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Revealing trap depth distributions in persistent phosphors with a thermal barrier for charging
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The performance of persistent phosphors under given charging and working conditions is determined by the
properties of the traps that are responsible for these unique properties. Traps are characterized by the height of
their associated barrier for thermal detrapping, and a continuous distribution of trap depths is often found in
real materials. Accurately determining trap depth distributions is hence of importance for the understanding and
development of persistent phosphors. However, extracting the trap depth distribution is often hindered by the
presence of a thermal barrier for charging as well, which causes a temperature-dependent filling of traps. For
this case, we propose a method for extracting the trap depth distribution from a set of thermoluminescence glow
curves obtained at different charging temperatures. The glow curves are first transformed into electron population
functions via the Tikhonov regularization, assuming first-order kinetics. Subsequently, the occupation of the
traps as a function of their depth, quantified by the so-called filling function, is obtained. Finally, the underlying
trap depth distribution is reconstructed from the filling functions. The proposed method provides a substantial
improvement in precision and resolution for the trap depth distribution compared with existing methods. This is
hence a step forward in understanding the (de)trapping behavior of persistent and storage phosphors.

DOI: 10.1103/PhysRevB.105.205101

I. INTRODUCTION

Ideally, properties of materials can be tuned by tweaking
only a few intrinsic parameters of these materials. In the case
of persistent phosphors, the key property is the luminescence
afterglow that can range from seconds to days after stop-
ping the optical excitation, often called charging [1–4]. High
persistent luminescence (PersL) intensity and long PersL du-
ration are two desirable properties under given charging and
working conditions [5]. One critical parameter controlling
these properties is the density of traps, i.e., the absolute num-
ber of active traps per unit volume of the persistent phosphor
[6]. The higher the trap density, the more charges a phosphor
can store at the given charging condition, enhancing PersL
intensity. Electrons are considered common charge carriers,
although holes can act as charge carriers in certain cases [3,7].
Another parameter is the density of traps as a function of
their depth Et , which quantifies the energy barrier that trapped
electrons must overcome thermally to recombine with holes.
It is usually called trap depth distribution for short, being
denoted as N (Et ). These parameters are scientifically impor-
tant. On the one hand, they are useful to understand and thus
to tailor performance of persistent phosphors under different
conditions. For example, the trap depth distribution can be
translated into thermoluminescence (TL) curves, whose inten-
sity shows a linear relationship with respect to the total PersL
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intensity for a given charging and working temperature [8,9].
On the other hand, such parameters act as intrinsic material
parameters that can be compared across different phosphors,
enabling the discovery of empirical rules in persistent phos-
phors. However, there are multiple difficulties when it comes
to extracting the trap density and trap depth distribution. After
charging (t = 0), the density of trapped electrons (called here
the electron population function) n(Et , q, t ) is determined
by the trap depth distribution N (Et ) and the filling function
f (Et ,�E , q, t ) via

n(Et , q, t ) = f (Et ,�E , q, t )N (Et ), (1)

where the experimental charging settings are collected in q =
[Ie(λ), tch, Tch], with the irradiance Ie(λ), charging duration
tch, and charging temperature Tch. In the trap depth range
(Et , Et + dEt ), the filling function f (Et ,�E , q, t ) indicates
the fraction of the traps that are filled at time t after charging
with settings q. In Eq. (1), �E is the thermal barrier for
charging, whose existence causes the maximum of the filling
function to be dependent on charging temperature (for a given
set Ie(λ) and tch). This phenomenon has been observed in
many persistent phosphors, for example, SrAl2O4:Eu2+ [10],
Sr2MgSi2O7:Eu2+ [11], M2Si5N8:Eu (M = Ca, Sr, Ba) [12],
Y3Al5O12:Ce3+ [13], Y3Al5−xGaxO12:Pr3+ [14], and other
garnets [15–18]. This thermal barrier for charging severely
complicates the extraction of trap depth distributions from
experiments.

The first obstacle is to recover the electron population
function n(Et , q, t ) from experimental TL curves. In the lit-
erature, methods have been proposed to approximate the trap
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depth distribution by the electron population function itself,
assuming that traps can be fully filled at the given charg-
ing condition. The simplest ansatz for an electron population
function is a delta distribution N0δ(Et − Eo) characterized by
a single trap depth Eo and the total number of traps per unit
volume N0. The quantity N0 can be obtained by the method
proposed by Van der Heggen et al. [6]. The discrete trap depth
Eo can be estimated by several methods [19,20], such as the
initial rise method [21,22], the Urbach relation [23], and the
analysis of position and symmetry of the glow curve [19,20].
Alternatively, more advanced methods have been proposed
to infer n(Et , q, t ) in the case that a nontrivial trap depth
distribution is assumed. For example, the fractional glow tech-
nique [24,25] and the Tm-Tstop method [22,26] approximate
n(Et , q, t ) by thermally releasing trapped electrons in certain
trap depth ranges by specially designed heating procedures.
Recently, Khanin et al. [27] recovered n(Et , q, t ) directly from
a TL curve by numerical regularization, assuming first-order
kinetics.

The main difficulty of extracting the trap depth distribution
N (Et ) lies in approximating the filling function after charging
f (Et ,�E , q, t ), especially when there exists a thermal barrier
for charging, i.e., �E �= 0. At a given charging temperature
Tch, f (Et ,�E , q, t = 0) approaches the Fermi-Dirac function
in the limit of tch → ∞ [28]:

f (Et ,�E , q, t = 0) = f0(�E , q)

1 + exp
(−Et −E f

kBTch

) , (2)

where kB is the Boltzmann constant, E f the quasi-Fermi level,
and f0(�E , q) the magnitude of the filling function. Here,
f0(�E , q) is <1.0 because of various detrapping routes, such
as thermal detrapping and optically stimulated detrapping
[11,29]. To access a wide range of E f , phosphors are often
charged at variable temperature Tch with fixed irradiance Ie

and fixed duration tch. When a thermal barrier for charging
�E is absent, f0(�E , q) is independent of Tch. The trap
depth distribution in a range of [E f (Tch), E f (Tch + �Tch)]
can be approximated by the difference of the total number
of trapped electrons [30]. Experimentally, this can be deter-
mined from the difference in the integrated intensity of TL
glow curves obtained at variable charging temperature Tch.
However, the thermal barrier �E poses two challenges for
extracting the trap depth distribution N (Et ). One is to ap-
proximate f0(�E , q) for each filling function. The other is
to reconstruct the trap depth distribution N (Et ) from various
individual pairs of f (Et ,�E , q, t ) and n(Et , q, t ). It is note-
worthy that the thermal barrier for charging �E is treated as
an empirical parameter to account for the temperature depen-
dence of f0(�E , q). This barrier is typically different from
the activation energy of thermal quenching (TQ), which often
originates from the crossover of potential energy curves due
to electron-phonon interaction [31] or the thermal ionization
of electrons at the excited states of the involved luminescent
activators [32,33].

In this paper, we propose and validate a method, relying
on first-order kinetics, that circumvents the influence of �E
and allows us to extract the trap depth distribution N (Et )
from TL experiments. The phosphor BaSi2O2N2:2%Eu2+ is
used here as a case study. This material shows desirable

PersL [34] and mechanoluminescence [35–37], as well as a
high photoluminescence quantum efficiency and good thermal
stability [38], enabling a high TL signal strength at elevated
temperatures. The method is extendable to other materials
when the trap depth distribution can be translated into TL.
Accurate determination of the trap depth distribution will lead
to a step forward in understanding the properties of persistent
and storage phosphors.

II. MATERIALS AND METHODS

The BaSi2O2N2:2%Eu2+ phosphor was prepared by a two-
step solid-state reaction method [39], according to

1.96BaCO3 + SiO2 + 0.02Eu2O3

→ Ba2SiO4:2%Eu2+ + 1.96CO2, (3a)

Ba2SiO4:2%Eu2+ + Si3N4 → 2BaSi2O2N2:2%Eu2+.

(3b)

The raw materials BaCO3 (99.8%, 1 µm powder, Alfa Aesar),
SiO2 (99.5%, 325 mesh powder, Alfa Aesar), and Eu2O3

(99.9%, Alfa Aesar) were used in stoichiometric amounts
except that 103% Si3N4 (α phase, 99.9%, 1 µm powder, Alfa
Aesar) was supplied to facilitate the reduction of Eu3+ to Eu2+

[40]. The sintering temperature and duration for Eqs. (3a) and
(3b) were 1200 ◦C, 4 h and 1450 ◦C, 10 h, respectively. A 94%
N2-6% H2 forming gas atmosphere was applied at a constant
rate (0.16 L min−1) during the entire thermal process. The
product was crushed and ground to fine powders and then
washed by diluted hydrogen chloride (HCl,<1 vol%). After
being dried at 80 ◦C for at least 10 h, BaSi2O2N2:2%Eu2+
powders were ready for further use.

A TQ profile was collected to correct TL curves by using
the method proposed in Ref. [41]. The spectra were acquired
by a home-built setup [10]. The excitation light of 370 nm [full
width half maximum (FWHM) 5 nm] was from a Xe arc lamp
equipped with a monochromator, while the emission was col-
lected by an EMCCD camera (Princeton Instruments ProEM
1600) coupled to a spectrograph (Princeton Instruments Acton
SP2300). The integration time was 1 s. The phosphor was
cooled to 213 K and then heated to 498 K at a step of 5 K,
with optical excitation at each temperature T for 30 s. For
each T , five spectra from the time range from 24 to 28 s
were averaged to represent the photoluminescence emission
intensity I (T ) (Supplemental Material (SM) [42], Sec. I). For
each TL curve, the measured TQ was linearly interpolated at
each temperature recording of the TL curve.

The experimental procedure that allows us to extract trap
depth distributions uses fixed irradiance, fixed charging du-
ration, and variable charging temperature Tch (Fig. 1). The
ultraviolet (UV) excitation light (370 nm, FWHM 20 nm)
was from a light-emitting diode which was driven by a
current of 50 mA. The charging temperature was set in
the range Tch = [Tch0 : �Tch : Tchm], with �Tch = 5 K, Tch0 =
223 K, and Tchm = 393 K. To acquire a TL curve, the phos-
phor was first excited at Tch for 300 s and then cooled down
at a rate of −0.5 K s−1 to T0 (T0 � Tch − 30 K), where the
TL intensity is negligible. Finally, the phosphor was heated
up to 493 K at a heating rate β = 0.5 K s−1. The emission was
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FIG. 1. The procedure for a thermoluminescence (TL) exper-
iment. The phosphor was charged by ultraviolet (UV) light at
variable charging temperature Tch with a fixed charging duration tch.
After lowering the temperature to T0 � Tch − 30 K, the phosphor
will be heated to temperature Tmax at a fixed heating rate β (0.5
K s−1). Here, Tch = [Tch0 : �Tch : Tchm], with �Tch = 5 K, Tch0 =
223 K, and Tchm = 393 K.

detected by a photometer (International Light Technologies,
ILT1700) equipped with a photopic filter (YPM). Every TL
curve was corrected by the TQ profile to account for the
nonradiative decay of the luminescent activators as well.

III. RESULTS

We briefly outline the procedure of extracting a trap depth
distribution (see Fig. 2), which is the focus of the follow-
ing sections. In Sec. III A, the electron population functions
n(Et , Tch, tc) are reconstructed from the experimental TL
curves from a carefully designed charging procedure (see
Sec. II). A numerical recipe called the Tikhonov regulariza-
tion method is used to solve this inverse problem within the
framework of first-order kinetics of TL [see Eqs. (4)–(7)].
The presence of a thermal barrier �E can be inferred from
these electron population functions. In Sec. III B, the filling
function [Eq. (21)] is calculated, using first-order kinetics for
the trapping and recombination processes during the charging
process. From simulations of filling functions, a method is

ReguTool

method 2

method 1

...
...

Eq. (22)

Eq. (23)

Eq. (20)

Eq. (24)

Eq. (18)

Eq. (16)

Eqs. (4)-(7)

FIG. 2. Flowchart of the method. The thermoluminescence (TL)
curves are first converted into electron population functions, and
the relative filling functions are approximated. Two methods can be
chosen to calculate the trap depth distribution N (Et ).

proposed to approximate the magnitude of the filling function
f0(�E , q). The subtle relationship between f0(�E , q) and
n(Et , q, t ) on the one hand and the trap depth distribution
N (Et ) on the other hand can be revealed accordingly. In
Sec. III C, the trap depth distribution of BaSi2O2N2:2%Eu2+
is then finally reconstructed. Two equivalent methods are
demonstrated, reaching consistent results.

A. Electron population function

Electron population functions after charging are obtained
from TL glow curves. First-order kinetics is assumed for
TL, i.e., retrapping of electrons among traps is assumed to
be negligible. This is a valid assumption during a TL ex-
periment because the rate coefficient of detrapping increases
substantially with increasing temperature. (See Sec. III B 1
for details). Assuming first-order kinetics thus leads to a
convenient means to infer the information of a phosphor
during/after charging.

1. Tikhonov regularization method

According to first-order kinetics, the TL intensity from
an electron population function n(Et , q, tc) is given by the
Fredholm integral of the first kind [43,44]:

I (T ) = C
∫ ∞

0
n(Et , q, tc)K (Et , T )dEt , (4a)

K (Et , T ) = νr

β
exp

[
− Et

kBT
− F (Et , T ) + F (Et , T0)

]
, (4b)

F (Et , T ) = νr

β

∫ T

0
exp

(
− Et

kBT ′

)
dT ′, (4c)

where the function K (Et , T ) is referred to as the kernel that
translates the electron population function n(Et , q, tc ) to the
TL intensity I (T ), and F (Et , T ) is often called the temper-
ature integral [45]. Here, C is a coefficient to render the
appropriate units for I (T ). The meaning of tc, T0, and β have
been elucidated in Sec. II (see Fig. 1). Equation (4a) was
proposed by Randall et al. [46] and Randall and Willkins [47],
but the electron population function n(Et , q, tc ) was replaced
by a trap depth distribution N (Et ).

An analytic expression for F (Et , T ) was proposed by
Balarin [48]:

F (Et , T ) = νr

β

kBT 2

Et
exp

(
− Et

kBT

)
1√

1 + 4kBT/Et
, (5)

which offers high accuracy even when Et/kBT is small [49].
This formula provides an easy algorithm for numerical evalu-
ation of the temperature integral [Eq. (4c)] in computing the
kernel.

The electron population function n(Et , q, tc ) can be numer-
ically obtained by solving Eqs. (4a)–(4c) with the formula
in Eq. (5). As a first step, the temperature and energies are
discretized over a grid [T0, Tm] × [Ea, Eb], leading to

Kn = I, (6)

which is equivalent to Eq. (4a). Herein, K , I , and n are
matrices representing the kernel, experimental TL data, and
electron population function, respectively. The integral equa-
tion in Eq. (4a) and its discrete counterpart Eq. (6) are ill
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FIG. 3. The electron population function n(Et , q, tc ). (a) The ker-
nel K (Et , T ) maps the thermoluminescence (TL) curve I (T ) into the
electron population function n(Et , q, tc ) via the discrete regulariza-
tion method in Eqs. (4a)–(4c) (Tch = 243 K). For variable charging
temperature Tch, (b) the TL curves can thus turn into (c) the electron
population functions n(Et , q, tc ), from which an envelope can be
constructed accordingly (the orange line). Note νr = 1010 s−1.

conditioned, implying that approximate solutions are possible
if the Picard condition is fulfilled [50]. Therefore, no stable
solution for n can be extracted from Eq. (6) by linear least
squares methods, i.e., seeking n̂ that minimizes the resid-
ual norm squared ‖Kn̂ − I‖2

2. The Tikhonov regularization
method can solve this inverse problem by minimizing the
functional [51,52]:

V (n̂) = ‖Kn̂ − I‖2
2 + λ2‖Ln̂‖2

2, (7)

in which λ is the regularization parameter, and L is the dis-
crete approximation of a derivative operator. Additionally,
a nonnegativity constraint is imposed for the solution, i.e.,
n̂ � 0. This regularization operator favors smooth solutions
for n̂ (small derivatives), leading to an improved numerical
stability of the solution. The smoothness of n̂ is hence im-
plicitly assumed during Tikhonov regularization and agrees
with the physical picture of electron population functions. The
value of λ fixes the relative weights of both contributions in
the minimization and is numerically chosen to guarantee a
good balance between regularization and agreement to ex-
periment [53]. In this paper, the Tikhonov regularization is
implemented via the REGULARIZATION TOOLS MATLAB pack-
age [54,55]. More details are given in Sec. II in the SM [42].

The kernel K (Et , T ) maps TL curves into electron popu-
lation functions via the Tikhonov regularization method. An
individual example is shown in Fig. 3(a), for which Tch =
243 K. The experimental TL curves and the extracted elec-
tron population functions are displayed in Figs. 3(b) and
3(c) for Tch = [Tch0 : �Tch : Tchm], with �Tch = 5 K, Tch0 =
223 K, and Tchm = 393 K. Obviously, the higher the Tch, the
further the tails of electron population functions extend,
suggesting a temperature-dependent filling of traps. Further-
more, an envelope of the electron population functions, i.e.,
nenv(Et , q, tc ), can be calculated by an interpolation method
(Sec. III in the SM [42]). Shown as the orange line in Fig. 3(c),
the envelope nenv(Et , q, tc ) will be crucial to reconstruct

FIG. 4. The existence of �E . (a) The total number of trapped
electrons per volume nt (q, tc ) as a function of Tch reaches a peak
at Tch ≈ 263 K. (b) As Tch decreases, the corresponding difference
�nt (q, tc ) turns from positive into negative at Tch ≈ 263 K.

a high-precision trap depth distribution, which will be dis-
cussed in Sec. III B.

2. The presence of a thermal barrier

The presence of a thermal barrier for charging can be
revealed qualitatively. For each electron population function
n(Et , q, tc ), the total number of trapped electrons per volume
can be calculated by

nt (q, tc) =
∫ Eb

Ea

n(Et , q, tc )dEt , (8)

and the corresponding difference �nt (q, tc) can be
calculated as

�nt (q, tc) = nt (q1, tc) − nt (q, tc). (9)

Herein, q can equally be replaced by Tch, i.e., q → Tch and
q1 → Tch − �Tch since Ie and tch are already fixed.

When �E = 0.0 eV (i.e., in the absence of a thermal bar-
rier for charging), nt (q, tc) should be a nondecreasing function
with decreasing Tch because more shallow traps can be filled
at lower temperature. To put it another way, the correspond-
ing difference �nt (q, tc) is then supposed to be nonnegative.
This is not the case for the phosphor under study, as shown
in Fig. 4. At Tch ≈ 263 K,�nt (q, tc) turns from positive to
negative, which means the traps are already less efficiently
filled as Tch decreases. This suggests the presence of a thermal
barrier for charging.

B. Filling function

The kinetics of electronic transitions during charging is
required to reveal information on the filling functions after
charging. This information is needed to find a recipe to calcu-
late filling functions from the electron population functions. In
this section, the trapping and recombination processes are as-
sumed to take place within isolated pairs, and thus, first-order
kinetics is hypothesized naturally (Sec. III B 1). Given appro-
priate parameters, the filling function can be simulated under
the proposed charging procedure. The method for extracting
the filling functions from the electron population functions
is then revealed from the simulation, and two methods of re-
constructing trap depth distributions are proposed accordingly
(Sec. III B 2).
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luminescent
activator

trap trap hole

(b)(a)

FIG. 5. Local model for trapping and recombination. The
isolated-pair approximation is assumed for trapping and recombi-
nation. (a) The trapping process takes place between an isolated
luminescent activator and an empty trap, i.e., an activator-trap pair.
(b) Recombination takes place between an isolated filled trap and
a hole, i.e., an electron-hole pair. Parameters are displayed for im-
portant electron transitions. The trap depth distribution N (Et ) and
electron population function n(Et , q, tc ) are shown as a gray curve
and a blue filled area, respectively.

1. Analytic expression

It is typically reckoned that two different species are in-
volved in PersL and TL processes: the luminescent activators
and the traps. A luminescent activator, e.g., Eu2+, has a ground
state and a dense manifold of excited states [56]. In the ki-
netic models for TL, electronic states are typically regarded
in a mean-field single-electron approximation, leading to few
orbitals that a charge carrier can occupy or not [44]. As
such, a luminescent activator is usually approximated by one
ground state and one excited state, leading to a four-orbital
energy level scheme for which equilibrium occupations can
be modeled via the Fermi-Dirac distribution. An electron in
the excited orbital of the luminescent activator either decays
radiatively to the ground state of the luminescent activator or
gets captured at a trap if it is able to overcome the thermal bar-
rier �E [Fig. 5(a)]. Chemically, a trap can be a lattice defect,
e.g., an oxygen vacancy [57] or even a co-dopant, like in the
case of Dy in Sr4Al14O25:Eu2+, Dy3+ [58]. If an electron trap
is empty, it can capture an electron. If the trap is filled, it can
supply an electron to recombine with a hole nearby, provided
that the electron can overcome the thermal barrier Et , i.e., the
trap depth [Fig. 5(b)]. This detrapping process is referred to as
recombination. The hole in persistent phosphors is often reck-
oned as immobile since its mobility is much smaller than that
of electrons. In the case of Eu2+-based persistent phosphors,
the hole is localized at the (photo-)oxidized Eu2+, i.e., the
Eu3+ center. In the remainder, the situation where an electron
in a filled trap is transferred to recombine with a (localized)
hole is referred to as an electron-hole pair. Furthermore, the
process where an electron is transferred from a filled trap to
another empty trap, i.e., retrapping, is not considered.

Assuming first-order kinetics in a local model is very
reasonable. Firstly, the density of luminescent activators (usu-
ally of the order of 1 mol %) is often greater than that of
empty traps when they are crystallographic defects, making

luminescent-activator-trap pairs on average far apart. Sec-
ondly, multielectron ab initio calculations have shown that
electron transfer between activators and traps occurs locally,
not requiring the delocalization of a charge carrier to a con-
duction band state [59,60]. Thirdly, empty traps can only be
filled to a limited level by exciting the luminescent activators,
even if the density of traps is high, as is the case of Dy in
Sr4Al14O25:Eu2+, Dy3+ [58], making electron-hole pairs thus
far apart. First-order kinetics hence emerges naturally since
the involved pairs are to a large extent isolated and indepen-
dent. An isolated activator-trap pair can only transform into an
electron-hole pair upon trapping, while the electron-hole pair
turns into an activator and an empty trap upon recombination.
Here, it is assumed that the charge transfer dominantly takes
place within pairs with the shortest separation. Under this as-
sumption, the density of electron-hole pairs is proportional to
the density of filled traps [61]. Therefore, the filling function
f (Et ,�E , q, t ) itself follows the first-order ordinary differen-
tial equation:

∂ f (Et ,�E , q, t )

∂t
= ktrap(�E , q)[1 − f (Et ,�E , q, t )]

− krcb(Et , q) f (Et ,�E , q, t ), (10)

where ktrap(�E , q) and krcb(Et , q) are the trapping coefficient
and recombination coefficient, respectively.

The trapping and recombination coefficients in Eq. (10)
can in principle be deduced by analyzing the kinetics of el-
ementary trapping and recombination events. At the timescale
needed to register a single TL data point (often > 10 ms),
the density of electrons in the excited state of a luminescent
activator or a trap will have reached its maximum change upon
any abrupt perturbation. The relative values of the coefficients
depicted in Fig. 5 can be analyzed to derive the trapping and
recombination coefficients approximately. According to the
analysis in Sec. IV in the SM [42], the trapping and recom-
bination coefficients read

ktrap(�E , q) = νt exp

(
−�E

kBT

)
σabsIe(λ)

krad
, (11)

krcb(Et , q) = At

At + νr

[
νrexp

(
− Et

kBT

)
+ νr

At
σoslIe(λ)

]
,

(12)

respectively. Here, σabs is the optical absorption cross sec-
tion of Eu2+, and krad is the spontaneous emission coefficient
of the emitting 4 f 65d1 state of Eu2+. Similarly for traps,
σosl is the absorption cross-section of optically stimulated
detrapping, while At is the de-excitation coefficient of the
excited state of the trap, regardless of its depth. The frequency
factors νr and νt correspond to the trapping and recombination
processes, respectively.

For a phosphor with all traps initially empty, an optical
charging under fixed irradiance Ie(λ), after duration tch and
at temperature Tch leads to the filling function as a solution of
Eq. (10):

f (Et ,�E , q, t = 0) = ktrap(�E , q)

ktrap(�E , q) + krcb(Et , q)

× (1 − exp{−[ktrap(�E , q)

+ krcb(Et , q)]tch}). (13)
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TABLE I. The parameters for simulations.

Parameter Unit Value Comment

�E eV 0.255
σabs cm2 3 × 10−18

σosl cm2 10−17

krad s−1 1.54 × 106 See Ref. [38]
νr s−1 1010

νt s−1 1010

At s−1 1012

Ie(λ) photons
cm2s

5 × 1015 λ = 370 nm
Tch K — a

tch s — b

kB eV K−1 8.617 × 10−5

aThe values are specified in the figures or their captions.
bThe values are specified in the figures or their captions.

Clearly, the magnitude and shape of the filling function are
influenced by the thermal barrier �E . The cooling to T0 after
charging (see Fig. 1) further reduces the filling function to

f (Et ,�E , q, tc ) = f (Et ,�E , q, t = 0)

× exp[−F (Et , T0) + F (Et , Tch)]. (14)

It is unrealistic to fit this model directly to experimental
observations because there are a huge number of parameters,
many of which are not easily available. Instead, parameters are
provided from experiments or estimated, as shown in Table I.
For example, the thermal barrier for charging �E takes an
arbitrary value of 0.255 eV. Actually, the exact value of �E is
not important in extracting the trap depth distribution because
it dominantly influences the magnitudes of filling functions,
which will cancel out (see Sec. IV B). Simulations of Eqs. (13)
and (14) are conducted to analyze the filling functions under
the designed charging procedure in Sec. III B 2. From this
analysis, methods of extracting trap depth distribution will be
proposed subsequently in Sec. III B 3.

2. Analysis of filling functions

By using parameters in Table I, the filling function
f (Et ,�E , q, tc ) [Eq. (14)] was simulated at variable charg-
ing temperature Tch, with fixed charging duration tch,
fixed charging irradiance Ie, and T0 = Tch − 40 K (cool-
ing rate −1.0 K s−1). The filling functions for �E =
0.0 and 0.255 eV are discussed in the following to reveal the
methods of extracting trap depth distributions.

a. �E = 0.0 eV. In this case, the magnitudes of the filling
functions are independent of their corresponding charging
temperature Tch. The color plot of f (Et ,�E , q, tc ) in the
Tch × Et plane is shown in Fig. 6(a), where the filling function
for q → 295 K is indicated by the gray line. As shown in
Fig. 6(b), an individual filling function can be reduced to its
magnitude f0 and a characteristic trap depth Eo. As such, it
can be approximated by a Heaviside step function, i.e.,

f (Et ,�E , q, tc ) ≈ f0(�E , q)H[Et − Eo(q)]. (15)

FIG. 6. The filling function in the case without a thermal barrier
for charging (�E = 0.0 eV). (a) The filling function f (Et , �E , q, tc )
in the Tch × Et plane (q → Tch) suggests the magnitude function
fm(Et ) is independent of charging temperature Tch. The gray line in-
dicates the filling function for q → 295 K. (b) Indeed, the magnitude
function fm(Et ) is independent of charging temperature Tch (orange
line). An individual filling function (e.g., the one for q → 295 K)
characterizes a magnitude of filling f0 and a characteristic trap depth
Eo. Note that tch = 0.01 s.

Consequently, the characteristic trap depth Eo can be
determined by

f (Eo,�E , q, tc ) = 0.5 f0(�E , q). (16)

Therefore, the pair of Eo and f0(�E , q) represent the cor-
responding filling function under the charging condition q.
When (the magnitudes of) all filling functions for different
charging temperatures are collected, a function fm(Et ) can be
constructed that gives the magnitude of the filling functions as
a function of variable charging temperature (q → Tch):

fm(Et ) : Et (q) 
→ f0(�E , q). (17)

Here, fm(Et ) is called the magnitude function. From Fig. 6(b),
the magnitude function fm(Et ) (orange line) is independent of
Et and thus of charging temperature in the case at hand.

A method of extracting trap depth distributions becomes
visible in this case. Given the charging condition q → Tch

and q1 → Tch − �Tch, the difference of the total number
of traps per volume �nt (q, tc) [Eq. (9)] is proportional to
N (Et ) for Et ∈ [Et (q1), Et (q)]. No correction is needed for
either the magnitude fm(Et ) or the electron population func-
tion n(Et ,�E , q, tc ). This is the essence of the method from
Ref. [30], in which Eo is extracted by the initial rise method.
The current method outperforms the one in Ref. [30] because
of its higher precision in extracting Eo.

b. Nonzero �E . The filling function with nonzero �E
clearly indicates the dependence of the magnitude function
fm(Et ) on the charging temperature Tch. The color plot for
f (Et ,�E , q, tc ) with �E = 0.255 eV [Fig. 7(a), top panel]
shows that the filling of traps depends on the charging tem-
perature Tch. Every filling function f (Et ,�E , q, tc ) can be
normalized by its magnitude f0(�E , q), and the color plot
of the normalized filling function is presented in Fig. 7(a)
as f (Et ,�E , q, tc )/ fm(Et ) (bottom panel). For a given trap
depth, there exists an optimal range of charging temperature
that optimizes the magnitude function and experimentally
the output of PersL in many phosphors [8]. The magnitude
function fm(Et ) [Fig. 7(b)], which is tangent to the filling
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FIG. 7. The filling function in the case of a thermal bar-
rier for charging (�E = 0.255 eV). (a) The filling function
f (Et , �E , q, tc ) (top panel) and the normalized filling function
f (Et , �E , q, tc )/ fm(Et ) (bottom panel) in the Tch × Et plane (q →
Tch) suggest an optimal range of charging temperature for a given
trap depth. (b) The magnitude function fm(Et ) is tangent to the filling
function f (Et , �E , q, tc ). (c) The magnitude function fm(Et ) can be
approximated by the characteristic trap depth Ei and the magnitude
f0(�E , q) of the filling function. Note tch = 100 s.

functions, increases with increasing trap depth, indicating the
presence of a thermal barrier for charging �E .

The magnitude function fm(Et ) carries two important im-
plications, which are crucial for the extraction of trap depth
distributions.

The first implication is that it can be approximated from
filling functions, which is illustrated in Fig. 7(c). For a given
filling function f (Et ,�E , q, tc ), the magnitude f0(�E , q) can
be easily extracted, and it corresponds to a theoretical trap
depth Eopt which satisfies

fm(Eopt) = f0(�E , q).

However, Eopt is inaccessible experimentally because the
magnitude function is unknown beforehand. By using the
filling function alone, a characteristic trap depth Ei is used
to approximate the theoretical Eopt according to the relation:

f (Ei,�E , q, tc ) = 0.87 f0(�E , q). (18)

Here, the factor 0.87 follows from the simulation of the
filling functions using the parameters in Table I. It can like-
wise be regarded as an empirical constant for the case at
hand. For a Fermi-Dirac distribution [Eq. (2)], Ei is related
to Eo [Eq. (16)] by Ei ≈ Eo + 2kBTch. Therefore, the points
[Ei, f0(�E , q)] [blue dots in Fig. 7(c)] that are obtained from
the filling functions approximate the corresponding simu-
lated but in practice unknown points [Eopt, f0(�E , q)] [orange
dots in Fig. 7(c)]. The magnitude function fm(Et ) can be
obtained by interpolation and extrapolation of the experimen-
tal datasets [Ei, f0(�E , q)] with desired Et resolution and
range. According to the simulation, Ei approaches Eopt with
relative uncertainty <5% before f0(�E , q) reaches 0.9 ×
max{ fm(Et )}. When f0(�E , q) > 0.9 × max{ fm(Et )}, replac-
ing 0.87 in Eq. (18) with 0.98 will yield better results.

The second implication is that fm(Et ) is the envelope of
the electron population functions derived from a uniform trap

depth distribution [N (Et ) = 1]. From Fig. 7(c), for a given
charging temperature Tch, the filling function f (Et ,�E , q, tc )
is tangent to the magnitude function fm(Et ) in a small trap
depth range which is illustrated in gray in the figure. This
means that the envelope constructed from all electron popu-
lation functions, as done in Sec. III A, is the product of the
envelope of filling function, which is fm(Et ), and an existing
trap depth distribution N (Et ). This underlies the method of
extracting N (Et ) that is elaborated in the coming paragraphs.

3. Methods of extracting N(Et )

There are two methods to reconstruct the trap depth dis-
tribution N (Et ). The first method relies on the magnitude
function fm(Et ) and the envelope function nenv(Et , q, tc ). The
trap depth distribution can be obtained according to

N (Et ) = nenv(Et , q, tc )

fm(Et )
. (19)

The second method originates from the idea of extracting
N (Et ) for the cases with �E = 0.0 eV aforementioned. At
first, every electron population function n(Et ,�E , q, tc ) is
normalized by its magnitude function f0(�E , q). In this way,
every electron population function has the same magnitude of
filling, meaning that the influence of �E has been removed.
In the trap depth range [Eo(�E , q1), Eo(�E , q)], the value of
trap depth distribution can be calculated by

�ñt (q, tc)

δE
= 1

δE

∫ Eb

Ea

[
n(Et , q1, tc)

f0(�E , q1)
− n(Et , q, tc)

f0(�E , q)

]
dEt ,

(20)
in which δE = Eo(�E , q) − Eo(�E , q1), with q → Tch and
q1 → Tch − �Tch. The trap depth distribution N (Et ) can be
approximated by calculating �ñt (q, tc)/δE for all available
charging temperatures Tch.

C. Extraction from experiment

As discussed in Sec. III B 2, the first step toward re-
constructing N (Et ) is to calculate the filling function
f (Et ,�E , q, tc ). This function can be approximated by the
following function in a relative manner:

R(Et , q, tc ) = n(Et , q, tc)

n(Et , qr, tc)
, (21)

in which the reference charging condition is qr → Tch0. Here,
R(Et , q, tc ) is thus termed the relative filling function. For each
R(Et , q, tc ), the magnitude R0(�E , q) and the corresponding
characteristic trap depths Eo and Ei can be extracted. The
magnitude R0(�E , q) is taken as the averaged R(Et , q, tc )
in a range where it has reached a plateau. Oscillations in
R(Et , q, tc ) bring uncertainties in the extraction. Therefore, an
intermediate electron population function n(Et , q′

r, tc) can be
used to calculate R(Et , q, tc ), meaning that

R(Et , q, tc ) = n(Et , q, tc)

n(Et , q′
r, tc)

R0(�E , q′
r ). (22)

Herein, the charging temperature T ′
ch(short for q′

r → T ′
ch) can

be chosen to be δT smaller than Tch. The value of δT , on the
one hand, should be small enough to reduce oscillations as
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FIG. 8. Approximating the magnitude function. (a) The rel-
ative filling function R(Et , q, tc ) (bottom panel, qr → 223 K)
approximates the filling function f (Et ,�E , q, tc ). The discrete
[Ei, R0(�E , q)] pair and the magnitude function Rm(Et ) are dis-
played as blue dots and an orange line, respectively (bottom panel).
The simulated Ei agrees with the experimental ones within a con-
stant difference (top panel). (b) The trap depth distribution Ñ (Et ) is
calculated from the envelope nenv(Et , q, tc ) by using Eq. (19). Note
nenv(Et , q, tc ) has been scaled to the same magnitude of Ñ (Et ).

much as possible since n(Et , q, tc) suffers similar uncertain-
ties to that of n(Et , q′

r, tc). On the other hand, δT should be
large enough to avoid significantly distorting the shape of the
R(Et , q, tc) in the Et range where R(Et , q, tc) has not reached
the plateau of R0(�E , q).

After determining the magnitude R0(�E , q), the charac-
teristic trap depth Ei and Eo can be extracted according to
Eq. (16) and Eq. (18), respectively. The relative filling func-
tions are shown in Fig. 8(a) (bottom panel). After calculating
Ei and R0(�E , q) for each relative filling function, an approx-
imation to the magnitude function can be constructed:

Rm(Ei ) : Ei(q) 
→ R0(�E , q),

which is a discrete analog to Eq. (17) [blue dots in Fig. 8(a),
bottom panel]. Here, Rm(Ei ) can be interpolated for Et ∈
[min(Ei ), max(Ei )] and extrapolated beyond these limits by
using Rm[min(Ei )] and Rm[max(Ei )] [Fig. 8(a)]. This leads to
the approximated magnitude function Rm(Et ) [orange line in
Fig. 8(a), bottom panel], i.e.,

Rm(Et ) : Et (q) 
→ R0(�E , q), (23)

in which Et is now in the full trap depth range of considera-
tion, i.e., Et ∈ [Ea, Eb]. As shown in the top panel of Fig. 8(a),
the experimental Ei is almost linear with the charging temper-
ature Tch. The simulated Ei differs from the experimental one
by almost a constant amount for all q → Tch. The reason for
the discrepancy will be discussed in Sec. IV.

1. Extracting N(Et ) via Eq. (19)

Since relative filling functions are used, the approximated
trap depth Ñ (Et ) can be calculated by

Ñ (Et ) = nenv(Et , q, tc )

Rm(Et )
, (24)

and the result is shown as a blue line in Fig. 8(b). The shape
of Ñ (Et ) differs slightly from the envelope nenv(Et , q, tc ).
The resolution of the trap depth of this method is very high,

FIG. 9. Extracting N (Et ) via Eq. (20). (a) The area between
two normalized electron population functions for q and q1 charac-
terizes �ñt (q, tc ) (gray area, bottom panel). Here, Rn(Et , q, tc ) =
R(Et , q, tc )/R0(�E , q). (b) The trap depth distribution Ñ (Et ) ac-
cording to Eq. (20) is represented by a histogram, together with
�ñt (q, tc )/δE for q → 263 K as a blue bar.

and Rm(Et ) only introduces relatively large uncertainties for
Et > max(Ei ) and Et < min(Ei ) due to the extrapolation.
However, the absolute uncertainties may be smaller because
N (Et ) has negligible value in these region. This can be further
avoided by extending the range of charging temperatures.

2. Extracting N(Et ) via Eq. (20)

This method is easy to implement as it only requires dis-
crete pairs of Eo(q) and R0(�E , q). For a pair of charging
conditions q → Tch and q1 → Tch − �Tch, the total number
of trapped electrons in the range [Eo(�E , q1), Eo(�E , q)]
can be calculated by Eq. (20) upon replacing f0(�E , q)
by R0(�E , q). The gray area under the normalized
electron population functions n(Et , q1, tc)/R0(�E , q1) and
n(Et , q, tc )/R0(�E , q) in Fig. 9(a) (bottom panel) actu-
ally represents �ñt (q, tc). The approximated trap depth
distribution Ñ (Et ) is shown as a histogram in Fig. 9(b),
in which �ñt (q, tc)/δE has been added for illustration
purposes. According to Eq. (20), a large uncertainty in
n(Et , q1, tc)/R0(�E , q1) will lead to large uncertainties for
two �ñt (q, tc). This explains the occurrence of several pairs
of high + low bin heights in the histogram.

The two methods above reach a consistent trap depth dis-
tribution Ñ (Et ) [Fig. 10(a)]. This validates the methods based
on simulations in Sec. III B 2. The method of Eq. (24) yields
improved precision and resolution of Et . It is noteworthy that
an electron population function at low charging temperature,
e.g., q → 233 K, can approximate the shape of Ñ (Et ) to a
satisfactory extent [see n(Et , q1, tc) in Fig. 10(b), orange line].
For higher charging temperature, only a part of the underlying
trap depth can be revealed by the electron population function,
e.g., n(Et , q2, tc) in Fig. 10(b) (yellow line). The discrepancy
between Ñ (Et ) and n(Et , q1, tc)(q1 → 233 K) reveals possi-
ble error sources from the electron population function or
the procedure of extracting trap depth distributions. There-
fore, the trap depth distributions can be evaluated to the
first-order approximation by the electron population function
n(Et , q, tc ) with the lowest possible charging temperature if
the signal strength of the TL curve is still strong enough for
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Ñ
(E

t)

0.
5

0.
6

0.
7

0.
8

0.
85 Et(eV)

0

1

2

2.5
×102

Ñ
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FIG. 10. Trap depth distribution of BaSi2O2N2:2%Eu2+. (a) The
trap distribution Ñ (Et ) extracted by Eq. (24) (blue) agrees with that
extracted from Eq. (20) (histogram). (b) The electron population
function at low charging temperature, e.g., q1 → 233 K, can approx-
imate the trap depth distribution N (Et ) but may fail in some ranges.

the Tikhonov regularization process. This is beneficial for fast
screening of persistent phosphors based on their trap depth
distributions.

3. The influence of the frequency factor νr

The current model assumes a fixed frequency factor
of νr = 1010 s−1. Scaling νr by a positive factor a will
compress (a < 1) or stretch (a > 1) the trap depth dis-
tribution and shift it along the Et axis (Fig. 11). As
shown in previous sections, the trap depth distribution
can be approximated by a normalized electron population
function, i.e., Ñ (Et ) ≈ n(Et , q, tc )/n(Em, q, tc )(q → 233 K).
Here, n(Em, q, tc ) and Em are the maximum of n(Et , q, tc) and
the corresponding trap depth, respectively. The value of Em

characterizes the position of the trap depth distribution along
the Et axis. It is obvious that Em scales almost linearly with
log(νr ) [Fig. 11(b)]. Hence, small deviation from the chosen
frequency factor hardly imposes significant impact on the trap
depth distribution.
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FIG. 11. The influence of the recombination frequency factor
νr . (a) Changing the frequency νr to aνr by multiplying a positive
scalar a will compress (a < 1) or stretch (a > 1) the trap depth
distribution and shift it along the Et axis. (b) The value of trap depth
Em increases almost linearly with increasing log10[νr (s−1)]. Note the
trap depth distribution can be approximated by the normalized elec-
tron population function n(Et , q, tc )/n(Em, q, tc )(q → 233 K), with
n(Em, q, tc ) and Em being the maximum of n(Et , q, tc ) and the corre-
sponding trap depth, respectively.

IV. DISCUSSION

A. Interpretation of the model

1. Approximating the kernel

The temperature integral Eq. (5) decreases almost expo-
nentially with decreasing temperature T . The influence of
F (Et , T0) on the kernel K (Et , T ) [Eq. (4b)] is mainly located
at low temperature (high values in the color plot in Fig. 3).
The term F (Et , T0) is thus sufficiently smaller than F (Et , T )
and can be neglected in Eq. (4b) when T is about 20–30 K
greater than T0 for traps that are sufficiently deep. The kernel
K (Et , T ) now reads

K (Et , T ) = W (eνrT/β )

T

× exp

{
−Et − Es(T )

kBT
− exp

[
−Et − Es(T )

kBT

]

× [Es(T ) + kBT ]/Et√
1 + 4kBT/Et

}
, (25a)

Es(T ) = kBT [W (eνrT/β ) − 1], (25b)

where W (x) is the Lambert function of the 0th branch. (The
derivation is given in Sec. VI in the SM [42]). Here, Es(T )
refers to the trap depth that corresponds to the maximum of
the kernel. When Es(T ) is several kBT smaller than Et , the
kernel Eqs. (25a) and (25b) can be further simplified as

K (Et , T ) ≈ νr

β
exp

(
− Et

kBT

)
,

which underlies the initial rise method. The implicit assump-
tion means that the extracted trap depth will be underestimated
up to several kBT . The magnitude of the kernel K (Et , T ),
which is W (eνrT/β )/T , decays with increasing temperature
T . The shape of K (Et , T ) is close to the probability density
function (PDF) of the Gumbel distribution [62], and the stan-
dard deviation is proportional to kBT . This means the kernel
is mainly distributed several kBT around Es, and a linear band
structure can be found in the discrete K (Et , T ) [Fig. 3(a)].
Hence, the information of the electron population function
gets more smeared out in TL curves when temperature in-
creases, which is one of the reasons to apply the Tikhonov
regularization method.

At large argument x, the derivative W ′(x) = {x +
exp[W (x)]}−1 is close to zero. Hence, the Lambert function
in Eq. (25b) can be replaced by its averaged value 〈W 〉 in
a reasonable temperature range (e.g., 100 to 600 K), and
Eq. (25b) becomes

Es(T ) ≈ (〈W 〉 − 1)kBT . (26)

This clearly indicates a linear relationship between temper-
ature T and the characteristic trap depth Es(T ), which has
been shown in Fig. 3(a). For a delta distribution N0δ(Et − E0),
the trap depth E0 can be estimated from the temperature at
the TL glow curve maximum, i.e., Tm, via Eq. (25b). For
a fixed νr/β = 109, the Urbach relation is recovered, i.e.,
Es(Tm) ≈ 23.3kBTm ≈ Tm/500 [23].

A special case of TL is isothermal TL, known as PersL or
afterglow. After charging the phosphor at Tch, the temperature
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remains unchanged while the luminescence intensity I (t0) is
recorded as a function of delay time t0, i.e., the decay profile
of the PersL is obtained. The PersL intensity I (t0) can also be
written as the integral equation:

I (t0) =
∫ ∞

0
n(Et , q, t = 0)K (Et , t0)dEt , (27)

with the kernel:

K (Et , t0) = 1

t0
exp

{
−Et − Es(t0)

kBTch
− exp

[
−Et − Es(t0)

kBTch

]}
,

(28a)

Es(t0) = kBTchln(νrt0), (28b)

which follows the PDF of the Gumbel distribution [62]. This
immediately indicates the presence of the power law of t−α

0
(α ≈ 1) for the decay profile, which has been observed in
many persistent phosphors [63,64]. In theory, trap parameters
can also be inferred from the PersL decay profile I (t0) [44,65].
The shape of the kernel K (Et , t0) remains unchanged, but its
magnitude t−1

0 will scale down the light output from deep traps
significantly. This requires both a huge delay time t0 to probe
a wide range of trap depths and highly sensitive detectors with
a large dynamic range to register I (t0) out of noises. However,
the decay profile I (t0) can be used in conjunction with TL
curves to understand material properties to a deeper extent
[27,66].

2. Frequency factor νr

The frequency factor νr has been fixed to 1010 s−1 for
regularization in this paper. There are methods to extract the
frequency factor, for example, see Refs. [46,67], but they are
obtained under the assumption of one discrete trap depth.
Recently, McKeever and Sholom [68] proposed a more so-
phisticated method of extracting both distributed trap depths
and frequency factors. The precise determination asks for
detailed knowledge of TL and PersL and carefully designed
experiments.

Here, we consider the effect of scaling νr by a positive
scalar a on the obtained trap depth distribution, which has
been illustrated in Sec. III C. The Lambert function is ex-
panded as

W (x) ≈ ln(x) − ln[ln(x)],

at large values for x [69]. Hence, the characteristic trap depth
can be approximated as

Es(T, aνr ) ≈ Es(T, νr ) + ln(a)kBT .

This shows that the extracted electron population function
can be scaled along Et due to the term ln(a). Furthermore,
the position of the electron population function, which was
estimated by Em (Sec. III C), will be shifted by an amount
that is proportional to ln(a). The extracted trap depth distribu-
tion can be altered similarly since it can be approximated by
an electron population function for sufficiently low charging
temperature [e.g., n(Et , q, tc) with q → 233 K].

3. The optimal trap depth for charging at temperature Tch

The linear relationship between the charging temperature
and the trap depth which can be optimally charged at that
temperature (see Fig. 7) can be understood to a satisfactory
extent. We set σosl to zero without loss of generality. At a given
charging condition q, the magnitude of filling:

f0(�E , q) = ktrap(�E , q)

ktrap(�E , q) + krcb(Et , q)

=
[

1 + Atνrkrad

(At + νr )νtσabsIe(λ)

× exp

(
− Et − �E

kBT

)]−1

, (29)

increases with increasing Et . Meanwhile, the remainder of
Eq. (13):

1 − exp{−[ktrap(�E , q) + krcb(Et , q)]tch},
decreases with increasing Et . This leads to a trap depth at
which the phosphor can be charged to the largest efficiency at
the given charging temperature Tch [Fig. 7(a), bottom panel].
This sets the relationship between Tch and Eopt. It is interest-
ing to note that the magnitude f0(�E , q) shows an effective
activation energy of Et − �E to 100% filling.

4. First-order kinetics

We now turn to the first-order kinetics, which determines
the validity of the methods. The first-order kinetics, which
originates from the isolated-pair approximation without con-
sidering retrapping (Sec. III B 1), has been assumed for both
detrapping during TL and the filling of traps during charging.
Noticeably, retrapping has an impact when the density of elec-
trons at the excited state of traps or of luminescent activators
is increased significantly by optical stimulation [70,71] or
even mechanical stimulation [37], enhancing the probability
of trapping for these electrons. The isolated-pair approxima-
tion actually implies that the density of electrons at the excited
state of traps or of luminescent activators is small enough (see
Sec. III B 1). Furthermore, the experimental conditions can be
carefully designed to minimize the effect of retrapping. Ac-
cording to the charging procedure (see Sec. II), the phosphor
was charged at high irradiance and long charging duration
to reach saturated electron population functions. In this way,
non-first-order kinetics during charging can be smeared out
into the thermal equilibrium. The cooling process (to T0) after
charging further reduces the non-first-order kinetics. Hence,
the limited rate of the retrapping process is not likely to pose
a large impact on the methods of extracting the trap depth
distribution.

First-order kinetics of electrons among traps with a trap
depth distribution can induce a change of the shape of the
electron population, which evolves with increasing charging
duration (with fixed charging irradiance). For the model phos-
phor BaSi2O2N2:2%Eu2+, the experimental observation and
simulation reveal that the trap depth at the maximum of the
electron population function Em increases before reaching a
plateau as the charging duration increases (see Sec. V in the
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SM [42]). It is often exploited that it follows from first-order
kinetics that the shape of the TL curve and the resultant shape
of the electron population function are independent of the
charging duration (charging irradiance fixed). If deviations
occur, this is usually interpreted as the result of non-first-order
kinetics [21]. However, this only applies for phosphors with
just one discrete trap depth. This suggests that first-order
kinetics can be more dominant in persistent and storage phos-
phors than expected, and thus retrapping in TL can be safely
ignored accordingly.

B. Analysis of uncertainties

The accuracy of the extracted trap depth distribution relies
on the theoretical framework that suggests the methods for
extracting information. The most important implication of the
first-order kinetics of charging is the presence and scientific
significance of the magnitude function fm(Et ), Eq. (17) [or the
relative version Rm(Et ), Eq. (23)]. On the one hand, fm(Et ) is
the magnitude that should be used to correct electron popu-
lation functions for variable charging temperature to remove
the influence of the thermal barrier for charging �E . This
directly results in the method via Eq. (20). On the other
hand, fm(Et ) is also the envelope of the electron population
functions at variable Tch originating from a uniform trap depth
distribution N (Et ) = 1. Evidently, the trap depth distribution
can be recovered by using the envelope nenv(Et , q, tc ) and the
magnitude function fm(Et ) according to Eq. (19). These de-
ductive methods do not depend on the parameters used in the
simulation but depend on the presence of the thermal barrier
�E . The effect of �E can be canceled out via Eqs. (19) or
(20) without knowing its exact value. Systematic errors are
thus minimized, and random errors originate from the calcu-
lation of the electron population functions and the associated
magnitude function directly.

Consistent experimental settings for charging should be
guaranteed as much as possible. It is advised to cool the
phosphor after charging to T0 at a large cooling rate such
that the electron population function n(Et , q, tc ) (q → T0)
can be best approximated by n(Et , q, t = 0) (q → Tch). The
charging irradiance Ie(λ) and charging duration tch should
be sufficiently large to produce a high signal strength and
also a stable shape of the electron population functions. (A
detailed analysis of dose dependency can be found in Sec. V
in the SM [42]). The noise level should be minimized to in-
crease the signal-to-noise ratio which is important to generate
high-quality electron population functions via the Tikhonov
regularization.

Numerical uncertainties mainly originate from the rela-
tive filling function R(Et , q, tc ), the methods to extract the
magnitude R0(�E , q), and the characteristic trap depths Eo

[Eq. (16)] and Ei [Eq. (18)]. The regularization method can
yield small oscillations in the electron population functions
because it uses oscillatory singular vectors to reconstruct
solutions. The oscillation in R(Et , q, tc ) can be reduced by
choosing an optimized reference electron population function
[Eq. (22)], leading to a more reliable magnitude R0(�E , q).
The characteristic trap depth Ei from Eq. (18) will yield a
few percent of deviation from the model. Large uncertain-

ties may arise when there is an oscillation of R(Et , q, tc )
before it reaches the magnitude. This has been shown for
Ei ∈ (0.8, 0.9) eV in Fig. 8.

The method of extracting trap depth distributions via
Eq. (19) suffers from uncertainties originating from both
Rm(Et ) and the envelope of the electron population func-
tions nenv(Et , q, tc). Meanwhile, the method via Eq. (20) is
prone to errors in nt (q, tc) and the magnitude R0(�E , q).
As the method of difference is used, a large uncertainty in
nt (q, tc)/R0(�E , q) will definitely produce large uncertainties
in N (Et ) in two consecutive trap depth ranges. This can be
confirmed by several pairs of high + low heights of bins in
the histogram of Ñ (Et ).

C. Application of the method

The present model assumes the presence of only one lumi-
nescent activator and only one thermal barrier. Real persistent
phosphors can have multiple luminescent activators and traps
or one kind of luminescent activator at multiple crystallo-
graphic sites, each providing its own emission spectrum and
thermal barrier. In these cases, the first-order kinetics must
be applied to each distinctive trapping-recombination process
independently and the output is the sum of these independent
processes. Ideally, spectrally resolved recording of the TL
intensity allows us to distinguish the contributions of inde-
pendent recombination processes.

Trap depth distributions have already found their way into
technological applications. The obvious one is to understand
and tune the PersL behavior of persistent phosphors. For ex-
ample, the trap depth distribution in garnet phosphors can be
tuned by alloying to optimize optical storage properties [72].
Furthermore, it provides an estimate for the optimum charging
and working temperature (Topt) of persistent phosphors. The
quantity I (t0)t0 can be used to quantify the luminescence de-
cay profile. It combines the effect of intensity of afterglow and
the noise level. According to Eq. (28), the kernel K (Et , t0) can
be approximated by a boxcar function rect[ Et −Es (t0 )

πkBTch/
√

6
], leading

to

I (t0)t0 ≈ π√
6

kBTchn[Es(t0), q, t = 0], (30)

which clearly indicates the influence of charging temperature
and the trap depth distribution. The charging temperature Tch

that maximizes I (t0)t0 can be estimated by examining the
maximum of N (Et ). For BaSi2O2N2:2%Eu2+, this optimum
charging temperature is ∼288 K, which results in an electron
population function with its maximum located around that
of the trap depth distribution [yellow line, Fig. 10(b)]. This
prediction can be compared with further experimental verifi-
cation.

Given the trap depth distribution Ñ (Et ), PersL decay pro-
files or TL glow curves can be straightforwardly simulated for
any charging and working conditions. This helps to explain
and predict the properties of phosphors. More importantly, the
trap distribution can be used as a reliable feature of persistent
and storage phosphors. This facilitates the discovery of em-
pirical laws that govern the properties of persistent phosphors,
e.g., via machine learning.
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V. CONCLUSIONS

In this paper, a method was proposed to extract the trap
depth distribution from TL curves with the presence of a
thermal barrier for charging. It is based on a local model for
trapping and recombination that leads to first-order kinetics.
The model predicts the evolution of the filling function as
a function of charging temperature. In the first step of the
method, the electron population functions n(Et , Tch, tc) and
the envelope nenv(Et , q, tc) were obtained from the corre-
sponding TL curves by the Tikhonov regularization method.
In the second step, the magnitude of the filling function,
i.e., fm(Et ), is estimated out of ratios of electron population
functions. Finally, the trap depth distribution can be estimated
according to either N (Et ) = nenv(Et , q, tc )/ fm(Et ) [Eq. (19)]
or Eq. (20). The methods do not require the value of the
thermal barrier �E beforehand, although �E influences the
filling functions. Our case study on BaSi2O2N2:Eu2+ vali-
dated this method. A broad trap depth distribution, ranging

from 0.5 to 0.9 eV with the maximum ∼0.65 eV, was revealed,
assuming a frequency factor of νr = 1010 s−1.

The method via Eq. (19) not only shows a clear physics
picture but also yields high precision and resolution of trap
depth, provided that TL curves with high signal strength and
high signal-to-noise ratio are available. The trap distribution
definitely promotes the understanding and tailoring of the
properties of persistent and storage phosphors.
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