ~ 10%~20%. The charge density-density
correlations are almost unchanged or slightly suppressed [see
Figs. 5(a) and 5(b)]; however, the spin-spin correlations are
significantly enhanced with both much slower decay rate and
larger amplitude. The orange lines in Figs. 5 suggest the decay
rate of the spin-spin correlations close to ~r~!' for L, =3
and is further enhanced to ~r~%% for wider cylinders L, = 4.
Since the power-law decay ~r~* with o < 2 suggests the di-
verged susceptibility towards 2D, these observations indicate
that the SDW would be dominant over the CDW for the doped
Mott insulators on the triangular lattice.

Here we point out that a recent paper [73] also shows
similar findings, i.e., the comparable decay rate of both cor-
relations and the larger amplitude of the spin correlations.
Although both correlators can be fitted by the power-law func-
tion with close exponents similar to our findings in Figs. 5(a)
and 5(b), their interpretations that the spin correlations are
exponentially decaying while the charge density correla-
tions are power law in Ref. [73] are inconsistent with our
results.
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FIG. 4. Chirality correlators. The chiral-chiral correlations as a
function of distance r for three typical hole doping at U/t = 7.5 on
N =72 x 3 cylinders (a) and at U/t =9 on N = 48 x 4 cylinders
(b). The solid lines represent the power-law function of r~2 (red)
and r~' (orange). The blue-solid lines correspond to the decay of
chiral correlations. The bond dimension of such calculation is set up
to 36 000~60 000 for L, = 3 in (a) and up to 36 000~69 000 for L, =
4 in (b). Panel (c) shows additional resultsat U/t =9on N =72 x 3
cylinders and at U/t = 10 on N = 48 x 4 cylinders, we also include
the results (a) and (b) to compare.

D. Hole pockets evolution with doping

In the charge channel, we examine the properties of doped
holes by measuring the hole momentum distribution function
n(k), which can be extracted from the change of electron
momentum distribution after doping:

nh(k) = ny(k) — ns(k), (3)
where
1 ; .
ns (k) = N Z(Cizrcja)elk.(ri_rj) )
i,j,o
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FIG. 5. Spin-spin correlations and charge density-density corre-
lations. Panels (a) and (b) show the comparison between the spin-spin
correlations and charge density-density correlations for U/t = 9 on
L,=4,L, =48 and L, =3, L, =72 cylinders. We consider two
typical examples at light doping and moderate doping. Both cor-
relations decay in a comparable rate at light doping, however, at
moderate doping, the spin-spin correlations decay much slower than
the charge density-density correlations and also with much larger
amplitude. The bond dimension of such calculation is set up to
60000 for light doping and up to 36 000 for moderate doping § <
10%.

represents the electron momentum distribution at hole dop-
ing §, ng(K) corresponds to half filling at the same coupling
strength U /t.

At light hole doping § < 10%, we find the following con-
trasting outcomes depending on whether one is at strong or
intermediate coupling. At strong coupling, the doped holes
form small pockets around momenta K [see Fig. 6(c) for
U/t = 18], while at intermediate coupling each hole pocket
splits into two parts [see Fig. 6(a) for U/t = 9]. To see this
more clearly, we show the cuts of " (k) across the hole pock-
ets in Fig. 6(e). Strikingly, at strong coupling there is a sharp
drop in n’ (k) characterizing a well-defined Fermi momentum
of holes in the spin ordered background, while at interme-
diate coupling there is a broad momentum distribution for
lightly doped holes. The latter is indicative of fractionalized
spin and charge excitations—although the total momentum
of the spin and charge is conserved [75,76], the momentum
shared between separated charge and spin excitations would
lead to the absence of a well-defined Fermi momentum for
holes [75-80]. Here we also point out that the splitting of
hole pockets at intermediate coupling is independent of L,,
and gradually disappears with increasing coupling strength
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factor N,, the peaks at g, indicate the wave vector of charge modulations. Here we consider N = 36 x 3 cylinders. The bond dimension of

such calculation is set up to 10 000~12 000.

to the strong coupling regime, as shown in the left panel
in Fig. 6(e).

E. Chiral metallic phase

We further compared n (k) with charge density structure
factor Ng. Ng is defined by the Fourier transformation of
density-density correlations, ie.,

Z( nin )

As shown in Fig. 6(f), the peaks in the second order derivative
of Ng characterize wave vectors of the charge modulations qo,
or equivalently, the scattering between holes near the Fermi
surface with momentum difference Aq. For a Fermi liquid
state that appears to be present in the strong coupling regime,
qo = Aq, where the corresponding charge modulations (see
Appendix A 1) can be attributed to the intra-pocket scattering.

A striking observation is that in the anomalous chiral metal
(the lightly doped intermediate coupling state) we find charge
modulations with the same wave vectors g as in the strong
coupling limit. However, unlike in the strong coupling limit, a
well-defined Fermi momentum for doped holes is lacking [see
Fig. 6(e)]. The significant difference between Ny and n"(K)
suggests the spin and charge are no longer confined together
in the anomalous chiral metal, consistent with doping a spin
liquid. At larger doping § = 10%, a well-defined hole pocket
is reconstructed even at intermediate coupling strength around
K [see Fig. 6(b)], while for the strong coupling strength,
the original hole pockets gradually increase with doping [see

i) {ny))e e, )

Fig. 6(d)]. Both cases have the same Fermi momentum, as
illustrated by the jump in n”(k) in Fig. 6(e). The momentum
difference Aq between holes near the Fermi surface exactly
matches the peak qo in the second-order derivative of the
charge structure factor Ng, i.e., qgp = Aq.

Moreover, we compare various real-space correlators to
further examine the chiral metallic phase. As shown in
Fig. 7(a) for L, =4 cylinders, we find the single particle
propagator decays in a power-law fashion with a slower de-
cay rate compared with other correlations, suggesting the
robust nature of chiral metallic phase on L, =4 cylinders.
However, we also point out that we find a complex feature
on L, = 3 cylinders [see Fig. 7(b)]: (i) the spin chirality or-
der is dominant over other correlations for long distance on
L, =3 cylinders, indicating a robust time-reversal symme-
try breaking phase; (ii) the single particle propagator decays
relatively faster than L, = 4 but tends to saturate at longer
distance and decays comparable with chiral correlations; and
(iii) the spin-spin correlations (~r~2%) decay in a comparable
rate with the pair-pair correlations [see the next section and
Fig. 9(b)] and exhibiting spatial oscillations, which suggests
the pair-density-wave (PDW) pattern is locally robust but the
quasi-long-range order is insignificant. Therefore, the L, = 3
cylinder exhibits the competition between the chiral metal and
local PDW.

We further probe the nature of this chiral metal state
by examining the bond charge current pattern, which is de-
fined by I§;, = —i)_, (c:facja — H.c.). A typical example of
the current pattern at § = 1/20 for U/t =9 is shown in
Fig. 8, where the width of each bond is proportional to the
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FIG. 7. Real-space correlators at light doping: chiral-chiral cor-
relations, spin-spin correlations, charge density-density correlations,
single particle propagators. Panel (a) and (b) show different correla-
tors for U/t =9 on L, = 4 and for U/t = 7.5 on L, = 3 cylinders,
respectively. Here we focus on the doping.

current magnitude and the arrow indicates the current di-
rection, the bond current pattern exhibits the translational
symmetry breaking in the bulk along the horizontal direction,
though we also notice the existence of domains in the pattern.
We find L, = 3 cylinders exhibit the same feature with L, = 4,
and leave such results in the Appendix A 2. Meanwhile, the
time-reversal invariant spin current I, = —i(S;"S; —S7S})
[76] is vanishingly small in the same phase, consistent with
the existence of the spin chirality order for chiral metal. Here,
we would like to mention that the chiral metal phase identified
here is consistent with recent mean-field analysis of the doped
Kalmeyer-Laughlin type chiral spin liquid [81], where a chi-
ral metal with unit cell doubling and staggered loop current
order is proposed [82]. Reference [82] also points out the
competition between the chiral metal and superconductivity,
which is also observed here for L, = 3. But with the increase
of cylinder width, we find the chiral metallic phase becomes
dominant.

F. Evolution of superconducting pair-pair
correlations with hole doping

Below we examine the superconductivity on hole doping
by measuring the pair-pair correlations D(r) = ((A?)TAY ),

i+r
in which the Cooper pair operators in the singlet and triplet
channels are defined by A} = % >, 0Ci 6Cip—, and Al =

«/LE >, CiioCiy—o» Tespectively. Here, we focus on the local

pairing between the nearest sites (i;, i»). We have fixed one
bond in the pair-pair correlations at i along ey and measure its

correlations with pairs along ey, €y, and e, — ey, respectively,
then we average the absolute value of pair correlations for a
fixed distance. Figures 9(a) and 9(b) show the pair-pair corre-
lations for U/t =7.5,9 for Ly =3 and U/t =9 for L, =4
at typical doping levels on L, = 3,4 cylinders, and U/t =
18 gives similar results. For both intermediate coupling and
strong coupling models, we find the pairing strength in singlet
channel are stronger than triplet channel, and thus we will
focus on singlet pairing. We also notice that, at larger doping
8 > 20%, while the singlet pairing has stronger correlations
at longer distance, the triplet pairing becomes competitive
with singlet pairing when further increasing 4, particularly for
wider systems.

In our quasi-one-dimensional setup, true long-range or-
der in the pair correlation function D(r) is forbidden by
the Mermin-Wagner theorem. We therefore content ourselves
with looking for slow power-law decay [D(r) ~ 1/r" where
n ~ 1], which, as we show, appears at the largest cylinder
circumferences and at high doping. To gain the indication
of superconductivity for 2D, we look for power-law decay
with n < 2, which would lead to the divergence of supercon-
ductivity susceptibility. For the fast decay of the correlation
functions, both power law and exponential function could fit
the data well, to see it more clearly, we present both semilog-
arithmic and double-logarithmic plot for the same data to
compare, as shown in Fig. 9.

For L, = 4 cylinders, as shown in Fig. 9(a), the pair-pair
correlations D(r) decay exponentially at light doping, while
its amplitude and decay length increase with the increase
of hole doping. At moderate hole doping § ~ 10% ~ 20%,
D(r) could be fitted by an exponential function with long
decay length or a power-law function with relatively large
exponent 1 2 2, as shown in the semilogarithmic and double-
logarithmic plot in Fig. 9(a). Due to the large exponent, the
power-law fitting and the exponential fitting would be very
close, implying that the superconductivity is not dominant
when the SDWs exist. At § = 20%, the pair-pair correla-
tions are further enhanced when the SDWs are suppressed.
The double-logarithmic in the right panel of Fig. 9(a) shows
n ~ 1.6 at § = 1/3. Here, we push our calculation with bond
dimension up to 60000 and also plot the 2 decay for com-
parison, we find that the power-law decaying behavior with
exponent n < 2 is robust at large doping. The last observa-
tion gives evidence for quasi-long-range pair-pair correlations
being stabilized at these relatively large dopings. Although
the short-ranged spin backgrounds appear on wider cylinders
already at § ~ 20%, pushing to higher dopings considerably
strengthens the pair-pair correlations.

For L, = 3 cylinders, as shown in Fig. 9(b), the pair-pair
correlations D(r) decay rapidly at light doping § = 1/18. As
shown in the semilogarithmic plot in Fig. 9(b), D(r) could
be fitted by an exponential function, meanwhile, it is poten-
tially also consistent with a power law D(r) ~ 1/r" with large
exponent n ~ 3.7 for U/t =9 and n ~ 2.8 for U/t =17.5,
see the double-logarithmic plot in Fig. 9(b). Both fitting are
quite close due to the smallness of correlators both in absolute
magnitude and rapid decay rate, which does not point to a
robust superconducting ground state, particularly considering
that n > 2 corresponds to the short-ranged correlations in
2D or the superconducting susceptibility does not diverge.
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FIG. 8. The charge current pattern in the chiral metal phase. This panel shows the pattern of [;;;, at § = 1/20 for U/t =9 on L, =4
cylinders, the width of each bond is proportional to the current magnitude, while the arrow indicates the current direction. Here we consider
N = 16 x 4 cylinders. The bond dimension of such calculation is set up to 12 000.

In addition, for these doping levels, we have found spatial
charge modulations (see Appendix A 1), the number of peaks
in the hole distribution function equals to the number of doped
holes. This is inconsistent with a strongly paired state, where
the number of peaks would be half the number of doped holes.
Here, we also notice Ref. [73] fit D(r) in to a power-law
function with n > 3.5, which is consistent with our results
and indicates the absence of divergent susceptibility, but it
was claimed to be the evidence of superconducting state [73].
At larger doping § 2 20%, where the SDWs are strongly sup-
pressed [see Figs. 2(a4) and 2(b4)], D(r) are further enhanced.
If we fit D(r) by a power-law function, as shown in the right
panel of Fig. 9(b), the exponent n ~ 3 is relatively large,
which suggests that the enhancement for doping below and
above 20% are insignificant. This might be due to the stronger
quantum fluctuations for L, = 3.

On square lattice, the previous studies mainly focused
on 1/8 doping [83-88] and reported the exponential decay
of pair-pair correlations for L, =4 ladders [83-86] or 2D

[86], which was attributed to the competition between charge-
density waves (or stripes) and superconductivity. Here, we
have identified the doping induced commensurate SDWs at
8 ~ 10%~20%, where the pair-pair correlations are strongly
suppressed, implying the competition between SDWs and
superconductivity on triangular lattice. We note that the ex-
istence of d-wave superconductivity is reported in the same
triangular-lattice model for L, = 3 ladders at U/t = 10 [68].
Our findings of the enhanced pairing at larger doping are
consistent with hole pairing driven by spin super-exchange
coupling, similar to the pairing mechanism proposed for
square lattice case [2—4]. An additional observation that
is consistent with the super-exchange scenario is that at
intermediate coupling where the super-exchange J ~ /U
exceeds that at strong coupling, the pair correlations are
generally found to be stronger (compare the intermediate cou-
pling correlators with the strong coupling correlators in the
Appendix A 3).

- -2 2
(a) Ly—4 10 semi-logarithmic L. =48 10 f double-logarithmic L.=48
U/t=9 X~ _ x

@ E
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FIG. 9. The pair-pair correlations. Panels (a) and (b) show the pair-pair correlations in singlet channels for U/t =9 on L, =4, L, =48
(a) and L, = 3, L, =72 (b) cylinders. The left panels in each figure show the plots in semilogarithmic scale, while the right panels are the
plots in double-logarithmic scale. The bond dimension of such calculation is set up to 60 000.
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TABLE I. Summary of results as a function of doping (light,
moderate, and high as defined above) and coupling strength (inter-
mediate and strong). The SDW phase has the same wave vector as the
120° magnetic order, but the wave vector in SDW” is at a potentially
different (M) momentum point when K point is inaccessible. The
anomalous chiral metal has short ranged spin correlations but long
ranged spin chirality order. No clear Fermi surface is detected, unlike
in the other regimes.

Doping Intermediate coupling Strong coupling
Light Chiral order SDW;
(Ly =3,4);

0<d<10% Metallic Metallic

Ly =4),

Metallic vs local
PDW(L, = 3)

Moderate SDW’; SDW’;
10% < 6 < 20% Metallic Metallic
High no-SDW no-SDW
20% < 8 enhanced singlet enhanced singlet

pairing pairing

Here, we should point out that at doping around § =
1/3, although we indeed find the pair-pair correlations are
significantly enhanced than lower doping and they decay in
a power-law fashion with the exponent n < 2 (D(r) ~ 1/r"),
our computations show that the single particle propagator
also decays in a power-law fashion (see the Appendix A 3),
which may indicate the existence of nodal points in the super-
conducting phase or the superconductivity is not robust. We
therefore claim it as the enhanced pair-pair correlations in the
phase diagram instead of the robust superconductivity. The
absence of clear superconductivity in pure Hubbard model
on triangular lattice is similar to the square-lattice case as re-
ported in Refs. [84-86]. Meanwhile, we also find random sign
oscillations in D(r), indicating competing spatial symmetries
or even more complicated nature, which we leave for future
studies.

G. Particle-hole asymmetry

Based on the above measurement, we summarize our find-
ings in Table I and set up the hole doped phase diagram as
depicted in Fig. 10. Now we briefly discuss the particle-hole
asymmetry with respect to electron and hole doping and leave
a systematic study for future work. The particle-hole symme-
try is absent on the nonbipartite triangular lattice. In contrast
to the hole doped case, where light doping § ~ 10% does not
change the spin background, even a small density of doped
electrons have a dramatic effect on the spin background (see
Appendix B). For example, at intermediate coupling even for
doping as low as § ~ 5% the maxima of the spin-spin corre-
lation function shift to wave vector M (on L, = 3 cylinders).
The distinct spin backgrounds after doping characterize the
asymmetric roles of the doped holes and electrons, suggesting
even richer physics on triangular lattice compared with the
particle-hole symmetric square-lattice case. We leave the sys-
tematic study of electron doping and particle-hole asymmetry
to future work.

(@ Ly=4
ult]
Spin density wave phases Enhanced
(Qy=M or Q,=K’) pair-pair
Correlations
Chiral metal
(L,=4) S
- > 6
(b)Ly=3’ ~10% ~20%
utei]
Spin density wave phases Enhanced
(Q=K) pair-pair
Correlations
Chiral metal
Lm(:f‘:lsésl)nw
= S
~10% ~20% >

FIG. 10. . The schematic phase diagram of hole doped two dis-
tinct spin backgrounds for U/t =9 and U/t = 18 as a function
of hole doping concentrations §. Here the chiral metallic phase is
robust on L, = 4 cylinders while it coexists with local PDW pattern
(short-range PDW) on L, = 3 cylinders

IV. CONCLUSIONS

Our study of the doped triangular lattice Hubbard model
reveals that different Mott insulators obtained on changing the
coupling strength U/t leads to significantly different physics
at light hole doping. In the strong coupling limit, a Fermi
liquid with well-defined hole pockets at the K* points is ob-
served. In contrast at intermediate coupling, hole pockets do
not exhibit well-defined quasiparticles. Moreover, long ranged
spin chirality correlations along with short ranged spin-spin
correlations are observed. These observations are consistent
with spin-charge separation and spin liquid physics. However,
at moderate doping and high doping, a SDW is established
across the range of coupling strengths and competes with
superconductivity, which is established on further doping.
This phenomenology should be contrasted with the competi-
tion between the emergent charge density wave (CDW) and
superconductivity on the square lattice. We summarize the
main features of different phases versus doping concentration
8 and coupling strength U /¢ in Table I and the schematic phase
diagram in Fig. 10.

Our findings for the doped Mott insulators here open up
the study of the distinct signatures of correlated electron
physics on frustrated lattices, and the inherent electron-hole
asymmetry in these problems. A promising platform to ex-
perimentally study these issues is the recently realized Moiré
lattice TMD or twisted TMD bilayers [25,26], which should
be well described by the triangular lattice Hubbard model, in
which the coupling strength U /¢ is widely tunable through the
twist angle, and the doping concentration is also continuously
controllable. In a completely different context, in recent years,
quantum simulations using the ultracold fermions in optical
lattices has been significantly advanced by quantum gas mi-
croscopy [28-30], which provides another platform to explore
the physics in the doped Hubbard models. The experimental
architecture makes it possible to tune the lattice geometry, the
charge doping and the coupling strength U /¢, and therefore,

205110-9



ZHU, SHENG, AND VISHWANATH

PHYSICAL REVIEW B 105, 205110 (2022)

FIG. 11. The real-space hole density profile n"(x) for U/t =9
and U/t = 18 atdoping level § = 1/18,1/9,1/6onL, = 36,L, =3
cylinders. The inset shows the second order derivatives of the density
structure factor N, where the peaks indicate the wave vectors of the
charge modulations ¢y.

the whole phase diagram discovered in this paper could be
directly probed.

Note added. A theoretical study [82] also found that a chi-
ral metal naturally emerges on doping a Kalmeyer-Laughlin
chiral spin liquid.
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APPENDIX A: ADDITIONAL RESULTS
FOR HOLE DOPING

1. Charge Modulations

We first present the results of the real-space charge density
distribution of the doped holes. The doped holes distribute
uniformly in each rung of cylinder due to the periodical

boundary conditions along ey, we thus focus on the hole
distribution along ex and define n'(x) = Zs;l n"(x, y), where
n"(x,y) = 1 — n(x,y) denotes the hole density on the site
with coordinate (x,y). As shown in Fig. 11 for U/t =9
and U/t = 18, the doped holes exhibit strongly spatial mod-
ulations at § < 20% for both cases, while their amplitude
decrease with the increase of hole concentration. The wave
vectors of the charge modulations gy can be determined by
the singularity /kinks in the structure factors N, as illustrated
in the second order derivative of N, in the inset of Fig. 11.
Moreover, the number of peaks in 1" (x) equals to the number
of doped holes, implying the absence of strongly pairing state.

2. Charge current pattern for L, = 3 cylinders

In the main text, we have shown the bond charge current
pattern for the chiral metallic phase on L, =4 cylinders.
Figure 12 shows the bond charge current pattern on L, = 3
cylinders with U/t = 9, the width of each bond is proportional
to the current magnitude and the arrow indicates the current
direction, the bond current pattern exhibits the translational
symmetry breaking in the bulk along the horizontal direction,
though we also notice the existence of domains in the pat-
tern. Meanwhile, the time-reversal invariant spin current Ifj =
—i(S7"S7 —S7S]) is vanishingly small in the same phase,
consistent with the existence of the spin chirality order for
chiral metal.

3. Various real-space correlators

To further confirm the dominant physics in each phase, we
compute various correlation functions in the real space and
put them into the same figure to compare, including: (i) the
spin-spin correlation: (7S}, ,); (ii) the charge density-density
correlation: (n;n;y,) — (n;){n;+,); (iii) the single particle prop-
agator: ) (c; Citro); and (iv) the chiral-chiral correlations
{CA,Cp,, )05 as shown in Fig. 13. Figures 13(a)-13(c) and
13(d)-13(f) show L, = 4, L, = 48 cylindersand L, = 3, L, =
72 cylinders at three typical dopings, respectively.

4. Pair-pair correlations

We next examine the pair-pair correlations D(r) at hole
doping side. In the main text, we have shown the results on
longer cylinders with size N =72 x 3 and N =48 x 4. In
the Appendix, we show the bond-dimension dependence of
the pair-pair correlations.

At light doping, the pairing correlators appear to decay
exponentially and there is no systematic change of correlators
on increasing bond dimension on small clusters with N =
36 x 3, as shown in Fig. 14 for L, = 3 cylinders and Fig. 15
for L, = 4 cylinders. If we fit D(r) with a power law function

VAVAVAVAVAVAVAVANANAVAVAVAVANANAVAVAVAVANAVAVAV

YAVAVAVAVAVAVAVANANAVAVAVAVANANAVAVAVAVANANAVAVA

FIG. 12. The charge current pattern in the chiral metal phase. This panel shows the pattern of [j;;, at § = 1/18 for U/t =9 on L, =3
cylinders, the width of each bond is proportional to the current magnitude, while the arrow indicates the current direction. Here we consider
N = 24 x 3 cylinders. The bond dimension of such calculation is set up to 12 000.
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FIG. 13. Real-space correlators: chiral-chiral correlations, spin-spin correlations, charge density-density correlations, single particle
propagators. Panels [(a)—(c)] and panels [(d)-(f)] show different correlators for U/t =9 on L, = 4 and for U/t = 7.5 on L, = 3 cylinders,
respectively. From left to right in each row, we consider three typical hole doping concentrations: § = 1/18 [(a),(d)], § = 1/6 [(b),(e)], and

8 =1/3 [(c).(D].

D(r) ~ r~ as best we can, the resulting exponent is rela-
tively large. For instance, o 2 4 for § = 1/18 when L, =3
[see Fig. 14(b)] and @ 2 3 for § = 1/20 when L, = 4 [see
Fig. 15(b)]. Furthermore, while this behavior is potentially
also consistent with a power law with large exponent, we note
that the smallness of correlators both in absolute magnitude
and rapid decay rate does not point to a superconducting
ground state at small and medium doping. In addition, for
these doping levels, we have found spatial charge modulations
in Fig. 11, the number of peaks in the hole distribution func-
tion equals to the number of doped holes. This is inconsistent
with a strongly paired state, where the number of peaks would
be half the number of doped holes.

APPENDIX B: ELECTRON DOPING

In the main text, we mainly focus on the hole doped side,
in this section, we very briefly compare with electron dop-
ing side. For the electron doping, we choose U/t =9 and
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FIG. 14. The pair-pair correlations for N = 36 x 3 cylinders at
doping § = 1/18. Panel (a) shows the plots in semilogarithmic scale,
while panel (b) shows the same data but in double-logarithmic scale.

U/t = 18 for comparative study on L, = 3 cylinders at doping
8 > 5%. Here, we should point out that the comprehensive
study of electron doping lies outside the scope of the present
work, which we will leave for future systematical investiga-
tions.

We examine the spin channel by measuring the static
spin structure factor Sq(Q) = 4 >_; i (Sij)eiQ'(ri_rj). Fig-
ures 16(a)-16(d) and 16(e)-16(h) show the contour plot of
Sq against electron doping with U/t =9 and U/t = 18, re-
spectively. For the electron doping with U/t =9, § exhibits
peaks at commensurate momentum q =M up to around
6 = 1/6 [see Figs. 16(a)-16(c)], indicating the commensurate
SDWs. For the electron doped 120° Néel ordered spin back-
ground with U/t = 18 [see Figs. 16(e)-16(g)], Sq exhibits
splitting peaks around q = M, suggesting incommensurate
SDWs. At larger doping § > 20%, the spin backgrounds are

(a) = (b)
L=4 = m=8000
10° —e—m=12000
= —=— m=20000
%) [72]
5 10° S
2 5
2 2
5 S
8 10° o
= =
g g
g 10° g
107k log-linear plot 107 | log-log plot
36 9 r1'2 1518 21 3 PR
r

FIG. 15. The pair-pair correlations for N = 30 x 4 cylinders at
doping § = 1/20. Panel (a) shows the plots in semilogarithmic scale,
while panel (b) shows the same data but in double-logarithmic scale.
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U/t=9,6=1/18

0
g /n

0
a/n

FIG. 16. The contour plot of spin structure factor Sq for U/t =9 [(a)—(d)] and U/t = 18 [(e)—(h)] with different electron doping
concentrations 8. From left to right in each row, the concentrations of the doped electrons are § = 1/18 [(a),(e)], § = 1/9 [(b),(f)], § = 1/6
[(©),(2)], § = 2/9 [(d),(h)]. The black dots represent the momentum points we can access in the Brillouin zone (dashed line) of N = 36 x 3

cylinders.

indistinguishable for U/t = 9 and U/t = 18 [see Figs. 16(d)
and 16(h)], the spin correlations become short ranged for
both coupling strength. The different responses of the spin

backgrounds against doping can be served as an evidence of
the asymmetry with respect to the electron and hole doping on
triangular lattice.
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