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Effective field theories for gapless phases with fractons via a coset construction
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Fractons are particles with restricted mobility. We give a symmetry-based derivation of effective field theories
of gapless phases with fractonic topological defects, such as solids and supersolids, using a coset construction.
The resulting theory is identified as the Cosserat elasticity theory, which reproduces the conventional symmetric
elasticity theory at low energies. The construction can be viewed as a dynamical realization of the inverse Higgs
mechanism. We incorporate topological defects such as dislocations and disclinations, which are nontrivially
related by the Bianchi identities of defect gauge fields. The origin of the fractonic nature of defects in those
systems can be traced back to the semidirect product structure of translational and rotational groups. The
construction is immediately extendable to higher dimensions and systems with broken translational symmetries,
such as solids, supersolids, and vortex crystals. We identify Wess-Zumino terms in supersolids, which induce
quasiparticle scatterings on topological defects.
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I. INTRODUCTION

Fracton phases are a new class of quantum phases that host
excitations with mobility restrictions [1,2]. Those excitations
cannot move at all, or their motions are restricted in subdi-
mensional spaces. Such fracton phases were first discussed
in exactly solvable lattice models [3–7]. It has been realized
that symmetric tensor gauge theories [8–11] can encode mo-
bility restrictions through the conservation laws of multipole
moments [12–14]. The elasticity theory of two-dimensional
crystals was shown to be dual to a symmetric tensor gauge
theory, and disclinations in solids are fractonic [12]. Similar
dualities can also be formulated for other systems such as
supersolids [15] and vortex crystals [16].

The relation between the immobility of a particle and the
conservation of multipole moments can be seen as follows.
Suppose that there is a particle number current jμ(x), which
is conserved, ∂μ jμ = 0. If we define the dipole current by
(Ja)μ(x) = xa jμ, where a is a spatial index, its divergence
reads

∂μ(Ja)μ = ja. (1)

This relation means that the flow of a current should be ac-
companied by the creation/destruction of dipoles. Therefore,
if the dipole current is conserved, ∂μ(Ja)μ = 0, the particle
number current vanishes, ja = 0, which means that a parti-
cle is immobile. In the case of a solid in 2 + 1 dimensions,
disclinations and dislocations correspond to jμ and (Ja)μ,
respectively. When the dipole excitations (dislocations) are
gapped, the conservation of dipoles is energetically enforced,
and disclinations are immobile. In this way, the relation (1)
plays a key role in realizing fractons.
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In this paper, we discuss the construction of the effective
field theories of gapless phases with fractonic topological
defects, such as solids and supersolids, in which the trans-
lational symmetry is spontaneously broken. We employ a
coset construction [17,18], which is a systematic method of
writing down the effective Lagrangian of low-energy theory
associated with a spontaneous symmetry breaking (SSB).
Topological defects appear as a result of an SSB, and they
can be incorporated in the effective theory. In this approach,
the relations between the defect currents (1) can be traced
back to the underlying structure of the symmetry group and
its breaking pattern. The geometric origin of the fractonic
feature becomes transparent, and Eq. (1) reflects the fact that
the rotational symmetry acts nontrivially on the translational
symmetry. Its origin is the same as the Bianchi identities of
the torsion and curvature of the Riemann-Cartan spacetime.
The coset construction clarifies this connection.

The rest of the paper is organized as follows. In Sec. II,
we give the derivation of the effective theories for solids
and supersolids. In Sec. III, we describe the properties of
dual gauge theories. In Sec. IV, we discuss the scattering
processes of quasiparticles off topological defects induced by
Wess-Zumino terms. Section V is devoted to the summary.

II. COSET CONSTRUCTION AND THE COSSERAT
ELASTICITY

A coset construction is a method for constructing the effec-
tive theory of Nambu-Goldstone (NG) modes associated with
an SSB. The obtained effective theories are universal, in the
sense that their forms are dictated by the symmetry-breaking
patterns, and microscopic details are encoded in the values of
phenomenological parameters. Although it was invented for
the breaking of internal symmetries, it allows for a number
of generalizations, such as spacetime symmetries [19–23] and
higher-form symmetries [24,25].
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We here perform a coset construction for solids and su-
persolids in D = d + 1 spacetime dimensions.1 We consider
nonrelativistic systems and the underlying spacetime symme-
try is the Galilean group. This symmetry is spontaneously
broken because of the formation of solids or supersolids. In
the case of supersolids [27], we have an additional U (1)
symmetry, which is also spontaneously broken. In a coset
construction, we first parametrize the coset space, and for
each broken generator we have an NG field, which is a de-
gree of freedom of the low-energy theory. A subtlety for
the broken spacetime symmetry is that, unlike the case of
internal symmetries, there is no one-to-one correspondence
between a broken symmetry generator and a gapless NG mode
[20]. When a broken symmetry generator does not commute
with the translation, there can be a nontrivial coupling of NG
modes through the covariant derivative and that results in the
reduction of gapless modes compared to the number of broken
generators. For the details of the coset construction for broken
spacetime symmetries, see Ref. [21].

Below, d denotes the spatial dimension, and D = d + 1
is the spacetime dimension. We use the mostly-plus conven-
tion for the Minkowski metric, ημν = (−1,+1, . . . ,+1). The
symmetrization/antisymmetrization of indices are denoted by
brackets, (· · · ) and [· · · ], respectively. For example, A(ab) ≡
(Aab + Aba)/2 and A[ab] ≡ (Aab − Aba)/2.

A. Symmetry and its breaking pattern

A Galilean group is the spacetime symmetry group of
nonrelativistic systems. The generators of the Galilean group
in d spatial dimensions, Gal(d ), satisfy the Galilean algebra
Gal(d ), whose nonvanishing commutation relations are

[Jab, Jcd ] = −4iη[a[cJd]b], [Jab, Pc] = 2iηc[aPb],

[Jab, Bc] = 2iηc[aBb], [Ba, H] = iPa,
(2)

where Jab, Pa, and Ba are the generators of rotation, spatial
translation, and Galilean boost, respectively, and H corre-
sponds to the non-mass energy. The Bargmann algebra B(d )
is a central extension of the Galilean algebra Gal(d ) with the
following relation,

[Ba, Pb] = −iηabQ0, (3)

where Q0 represents the total mass, which can be written as
Q0 = −mQ, where m is the mass of a particle, and Q is the
particle number. Since Q is a U (1) charge and commutes
with every other generator, this is a central extension. The
Bargmann algebra can be obtained as the nonrelativistic limit
of the Poincaré algebra [28]. For d � 3, this is the only central
extension. In the case of two spatial dimensions, the Galilean
group, Gal(2), admits another central extension. In addition to
Eq. (3), we can have the following nonvanishing commutation
relations,

[Ba, Bb] = −iεabκ Q0. (4)

In addition to m, there is another parameter κ , which can be
interpreted as the spin (per mass) of a particle [29].

1See Ref. [26] for a related construction.

We consider the following symmetry-breaking pattern to
realize solid and supersolid phases,

Gal(d ) × U (1) → (Zd
� G) × R, (5)

where � is the semidirect product and G ⊂ SO(d ) is a discrete
subgroup of SO(d ), R corresponds to the time translation, and
Zd represents discrete spatial translations. The low-energy
behavior of solids can be described by a d-dimensional field
φa(t, x). The field φa(t, x) can be regarded as the comoving
coordinate of the material. The actions of internal rotational
and translational symmetries are given by

φa �→ ξ a
bφ

b, ξ a
b ∈ SO(d ),

φa �→ φa + ca, ca ∈ Rd .
(6)

For supersolids, to describe the U (1)-symmetry breaking, we
introduce an additional scalar field φ0(t, x), which is shifted
by the U (1) symmetry,

φ0 �→ φ0 + c0, c0 ∈ R/2πZ � U (1). (7)

The action of the U (1) symmetry and the translations can be
combined into a four-vector notation,

φA �→ φA + cA, (8)

where cA are constants with index A = (0, a). Correspond-
ingly, we introduce a four-vector notation Qμ = (Q0, Qa).
When the supersolid (or solid) is in the ground state, we
can choose the comoving coordinates φA to coincide with the
spacetime coordinates xA = (x0, xa),

〈φa〉 = xa, 〈φ0〉 = x0. (9)

We can parametrize the fields φa and φ0 as

φa = xa + ua, φ0 = x0 + u0. (10)

Here, the field ua represents the deviation of the material
coordinate from its equilibrium position, and is called the
displacement field in the elasticity theory. The field u0 can
be identified as the fluctuating part of the U (1) phase of the
condensate (divided by the mass m of a particle).

Let us summarize the unbroken and broken generators for
supersolids:

unbroken : P̄μ = Pμ + Qμ, spacetime and internal translation,

J̄ab = Jab + Lab, spatial and internal rotation;

broken : Qμ = (Q0, Qa), internal U (1) × Rd ,

Lab, internal rotation,

Ba, Galilean boost.
(11)

Note that the ground state is invariant under the combina-
tions of spacetime and internal translations/rotations [21].
The combined generators are written, for translation, as P̄μ =
(−H − mQ, Pa + Qa).

B. Covariant derivatives

The low-energy degrees of freedom are the coordinate of
the coset space associated with the symmetry breaking (5).
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We call those fields as Nambu-Goldstone (NG) fields. We can
parametrize the coset space as


 = eixμP̄μeiva (x)Ba eiuμ(x)Qμeiθab(x)Lab, (12)

where va(x), uμ(x), and θab(x) are the NG fields of Galilean
boosts, U (1) and internal translations, and internal rotations,
respectively. The building blocks of the low-energy theory can
be obtained from the Maurer-Cartan (MC) form,

ω ≡ −i
−1d
. (13)

The MC form can be expanded by generators as

ω = ωA
P̄P̄A + ωab

J J̄ab + ω
μ
QQμ + ωab

L Lab + ωa
BBa. (14)

The coefficients of the unbroken combined translation and
rotational generator, P̄A, J̄ab, give the vielbein and spin con-
nection,

ωA
P̄ = e A

μdxμ, ωab
J̄ = ω ab

μ dxμ. (15)

The 1-forms proportional to the broken generators give the
covariant derivatives DA of NG fields,

ων
Q = e A

μDAuνdxμ,

ωab
L = e A

μDAθabdxμ,

ωa
B = e A

μDAvadxμ.

(16)

By using the commutation relations, we have

e−ivcBc PaeivcBc = Pa − vaQ0,

e−ivcBc P0eivcBc = P0 − vaPa + 1

2
v2Q0,

e−iθaLa P̄μeiθaLa = (
P̄0, Pa + ξ b

a Qb
)
,

(17)

where ξ b
a ∈ SO(d ) is the rotational matrix associated with

θ , ξ b
a ≡ (eiθ ·L ) b

a . Using those relations, we can identify the
components of MC 1-forms as

ω0
P̄ = dx0,

ωa
P̄ = dxa − vadx0,

ω0
Q = du0 − vadxa + 1

2
v2dx0 − κ

2
vadvbεab,

ωa
Q = dφbξ a

b − dxa + vadx0,

ωa
B = dva.

(18)

The term proportional to κ in ω0
Q can exist only in (2 + 1)-

dimensional spacetime. The part proportional to the rotational
generator Lab is written as

ωab
L Lab = −ie−iθabLabdeiθabLab . (19)

From ωA
P̄, we can read off the vielbein as

eA =
(

dx0

dxa − vadx0

)
. (20)

In terms of components, the vielbein and its inverse are given
by

e A
μ = δ A

μ − δ 0
μvA, eμ

A ≡ (
e A
μ

)−1 = δ
μ
A + δ0

Avμ, (21)

with vμ = (0, va). They satisfy eμ
Ae B

μ = δB
A . We can read off

the components of ω0
Q, ωa

Q, and ωa
B as

(
ω0

Q

)
μ

= ∂μu0 − vaδ
a
μ + 1

2
v2δ0

μ − κ

2
εabv

a∂μvb,(
ωa

Q

)
μ

= ∂μφbξ a
b − δa

μ + δ0
μva,(

ωa
B

)
μ

= ∂μva.

(22)

Accordingly, the covariant derivatives of the NG fields are
given by

DAu0 = eμ
A

(
ω0

Q

)
μ

= ∂Au0 − δa
Ava + δ0

A

v2

2
− κ

2
εabv

a∂Avb

+ δ0
Avc

(
∂cu0 − vc − κ

2
εabv

a∂cv
b
)
,

DAua = eμ
A

(
ωa

Q

)
μ

= ∂Aφbξ a
b − δa

A + δ0
Ava

+ δ0
Avc

(
∂cφ

bξ a
b − δa

c

)
,

DAva = eμ
A

(
ωa

B

)
μ

= ∂Ava + δ0
Avb∂bv

a.

(23)

Let us list the temporal and spatial components of the covari-
ant derivatives separately:

D0u0 = ∂0u0+va∂au0−1

2
v2 − κ

2
εabv

a∂0v
b − κ

2
εabv

avc∂cv
b

≡ D0u0 − 1

2
v2 − κ

2
εabv

aD0v
b,

Dau0 = ∂au0 − va − κ

2
εbcv

b∂av
c,

D0ua = (∂0φ
b + vc∂cφ

b)ξ a
b ≡ D0φ

bξ a
b ,

Dbua = ∂bφ
cξ a

c − δ a
b ,

D0v
a = ∂0v

a + vb∂bv
a ≡ D0v

a,

Dbv
a = ∂bv

a, (24)

where we defined the convective time derivative, D0, by2

D0 ≡ ∂0 + va∂a. The covariant derivatives (24) are the build-
ing blocks of the effective Lagrangian.

2Under the action of a Galilean boost,

xa �→ x′a = xa + βat,
t �→ t ′ = t,
va �→ (va)′ = va + βa,

the derivatives are transformed as (∂0 )′ = ∂0 − βa∂a and (∂a )′ = ∂a.
The vielbeins (20) are transformed covariantly under the Galilean
transformation, (dx0)′ = dx0, (dxa − vadx0 )′ = dxa − vadx0. The
convective derivative D0 is Galilean-invariant, (D0)′ = (∂0 )′ +
(va)′(∂a)′ = ∂0 − βa∂a + (va + βa)∂a = D0. Note that the field u0 is
shifted under a Galilean boost (in the absence of κ) as (u0 )′ = u0 +
β · x + 1

2 β2t . We can explicitly check that the covariant derivative
D0u0 is indeed invariant under a Galilean boost:[

∂0u0 + 1

2
(∂au0 )2

]′
= (∂0 − β · ∇)

(
u0 + β · x + 1

2
β2t

)
+ 1

2
(∂au0 + βa)2 = ∂0u0 + 1

2
(∂au0 )2.

The field ua is shifted under a Galilean boost as (ua)′ = ua − βat and
(φa)′ = φa.
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C. Effective Lagrangian for supersolids and solids

For the broken spacetime symmetry, not every NG field
leads to a physical gapless mode. Namely, there can be a
redundancy in the parametrization of the modes and some of
them can be expressed in other fields. Suppose that the com-
mutator of the unbroken generator P̄μ with a broken generator
X contains another broken generator X ′,

[P̄μ, X ] ∼ X ′ + · · · . (25)

If we denote the NG fields for X and X ′ as π and π ′, we
can impose the inverse Higgs constraint (IHC) of the form
Dμπ ′ = 0, to express π ′ via the derivative of π . However,
whether one should impose the constraint depends on the
microscopic details of the system [30]. This choice leads to
the differences in the number of gapped physical modes.

Because of the algebra [P̄a, Bb] = iδabQ0, we can express
the boost NG field va in terms of u0. By imposing the inverse
Higgs constraint Dau0 = 0, the velocity field va is expressed
as (in the absence3 of κ)

va = ∂au0. (26)

Namely, we can identify va as the superfluid velocity. Since
[P̄a, Lbc] = −2iηa[bQc], it is possible to impose the IHC
D[aub] = 0. This can be written as ∂[bua] − θa

b = 0 to the
leading order in fields, and by this we can eliminate the
antisymmetric part of ∂bua, which results in the conventional
elasticity theory [31–37] written in terms of the symmetric
part, ∂(bua) = (∂bua + ∂aub)/2. However, whether one should
impose the constraints to eliminate certain modes depends
on the microscopic details of the system [30]. Although the
nature of gapless modes does not depend on such a choice
and hence is universal, it can lead to differences in the number
of gapped modes.

Here, we choose not to impose D[aub] = 0, and keep the
rotational NG field in the Lagrangian. We will see that this
leads to the Cosserat theory of elasticity. Substituting Eq. (26)
to Eq. (24), the covariant derivatives are

D0u0 = ∂0u0 + 1

2
(∂au0)2,

D0ua = (∂0φ
b + ∂cu0∂cφ

b)ξ a
b ,

Dbua = ∂bφ
cξ a

c − δa
b,

Dθab = dθab + dθa
c θ cb + O(θ3).

(27)

In the absence of rotational NG fields, i.e., ξ a
b = δ a

b , the first
two coincide with the Galilean-invariant building blocks of
the supersolid effective Lagrangian discussed in Ref. [38].

3When κ �= 0 in 2 + 1 dimensions, the condition Dau0 = 0 is
written as ∂au0 − va − κ

2 εbcv
b∂av

c = 0. If we solve this for va per-
turbatively in the number of derivatives,

va = ∂au0 − κ

2
εbc∂

bu0∂a∂
cu0 + O(∂5).

Thus, the central extension with κ gives rise to a correction of the
superfluid velocity with higher-order derivatives.

To the leading order in the numbers of fields and deriva-
tives, the covariant derivatives are written as

D0u0 � ∂0u0, (28)

D0ua � ∂0ua, (29)

Dbua � ∂bua + θ a
b , (30)

Dθab � dθab. (31)

To the quadratic order in the number of fields and to the lowest
order in derivatives, the effective Lagrangian for supersolids
can be written in the form

L = 1

2
K (∂0u0)2 − 1

2
Ki j∂

iu0∂ ju0 + 1

2
Cab∂0ua∂0ub

− 1

2
Cia jb

(
∂iu

a + θa
i

)(
∂ ju

b + θb
j

)
+ 1

2
C(θ )

ia jb∂0θ
a
i ∂0θ

b
j − 1

2
C(θ )

iab jcd∂
iθab∂ jθ cd , (32)

where Cia jb are elastic constants. There can be an additional
term,

LWZ = ρ0du0 ∧ dua ∧ ẽa, (33)

where ẽa ≡ εaa2...ad dxa2 ∧ · · · ∧ dxad is a constant (D − 2)-
form. This term (33) appears as a Wess-Zumino term, and its
derivation is discussed in Sec. IV.

The effective Lagrangian for solids can be obtained by
setting u0 = 0,

L = 1

2
Cab∂0ua∂0ub − 1

2
Cia jb

(
∂iu

a + θa
i

)(
∂ ju

b + θb
j

)
+ 1

2
C(θ )

ia jb∂0θ
a
i ∂0θ

b
j − 1

2
C(θ )

iab jcd∂
iθab∂ jθ cd . (34)

By choosing the elastic constants as

Cia jb = Cabδi j, C(θ )
iab jcd = C(θ )

abcdδi j, (35)

the low-energy effective Lagrangian of a solid with transla-
tional and rotational NG fields, to the quadratic order, can be
written in differential forms as

L = −Cabdθ ua ∧ �dθ ub − C(θ )
abcd dθab ∧ �dθ cd , (36)

where � denotes the Hodge dual operation and we have de-
fined

dθua ≡ dua − θa
bdxb. (37)

The appearance of the combination (37) is anticipated on
symmetry grounds. The NG fields ua and θa

b are transformed
under infinitesimal translation and rotation as

ua �→ ua − αa − βa
bxb, θa

b �→ θa
b − βa

b, (38)

where αa and βa
b are transformation parameters for the trans-

lation and rotation, respectively. Equation (37) is indeed
invariant under these transformations. Intuitively speaking,
the reason why the covariant derivative of ua includes θa

b is
that the translational NG field ua is nontrivially transformed
under rotations.

The Lagrangian (36) can be identified with that of the
Cosserat elasticity theory [39,40]. The Cosserat theory is a
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generalization of the conventional elasticity theory, and it
contains rotational degrees of freedom, in addition to the dis-
placement field. Such a generalization is necessary to explain
the properties of porous materials [41,42] or mechanical meta-
materials [43]. Because of the nontrivial covariant derivative
(37), the rotational NG field θa

b has a mass term. This intro-
duces characteristic scales in the theory, which are absent in
the conventional elasticity. If we consider the long-wavelength
limit, the mass term is dominant compared to the kinetic term
for θa

b, and its equation of motion (EOM) is θa
b = ∂[bua]. At

sufficiently low energies, those gapped modes can be ignored,
and the remaining part for ∂bua is the symmetric part. In this
way, the Lagrangian (36) reduces to the classical elasticity
theory. Thus, we have shown that the Cosserat theory arises
naturally from the coset construction, and it can be understood
as a dynamical realization of the inverse Higgs phenomenon
[20,44].

D. Fractonic topological defects

Let us introduce topological defects. In a crystal, there are
two kinds of defects, dislocations and disclinations. The for-
mer are associated with the translational-symmetry breaking
Rd → Zd , and the latter are due to the broken rotational sym-
metry. Dislocations and disclinations can be identified with
the multivalued [45] parts of the fields ua and θa

b, respectively.
We decompose the covariant derivatives of phonon fields into
the continuous part and singular part as

dAua = dua − θa
b ∧ dxb + Aa, dAθa

b = dθa
b + Aa

b, (39)

where we have introduced Aa ≡ dua
(s) and Aa

b ≡ dθab
(s), and the

subscript (s) indicates the singular part.
The way the defect fields, Aa and Aa

b, enter is the same
as that of gauge fields. We can promote the translational
and rotational transformations to local ones, αa �→ αa(x) and
βa

b �→ βa
b(x), by simultaneously transforming Aa and Aa

b as

Aa �→ Aa + dαa + dβa
b xb, Aa

b �→ Aa
b + dβa

b . (40)

The gauge-invariant field strengths of the defect gauge fields
are given by

�Ja ≡ dAa + Aab ∧ dxb, �J a
b ≡ dAa

b. (41)

We can identify �Ja as the dislocation current, and �J a
b as the

disclination current. The integration of �Ja over a surface S
gives the Burgers vector, ba = ∫

S �Ja. By taking the exterior
derivative of Eq. (41), we obtain the following relations,

d � Ja = �J ab ∧ dxb, d � J ab = 0. (42)

The divergence of the dislocation current is equal to the
disclination current. This relation corresponds to Eq. (1) and
hence represents the fractonic feature of the defects. In this
derivation, the geometric origin [46] of the fractonic behavior
is manifest: the interrelation between the defect currents can
be traced back to the semidirect product structure of the trans-
lational and rotational groups. The origin of those relations is
the same as the Bianchi identities of torsion and curvature in
a Riemann-Cartan spacetime [47,48].

Let us make several comments. We have shown that the
inclusion of rotational NG field, which is a gapped mode,
gives rise to the Cosserat elasticity theory, and the currents of

dislocations/disclinations, which are defects associated with
translations/rotations, satisfy the Bianchi identities (42). This
construction depends only on the symmetry-breaking pattern
and is generalizable to situations where translations and ro-
tations are spontaneously broken, such as supersolids and
vortex crystals. For each of those systems, we can construct
a Cosserat-type theory via the inclusion of gapped rota-
tional NG fields. The present derivation is for D-dimensional
spacetime, where Ja and J a

b are both (D − 2)-form, and the
dislocations and disclinations are (D − 3)-dimensional ob-
jects. They are extended objects in general and the motions
of disclinations are constrained by the relation (42). In 3 + 1
dimensions, those defects are lines [49].

III. DUAL GAUGE THEORIES

In this section, we study the dual gauge theories of the
effective theories of solids and supersolids constructed in the
previous section. The dual transformations of Cosserat elas-
ticity theory have been discussed in Refs. [50,51].

A. Dual gauge theory for solids

Let us discuss the properties of the dual gauge theory for
solids. The derivation of the dual theories is straightforward
and we give it in Appendix A1. An advantage of dualization
is that, in the dual gauge theory, NG fields couple to the
topological defects electrically.4 For notational simplicity, let
us here take the elastic constants to be of the form Cab = cδab,
Cabcd = c′δacδbd . The Lagrangian of the dual gauge theory for
solids reads

Ldual = − c

2
f a ∧ � fa − c′

2
f ab ∧ � fab, (43)

where the gauge-invariant field strengths are defined as

f a ≡ daa, f ab ≡ daab + c̄ dxb ∧ aa, (44)

with c̄ ≡ c/c′. The gauge fields are related to the original
fields by daa = �dua, daab = �dθab. In the presence of topo-
logical defects, we also have source terms, Ls = aa ∧ �Ja +
aab ∧ �Jab. A dislocation sources translational gauge field
aa, and a disclination sources rotational gauge field aab. The
field strengths (44) are invariant under the following gauge
transformations,

aa �→ aa + dλa, aab �→ aab + dρab + c̄ dxb ∧ λa, (45)

where λa and ρab are (D − 3)-form transformation parame-
ters. By varying the dual action with respect to the gauge
fields, we obtain a type of Maxwell’s equations,

d† f a + �−1(� f ab ∧ dxb) = Ja, d† f ab = J ab, (46)

where d† is the codifferential. By applying an exterior deriva-
tive on f a and f ab in Eq. (44), we obtain the Bianchi

4Note that we here treat topological defects as a background,
meaning that they are not dynamical variables in the path integral. In-
corporating dynamical topological defects in three (or higher) spatial
dimensions in an effective field theory is a nontrivial problem, while
the particle-vortex duality in 2+1 dimensions is well-established
[52,53].
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identities,

df a = 0, df ab + c̄ dxb ∧ f a = 0. (47)

Those equations correspond to the conservation of momentum
and angular momentum, respectively. Equations (46) and (47)
constitute the set of equations of motion in the presence of
dislocations and disclinations.

To understand its dynamics, let us focus on D = 2 + 1 and
rewrite the equations using electric and magnetic fields, which
are introduced for each of f a and f ab by

f a = εa
b

(
(Eb)idxi ∧ dx0 + 1

2
εi jB

bdxi ∧ dx j

)
, (48)

f ab = εab

(
Eidxi ∧ dx0 + 1

2
εi jB dxi ∧ dx j

)
. (49)

In the absence of topological defects, the equations of motion
are written as follows:

(i) Maxwell’s equations for translational phonons:

∂ i(Ea)i − Ea = 0, (50)

−∂̃iB
a + ∂0(Ea)i − εa

i B = 0, (51)

where ∂̃i ≡ εi j∂
j .

(ii) Bianchi identity for translational phonons:

−∂̃ i(Ea)i + ∂0Ba = 0. (52)

(iii) Maxwell’s equations for rotational phonons:

∂ iEi = 0, (53)

−∂̃iB + ∂0Ei = 0. (54)

(iv) Bianchi identity for rotational phonons:

−∂̃ iEi + ∂0B + c̄

2
εc

i(Ec)i = 0. (55)

Using the Maxwell’s equations and Bianchi identities,5 we
can derive closed equations for the translational electric fields
(Ea)i,

(∂0)2(Ea)i = ∂̃i∂̃
j (Ea) j + εa

i ∂̃ j∂
k (E j )k − c̄

2
εa

i εc
j (Ec) j,

(56)
where ∂̃i ≡ εi j∂

j is the derivative in the transverse direction.
If we see this in the momentum space, in the long-wavelength
limit, k → 0, the antisymmetric part of the translational elec-
tric fields (Ea)i satisfies (ω2 − c̄)εa

i(Ea)i = 0, where ω is the
frequency. Thus, the antisymmetric part is gapped and its gap
is given by

√
c̄. At low energies, this part can be dropped, and

the symmetric tensor gauge theory [10,11] is reproduced.

5See Appendix A3 for more detailed analysis of excitation spectra
based on the dual gauge theory.

B. Dual gauge theory for supersolids

Let us discuss the dual gauge theory for supersolids. We
here start with the following quadratic Lagrangian,

L = −1

2
Cabdθ ua ∧ �dθ ub − 1

2
Cabcd dθab ∧ �dθab

− c0

2
du0 ∧ �du0 − gdu0 ∧ dua ∧ ẽa, (57)

where ẽa ≡ εaa2...ad dxa2 ∧ · · · ∧ dxad is a constant (D − 2)-
form. The last term arises as a Wess-Zumino term, as we
discuss later. This effective theory contains a gapped ro-
tational NG mode θa

b, and is a Cosserat-type theory for
supersolids. In the low-energy limit, it reduces to the conven-
tional effective theory for supersolids [12]. The dual gauge
theory for supersolids is given by

Ldual = −c0

2
f 0 ∧ � f 0 − c

2
f a ∧ � fa − c′

2
f ab ∧ � fab

− g � f0 ∧ � f a ∧ ẽa. (58)

Similarly to the case of solids, the field strengths satisfy the
following Bianchi identities,

df A = 0,

df ab + c̄ dxb ∧ f a = 0,
(59)

where A = 0, i. By varying the dual action (58) with respect
to the gauge fields, one obtains the corresponding Maxwell’s
equations,

d†( f 0 + g0 � f a ∧ ẽa) = J0,

d†( f a − ḡ � f 0 ∧ ẽ a) + �−1(� f ab ∧ dxb) = Ja,

d† f ab = J ab,

(60)

where we set g0 ≡ g/c0 and ḡ ≡ g/c.
Similarly to the case of solids, let us focus on 2+1 di-

mensions and introduce the electric and magnetic fields for
superfluid phonons by

f 0 = eidxi ∧ dx0 + 1

2
εi jb dxi ∧ dx j, (61)

in addition to the corresponding expressions for translational
and rotational gauge fields. Then, the last term of Eq. (58) is
written as

−g[b (Ea)a + eaBa]dx0 ∧ dx1 ∧ dx2. (62)

These are mixed E · B-type terms and are responsible for
a generalized Witten effect [15]. Indeed, Maxwell’s equa-
tions for superfluid phonons are written in terms of electric
and magnetic fields as

∂ iei − g0∂
iBi = −(J0)0, (63)

∂0ei − ∂̃ib + g0[∂̃i(E
a)a − ∂0Bi] = −(J0)i. (64)

As pointed out in Ref. [15], Eq. (63) indicates that a vortex
acquires a magnetic charge of the translational gauge field
because of the topological term, which means that a vortex
carries a crystalline angular momentum. For the full set of
equations of motion written by electric and magnetic fields,
see Appendix A2.
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IV. WESS-ZUMINO TERMS FOR SUPERSOLIDS

The Lagrangian built from the covariant derivatives (24)
is exactly invariant under the symmetry transformations. The
effective Lagrangian can also contain Wess-Zumino terms
[54,55], which are invariant only up to total derivatives. Such
terms arise when the Lie algebra of the symmetry group al-
lows for nontrivial central extensions. They can be identified
by finding invariant and closed (D + 1)-forms made out of
MC forms. In this section, we discuss the Wess-Zumino terms
for supersolids and their phenomenological implications.

A. Derivation of Wess-Zumino terms

In this section, we derive the Wess-Zumino terms for su-
persolids. Below, we consider the low-energy limit and do not
consider the rotational NG fields θa

b. We also consider the case
where the superfluid density is small, which is typically the
case [38]. We first note that the Maurer-Cartan forms satisfy
the following equations,

dω0
P̄ = 0, dωa

P̄ = ω0
P̄ ∧ ωa

B, dωa
B = 0,

dω0
Q = ωa

P̄ ∧ ωa
B − κ

2
εabω

a
B ∧ ωb

B,

dωa
Q = −ω0

P̄ ∧ ωa
B = −dωa

P̄,

(65)

where the term proportional to κ exists only in 2 + 1 dimen-
sions.

To look for Wess-Zumino terms, we have to find invariant
and closed (D + 1)-forms. Let us define the mass current jm
in d-spatial dimensions by

� jm ≡ ρ0

d!
εa1···ad dφa1 ∧ · · · ∧ dφad , (66)

where ρ0 is the mass density in the ground state. The current
is trivially conserved, d � jm = 0. Note that dφa = ωa

Q + ωa
P̄.

We have the following closed (D + 1)-form,


D+1 = ωa
B ∧ (ωQ)a ∧ � jm = −ωa

B ∧ (ωP̄ )a ∧ � jm, (67)

where the latter equality follows from dφa ∧ dφa1 ∧ · · · ∧
dφad εa1···ad = 0. The closedness of 
D+1 can be checked us-
ing Eq. (65). The (D + 1)-form 
D+1 can be written as

dva ∧ (dxa − vadx0) ∧ � jm = d

[(
vadxa − v2

2
dx0

)
∧ � jm

]
.

(68)
Therefore, we can write down the corresponding Wess-
Zumino term in D dimensions as

LWZ
D =

(
vadxa − v2

2
dx0

)
∧ � jm. (69)

Note that it can be written as

LWZ
D = (

du0 − ω0
Q

) ∧ � jm. (70)

The one-form ω0
Q is exactly invariant under Galilean boosts.

Thus, the term proportional to ω0
Q should be already taken

into account by the coset construction. Thus, we can adopt

the following form instead of Eq. (70),6

LWZ′
D = du0 ∧ � jm. (71)

This expression is consistent with the interpretation of � jm as
the mass current. When the superfluid density is small, ρ0 in-
deed equals the mass density at the equilibrium. Hereafter, we
consider this situation. This term was introduced in Ref. [38]
for (3 + 1)-dimensional supersolids, and it appears as a Wess-
Zumino term in the current construction. It is a total derivative,
and does not affect the equations of motion. Still, this term
changes the identification of Noether currents and is needed to
reproduce the centrally extended algebra, [Ba, Pb] = −iδabQ0.
In the presence of vortices, the term induces the interactions
of vortices with lattice phonons. Under a Galilean boost, LWZ′

D
is transformed as

δLWZ′
D = δLWZ

D =
(

βadxa + β2

2
dx0

)
∧ � jm

= d

[(
βaxa + β2

2
x0

)
∧ � jm

]
, (72)

which is a total derivative.
In 2+1 dimensions, the Galilean algebra allows for another

central extension parametrized by κ . Correspondingly, we
have another invariant 4-form,


′
4 ≡ κ

2
εab ωa

B ∧ ωb
B ∧ � jm. (73)

It produces the following Wess-Zumino term,

LWZ2
D=3 = κ

2
εabv

advb ∧ � jm. (74)

Under a Galilean boost, this term is shifted by a total deriva-
tive,

δLWZ2
D=3 = κ

2
εabβ

advb ∧ � jm = d
[κ

2
εabβ

avb ∧ � jm
]
. (75)

If we use the IHC va = ∂au0, the term (74) also is a total
derivative, and the EOMs are not affected in the absence of
topological defects.

Wess-Zumino terms change the identification of the cur-
rents. The term (71) leads to the following additional
contribution to the boost current,

(
� ja

B

)
WZ = ∂LWZ′

D

∂du0
δau0 = xa(� jm ), (76)

where δau0 indicates the variation of u0 under a Galilean boost
in the ath direction. The boost current is written as

� ja
B = −t (�pa) + xa(� jm ), (77)

where pa denotes the translational current. With this contribu-
tion, we can reproduce the centrally extended algebra,

〈[Pa, Bb]〉 =
〈[

Pa,

∫
V

� jb
B

]〉
=

〈∫
V

( − i∂a(xb � jm ))
〉

= −iδ b
a

〈∫
V

� jm

〉
= −iδ b

a 〈Q0〉. (78)

6The coefficient ρ0 may slightly deviate as an effect of a nonzero
superfluid fraction.
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B. Scattering of quasiparticles off topological defects

The Wess-Zumino terms (71) and (74) are total derivatives
and do not affect the EOM in the absence of topological
defects. However, they change the identification of Noether
currents, and when topological defects are present, these terms
induce nontrivial scattering effects.7 Here, we discuss such
processes induced by Eqs. (71) and (74). Since their coeffi-
cients are determined by the symmetry algebra, the coupling
constants of those processes are model-independent.

Let us first discuss the consequence of Eq. (71). We here
consider a vortex in a 3 + 1-dimensional supersolid located
along the z direction at x = y = 0. Such a vortex configura-
tion can be expressed by εabc∂

a∂bu0 = (2π/m)δc(xT), where
δc(xT) ≡ ncδ(x)δ(y) is the transverse delta function and n = ẑ
is the unit tangent vector along the vortex. In the presence of
a superfluid vortex, the Lagrangian density can be written as

LWZ′
D=4 = − ρ0

3!m
εμνρσ εabc∂μ∂νϕφa∂ρφ

b∂σφc

= −π
ρ0

m
εabcuau̇bδc(xT) + O(u3). (79)

The leading-order term describes elastic scatterings of
lattice phonons off superfluid vortices in a supersolid.
We denote the energy/momentum and polarization of the
incoming/scattered particles as {(ω, k), ε} and {(ω′, k′), ε′},
respectively. For definiteness, we consider the incoming lat-
tice phonon that is incident perpendicularly to the vortex,
k · n = 0, and assume that it is transversely polarized, k · ε =
0. We also assume that the scattered phonon is also trans-
versely polarized, and the polarization vectors of the initial
and scattered phonons are in the plane perpendicular to the
vortex, ε · n = ε′ · n = 0. The current collision geometry re-
duces the problem effectively to two spatial dimensions. The
matrix element of this elastic scattering process is8

iM = 2
1

ρ0

πρ0

m
iωεabcε

aεbnc = 2π

m
ω(ε × ε′) · n

= 2π

m
ω sin θ, (80)

where θ is the angle between k and k′. We here assume that
the supersolid is isotropic. The 1-body final-state phase space
is given by

d�b ≡ 2πδ(ω − ω′)
1

2ωb

d2kb

(2π )2
. (81)

Since the superfluid vortex does not break time translations,
the scattering conserves the energy, ω = ω′, which is reflected

7The elastic scattering of lattice phonons off superfluid vortices
through Eq. (71) is studied in Ref. [38].

8The scattering processes involving vortices have been studied in
the EFT approach, for example, in Refs. [56–58]. In the computation
of scattering amplitudes, we need to take into account the noncanon-
ical normalization of the kinetic term [56],

L = ρ0

2
[(u̇a)2 − v2(∂iu

a )2] + ρs

2
(u̇0)2 + . . . .

in the phase-space delta function, 2πδ(ω − ω′). The infinites-
imal cross section of a vortex line element d� is given by

dσa→b = 1

2ω

1

va
|Ma→b|2d�bd�

= 1

2ω

1

vT

(
4π2

m2
ω2 sin2 θ

)(
dθd�

4π

1

v2
T

)

= π

2

ω

m2v3
T

sin2 θdθd�,

(82)

where vT is the velocity of transverse phonons. The differen-
tial cross section per unit vortex length is written as

d2σ

dθd�
= π

2

k

m2v2
T

sin2 θ, (83)

which is obtained in Ref. [38]. The cross section is linearly
proportional to the momentum k and it is largest when the
scattering angle is π/2. This is the dominant elastic scattering
process of lattice phonons off vortices when the superfluid
density is small.

Let us now consider a dislocation in a (3 + 1)-dimensional
supersolid. The term du0 ∧ � jm leads to the conversion of
lattice phonons and superfluid phonons on a dislocation. The
existence of a dislocation leads to the following multivalued
part of ua,

εbcd∂
b∂cua = baδd (xT), (84)

where ba is the Burgers vector. The interaction Lagrangian is
written as

LWZ′
D=4 = ρ0

3!
du0 ∧ dφa ∧ dφb ∧ dφcεabc

= −ρ0

2
u0 ∧ d2φa ∧ dφb ∧ dφcεabc

= −ρ0u0εabcbau̇bδc(xT)dx0 ∧ dx1 ∧ dx2 ∧ dx3+O(u3).

(85)

This results in the conservation of a superfluid phonon with
energy/momentum (ω, k) to a lattice phonon (ω′, k′) with
polarization ε′ via the scattering off a dislocation. The matrix
element of this process is

iM = 1√
ρs

√
ρ0

ρ0iω′baε′bεabcnc = i
√

ρ0

ρs
ω′(b × ε′) · n,

(86)
where n is the tangent vector to the dislocation. The infinites-
imal cross section is

dσ = 1

2ω

1

vs
|M|2

(
dθd�

4π

1

v2

)

= ρ0

ρs

k

8πv2
|(b × ε′) · n|2dθd�, (87)

where vs and v are the velocities of superfluid phonons and
lattice phonons, respectively, and θ is the angle between k and
k′. The cross section is determined by the relative orientations
of the Burgers vector b, the polarization ε′ of the final-state
lattice phonon, and the direction n of the dislocation. For
example, the cross section vanishes for a screw dislocation, for
which b is parallel to n. We also note that the cross section is
enhanced at small superfluid densities.
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Next, let us consider the term (74), which can exist in
2+1 dimensions. In the presence of vortices, this term induces
nontrivial interactions among NG fields. In 2+1 dimensions,
a vortex is a pointlike object. If we consider a vortex placed
at the origin, we have εab∂

a∂bu0 = 2π
m δ(x), where δ(x) ≡

δ(x)δ(y), and we have the following terms,

2πκρ0

m
δ(x)

(
u̇0 ∇ · u − u̇a∂au0 + O(u3)

)
. (88)

This indicates that superfluid phonons and lattice phonons can
be converted via the scatterings off a superfluid vortex. Let us
consider the process of a transverse lattice phonon with (ω, k)
and polarization ε converted on a vortex into a superfluid
phonon with (ω′, k′). The matrix element is

iM = 1√
ρ0ρs

2πκρ0

m
[−(−iω)(−ik′) · ε] = 2πκ

m

√
ρ0

ρs
ωk′ · ε.

(89)
The infinitesimal cross section is computed as

dσ = 1

2ω

1

v
|M|2d�b

= 1

2ω

1

v

(
4π2κ2

m2

ρ0

ρs
ω2(k′ · ε)2

)(
dθ

4π

1

v2
s

)

= π

2

ρ0

ρs

κ2

m2v2
s

kk′2 sin2 θdθ,

(90)

where θ is the angle between k and k′.
Finally, let us emphasize that the coupling constants asso-

ciated with the Wess-Zumino terms are fixed by the symmetry
algebra, and the cross sections associated with those terms are
model-independent predictions of the effective theory.

V. SUMMARY

We derived effective field theories of gapless phases with
fractons, such as solids and supersolids, using a coset con-
struction. We found that a dynamical realization of the inverse
Higgs phenomenon naturally leads to the Cosserat theory of
elasticity. The topological defects appear as the singular parts
of the NG fields, and the corresponding currents obey the

relation (42), which plays a key role so that the disclinations
behave as fractons. The derivation clarifies the geometric
origin of the fractonic nature: it comes from the semidirect
product structure of the translational and rotational groups.
The current construction can be applied to systems where the
translational symmetry is broken, and we can understand why
fractons appear in solids, supersolids, vortex crystals, and so
on. We identified Wess-Zumino terms in supersolids, which
differ by total derivatives under symmetry transformation.
Those terms induce nontrivial scattering processes involving
topological defects in a supersolid phase. We gave examples
of the computations of scattering cross sections of such pro-
cesses. When the superfluid density is small, the coupling
constants of these processes are fixed by the algebra, and
hence are model-independent.
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APPENDIX A: DETAILS ON DUAL GAUGE THEORIES

In this Appendix, we provide the derivation of dual gauge
theories of the effective Lagrangians of solids and supersolids.
We also derive the corresponding Maxwell’s equations written
in terms of electric and magnetic fields, and discuss their
dynamical properties.

1. Derivation of dual gauge theories

In this section, we give the derivation of the dual gauge
theories for solids and supersolids. Since the gauge theory
of solids can be obtained from that of supersolids, we here
discuss supersolids. We start with the partition function of
supersolids Z = ∫

[Dua][Dθab]eiS[ua,θab,u0], where the action is
given by

S[u0, ua, θab] = −
∫
MD

[
1

2
Cabdθ ua ∧ �dθ ub + 1

2
Cabcd dθab ∧ �dθab + 1

2
C00du0 ∧ �du0 + gdu0 ∧ dua ∧ ẽa

]
, (A1)

where MD is a D-dimensional spacetime manifold. For notational simplicity, we organize u0 and ua as a four-vector as uA =
(u0, ua), and the constants are also organized accordingly. We write the action as

S[uA, θab] = −
∫
MD

[
1

2
CABdθuA ∧ �dθ uB + 1

2
Cabcd dθab ∧ �dθab + gdu0 ∧ dua ∧ ẽa

]
. (A2)

By introducing auxiliary fields, (τA, σ ab), the partition function can be written as Z = ∫
[DuA][Dθab][DτA][Dσ ab]eiS[uA,θab,τA,σ ab],

where the action is given by

S =
∫
MD

[
1

2
C−1

AB τA ∧ �τB + τA ∧ �dθ uA + 1

2
C−1

abcdσ
ab ∧ �σ cd + σ ab ∧ �dθab − gdu0 ∧ dua ∧ ẽa

]
. (A3)
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By doing a variation with respect to τ a and σ ab, we obtain

−C−1
AB τB = dθuA, −C−1

abcdσcd = dθab. (A4)

The path-integration of (the smooth part of) uA and θab leads
to the following equations of motion,

d � τA = 0, d � σ ab + dxb ∧ �τ a = 0, (A5)

which are conservation laws of U (1) charge (τ 0)0, momen-
tum density (τ a)0, and angular momentum density(σ ab)0,
respectively. The equations above can be solved explicitly by
introducing (D − 2)-form gauge fields aA, aab as

�τA = −CABdaB, �σab = −Cabcd dacd − Cacdxb ∧ ac.

(A6)
By comparing with Eq. (A4), we obtain the relation between
the dual gauge fields and the original fields as

daA = �duA, daab = �dθab. (A7)

Substituting Eq. (A6) to Eq. (A3) gives the following dual
effective Lagrangian,

Ldual = −1

2
CAB f A ∧ � f B − 1

2
Cabcd f ab ∧ � f cd − g � f0

∧ � f a ∧ ẽa. (A8)

To simplify the expression, let us choose isotropic elastic
constants as Cab = cδab and Cabcd = c′δacδbd , and C00 = c0.
Then, we have �τa = −daa, and �σab = −daab − c̄ dxb ∧ aa

with c̄ ≡ c/c′. In this case, the dual Lagrangian reads

Ldual = −c0

2
f 0 ∧ � f 0 − c

2
f a ∧ � fa − c′

2
f ab ∧ � fab

− g � f0 ∧ � f a ∧ ẽa, (A9)

where the field strengths are defined as9

f A ≡ daA, f ab ≡ daab + c̄ dxb ∧ aa. (A10)

The field strengths (A10) are invariant under the following
gauge transformations,

aA �→ aA + dλA, aab �→ aab + dρab + c̄ dxb ∧ λa, (A11)

where λA and ρab are (D − 3)-form gauge parameters. Note
that the rotational gauge field is shifted by the transformation
parameter of the translational gauge field. Accordingly, the
field strengths satisfy the following Bianchi identities,

df A = 0,

df ab + c̄ dxb ∧ f a = 0.
(A12)

Topological defects enter as sources to the dual gauge fields,
Ls = CABaA ∧ �JB + Cabcd aab ∧ �J cd . By varying the dual
action with respect to the gauge field aA and aab, we obtain
the equations of motion as

d†
(

f 0 + g0 � f a ∧ ẽa
) = J0,

d†
(

f a − ḡ � f 0 ∧ ẽa
) + �−1(� f ab ∧ dxb) = Ja,

d† f ab = J ab,

(A13)

9In the general case, f a ≡ daa and f ab ≡ daab +
(C−1)cdabCce dxd ∧ ae.

where we set g0 ≡ g/c0 and ḡ ≡ g/c. The equations of motion
(A13) together with Bianchi identities (A12) describe the
dynamics of superfluid phonons, translational phonons, and
rotational phonons in D spacetime dimensions in the presence
of vortices, dislocations, and disclinations.

2. Equations of motion in terms of electric and magnetic fields

Let us rewrite the EOMs using electric and magnetic fields.
We here consider 2+1 dimensions. Electric and magnetic
fields for superfluid phonons, lattice phonons, and rotational
phonons are introduced by

f 0 = eidxi ∧ dx0 + 1

2
εi jb dxi ∧ dx j, (A14)

f a = εa
b

(
(Eb)idxi ∧ dx0 + 1

2
εi jB

bdxi ∧ dx j

)
, (A15)

f ab = εab

(
Eidxi ∧ dx0 + 1

2
εi jB dxi ∧ dx j

)
. (A16)

The topological term can be written as

−g � f0 ∧ � f a ∧ ẽa = −g[b (Ea)a + eaBa]dx0 ∧ dx1 ∧ dx2.

(A17)
Those are crossed E · B-type terms and are responsible for the
generalized Witten effect.

Maxwell’s equations for superfluid phonons are now writ-
ten as

∂ iei − g0∂
iBi = −(J0)0, (A18)

∂0ei − ∂̃ib + g0[∂̃i(E
a)a − ∂0Bi] = −(J0)i, (A19)

where ∂̃i ≡ εi j∂
j .

Maxwell’s equations for translational phonons are

∂ i(Ea)i + ḡ∂ab − Ea = εa
b(Jb)0, (A20)

−∂̃iB
a + ∂0(Ea)i + ḡ

(
δa

i ∂0b − ∂̃ie
a
) − εaiB = εa

b(Jb)i.

(A21)

Maxwell’s equations for rotational phonons are

∂ iEi = −1

2
εab(J ab)0, (A22)

−∂̃iB + ∂0Ei = −1

2
εab(J ab)i. (A23)

Bianchi identities are written as

−∂̃ iei + ∂0b = 0, (A24)

−∂̃ i(Ea)i + ∂0Ba = 0, (A25)

−∂̃ iEi + ∂0B + c̄

2
εc

i(Ec)i = 0. (A26)

3. Excitations in solids

Let us look at the properties of excitations in solids in terms
of the dual gauge theory. The EOMs for solids can be obtained
by setting f 0 = 0. In the absence of topological defects, the
EOMs are written as follows:
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(i) Maxwell’s equations for translational phonons:

∂ i(Ea)i − Ea = 0, (A27)

−∂̃iB
a + ∂0(Ea)i − εa

i B = 0. (A28)

(ii) Bianchi identity for translational phonons:

−∂̃ i(Ea)i + ∂0Ba = 0. (A29)

(iii) Maxwell’s equations for rotational phonons:

∂ iEi = 0, (A30)

−∂̃iB + ∂0Ei = 0. (A31)

(iv) Bianchi identity for rotational phonons:

−∂̃ iEi + ∂0B + c̄

2
εc

i(Ec)i = 0. (A32)

Let us write the EOM in term of electric fields. The transla-
tional electric fields (Ea)i have four components. Because of
the Gauss law, ∂a∂

i(Ea)i = 0, there are three physical degrees
of freedom. The EOM for (Ea)i can be derived as

(∂0)2(Ea)i = ∂̃i∂0Ba + εa
i ∂0B

= ∂̃i∂̃
j (Ea) j + εa

i

[
∂̃ jE j − c̄

2
εc

j (Ec) j

]

= ∂̃i∂̃
j (Ea) j + εa

i ∂̃ j∂
k (E j )k − c̄

2
εa

i εc
j (Ec) j .

(A33)

To discuss the nature of linear excitations, let us write the
EOM in the momentum space,

ω2(Ea)i − k2 ñi(E
a) j ñ

j − k2 εa
i ñ j (E

j )l n
l − c̄

2
εa

i εc
j (Ec) j=0,

(A34)
where k ≡ √

kiki, k̃i ≡ εi jk j is the transverse vector (to ki),
and ni ≡ ki/k, ñi ≡ k̃i/k are unit vectors in the longitudinal
and transverse directions, respectively. In the long-wavelength
limit, k → 0, the antisymmetric part of the translational elec-
tric fields (Ea)i satisfies

(ω2 − c̄)εa
i(Ea)i = 0. (A35)

Hence, as a result of the coupling to the rotational electric and
magnetic fields, the antisymmetric part, εa

i(Ea)i, acquires a
gap, and its gap is given by ω = √

c̄. The other two modes are
gapless. Because of the gap, the antisymmetric part εa

i(Ea)i

can be dropped at low energies [50], and the remaining elec-
tric field is symmetric. The symmetric tensor gauge theory
[12] is reproduced in this way.

To obtain the modes at finite k, let us project (Ea)i to the
longitudinal and transverse directions for each index. We have
the following projected components,

T T ≡ ña(Ea)iñ
i, LT ≡ na(Ea)iñ

i, T L ≡ ña(Ea)in
i.

(A36)
As we stated earlier, LL = 0 because of the Gauss law. Using
the relation εi j = ñin j − niñ j , we can write the antisymmetric
part as εa

i(Ea)i = T L − LT . The EOMs are written in the
matrix form as⎛

⎜⎝
ω2 − k2 − c̄

2 k2 + c̄
2 0

c̄
2 ω2 − k2 − c̄

2 0

0 0 ω2 − k2

⎞
⎟⎠

⎛
⎜⎝

LT

T L

T T

⎞
⎟⎠ = 0.

(A37)
The transverse-transverse sector is decoupled and represents
a gapless mode. There is a mixing between longitudinal-
transverse and transverse-longitudinal sectors. As a result,
there will be one gapless and one gapped mode from this
sector.

Instead of electric fields, we can write the EOMs using the
magnetic fields as follows:

(∂0)2B = ∂̃ i∂0Ei − c̄

2
εa

i∂0(Ea)i

= ∂̃ i∂̃iB − c̄

2
εai(∂̃

iBa + εaiB)

= ∂2B − c̄ B + c̄

2
∂aBa,

(A38)

(∂0)2(∂aBa) = ∂̃ i∂a∂0(Ea)i

= ∂̃ i∂a
[
∂̃iB

a + εa
i B

]
= ∂2∂aBa − ∂2B,

(A39)

(∂0)2(∂̃aBa) = ∂̃ i∂̃a∂0(Ea)i

= ∂̃ i∂̃a
[
∂̃iB

a + εa
i B

]
= ∂2(∂̃aBa).

(A40)

Those equations can be written in the momentum space in the
following matrix form,⎛
⎝ω2 − k2 − c̄ c̄/2 0

k2 ω2 − k2 0
0 0 ω2 − k2

⎞
⎠

⎛
⎝ B

naBa

ñaBa

⎞
⎠ = 0. (A41)

The longitudinal part of Ba is mixed with the rotational mag-
netic field B. The transverse part of Ba is decoupled and stays
gapless.
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