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Nonadiabatic vibronic effects in single-molecule junctions: A theoretical study using the
hierarchical equations of motion approach
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The interaction between electronic and vibrational degrees of freedom is an important mechanism in nonequi-
librium charge transport through molecular nanojunctions. While adiabatic polaron-type coupling has been
studied in great detail, new transport phenomena arise for nonadiabatic coupling scenarios corresponding to a
breakdown of the Born-Oppenheimer approximation. Employing the numerically exact hierarchical equations of
motion approach, we analyze the effect of nonadiabatic electronic-vibrational coupling on electron transport in
molecular junctions considering a series of models with increasing complexity. The results reveal a significant
influence of nonadiabatic coupling on the transport characteristics and a variety of interesting effects, including
negative differential conductance. The underlying mechanisms are analyzed in detail.
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I. INTRODUCTION

Inspired by the work of Aviram and Ratner [1] charge
transport through single-molecule junctions has been the fo-
cus of many experimental and theoretical studies [2–10]. Due
to their small mass and size, charge transport in molecular
nanojunctions is often strongly affected by the interaction be-
tween electronic and vibrational degrees of freedom resulting
in a variety of interesting phenomena such as avalanche-
like transport [11–14], current-induced dissociation [15–17],
dynamical symmetry breaking [18], local heating and cool-
ing [19–25], vibrational instabilities [22,23,26], and switch-
ing [27].

Most theoretical studies of vibrationally coupled charge
transport in molecular junctions are based on polaron-type
models, which result from the state-specific dependence of
the electronic energies of the molecule on the nuclear dis-
placement, which lead to, e.g., a change of the potential
energy surface of the molecular bridge upon charging the
molecule [6,20,28]. However, due to the dependence of the
electronic states on the nuclear coordinates, the kinetic energy
operator of the nuclei may cause transitions between different
electronic states which can influence the transport properties
profoundly. This mechanism, which represents a breakdown
of the Born-Oppenheimer approximation, is referred to as
nonadiabatic electronic-vibrational coupling [29,30] and has
been investigated, e.g., in the context of Jahn-Teller effects in
molecular junctions [31–35] and in STM studies of olygothio-
phene molecules on a Au substrate [36]. It also manifests itself
in the off-resonant transport regime in structures in inelas-
tic electron tunneling spectra (IETS) [37–40]. In this paper,
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we study the influence of nonadiabatic electronic-vibrational
coupling on charge transport in single-molecule junctions.
Extending our previous work in Ref. [41], we employ the
numerically exact hierarchical equations of motion (HEOM)
method and consider models exhibiting conical intersections.

A variety of theoretical approaches has been introduced
and utilized to study vibrationally coupled charge trans-
port in molecular junctions. Methods relying on perturbation
theory include the master equation approach [20,22,42–
45], scattering theory [46–49], and nonequilibrium Green’s
function formalism [6,41,50–53]. To overcome approxima-
tive treatments, numerically exact approaches have been
employed such as the multilayer multiconfiguration time-
dependent Hartree method [54–58], iterative path integral
approaches [59–61], diagrammatic quantum Monte Carlo
simulations [34,62–65], the numerical renormalization group
technique [66–69], a combination of reduced density matrix
techniques and impurity solvers [70], and the HEOM method
employed in the present work.

The HEOM approach [also called hierarchical quantum
master equation (HQME) method] was first introduced by
Tanimura and Kubo to describe the relaxation dynamics of
open quantum systems [71,72]. Later, Yan et al. [73–79] and
Härtle et al. [28,80–83] extended the formalism to investigate
charge transport through nanosystems. The HEOM method
provides an equation of motion for the reduced density matrix
of an open quantum system by introducing a set of hierar-
chically coupled auxiliary density operators. It generalizes
perturbative quantum master equation methods by including
higher-order contributions as well as non-Markovian mem-
ory and thus allows for the systematic convergence of the
results [74,84]. In this paper, we utilize the HEOM formalism
to investigate nonadiabatic electronic-vibrational effects in
charge transport through molecular junctions.
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This paper is organized as follows: We introduce the theo-
retical methodology in Sec. II, including a description of the
model system and a brief review of the HEOM approach. In
Sec. III, we analyze nonadiabatic effects in charge transport
considering a variety of models with increasing complexity.
Section IV summarizes our investigations.

II. THEORY

A. Model system

To investigate nonadiabatic effects in charge transport, we
consider a nanojunction, which consists of a molecule coupled
to two macroscopic electrodes [43,46,51,85]. The Hamilto-
nian of the composite system is given by

H =HS + HB + HSB. (1)

The molecule is described by a model which includes the
relevant electronic states and vibrational modes,

HS =
Nel∑

m=1

εmd†
mdm + U

∑
m>n

d†
mdmd†

n dn

+
Nvib∑
α=1

�αa†
αaα +

∑
α,m,n

λ(α)
mn d†

mdn (aα + a†
α ), (2)

where we have employed units with h̄ = 1. Electrons with
energy εm are annihilated/created by the operators dm/d†

m
and the parameter U characterizes the Coulomb interaction
strength. The vibrational degrees of freedom are modeled as
harmonic oscillators of frequencies �α , where we consider
for mode α a set of NV,α vibrational basis states in the nu-
merical calculations. The annihilation/creation operators of
vibrational mode α are aα/a†

α .
The coupling between electronic and vibrational degrees

of freedom is encoded in the last term of the system Hamil-
tonian in Eq. (2), where the parameter λ(α)

mn characterizes
the interaction strength. As discussed in Ref. [41], the sce-
nario of an electronic-vibrational coupling, which is diagonal
in the electronic subspace (i.e., n = m), corresponds to a
treatment within the adiabatic or Born-Oppenheimer approx-
imation [30,41,86]. In the limit of vanishing molecule-lead
coupling, a system Hamiltonian HS incorporating purely adi-
abatic coupling can be diagonalized analytically using the
small Polaron transformation [87,88]. The transport charac-
teristics can then be rationalized by the Franck-Condon prin-
ciple [89,90]. Additional terms in the electronic-vibrational
coupling, which are nondiagonal in the electronic subspace
(i.e., n �= m), enable nonadiabatic processes. As a conse-
quence, the Born-Oppenheimer approximation breaks down
and the Franck-Condon principle fails to describe the trans-
port behavior. In this work, we investigate the effect of
this so-called nonadiabatic coupling on charge transport in a
molecular junction and its interplay with the adiabatic cou-
pling.

The two electrodes are described by a noninteracting Fermi
gas,

HB =
∑

k∈L/R

εk c†
kck , (3)

where the operators ck/c†
k annihilate/create an electron in lead

L/R with energy εk . For the sake of simplicity, the Fermi level
of both electrodes is assumed to be εF = 0.

The interactions between the fermionic environment and
the molecule are incorporated in HSB in Eq. (1). The contin-
uum of states in the leads is coupled to the mth molecular
electronic state,

HSB =
Nel∑

k∈L/R,m=1

(Vk,mc†
kdm + H.c.), (4)

where Vk,m denotes the coupling strength. The molecule-lead
coupling is characterized by the level-width function of lead
K ∈ L/R

�K,mn(ε) = 2π
∑
k∈K

V ∗
k,mVk,nδ(ε − εk ). (5)

Within the HEOM approach, we describe the system-bath
interaction by introducing the bath coupling operators in a
bath-interaction picture,

F σ
K,m(t ) = eiHBt

(∑
k∈K

V σ̄
k,mcσ

k

)
e−iHBt , (6)

with σ = ±, σ̄ ≡ −σ, c−(+)
k ≡ c(†)

k , and V −(+)
k,m ≡ V (∗)

k,m. For

system-bath couplings given by HSB in Eq. (4), the effect of
the environment on the molecule can be entirely described by
the two-time correlation functions of the free bath,

Cσ
K,mn(t − τ ) = 〈

F σ
K,m(t )F σ̄

K,n(τ )
〉
B. (7)

Here, we have taken the trace over bath degrees of freedom. To
obtain a closed set of equations within the HEOM framework,
we expand the correlation functions by a series of exponential
functions [73,74],

Cσ
K,mn(t − τ ) ≈ V ∗

K,mVK,n

NP∑
l=0

ηK,σ,l e
−γK,σ,l (t−τ ), (8)

with NP as the number of Padé poles. Thereby, we have chosen
a constant molecule-lead coupling, Vk,n = VK,m with k ∈ K .
The Fermi distribution is represented by the Padé decomposi-
tion scheme [91–93] and the level-width function is assumed
to be a Lorentzian,

�K,mn(ε) = 2π
V ∗

K,mVK,nW
2

K

(ε − μK )2 + W 2
K

. (9)

It has a single peak centered around the chemical potential
μK with parameter WK as the band-width. We consider the
bias voltage drop at the contacts to be symmetric, i.e., μL =

/2 and μR = −
/2, where 
 denotes the bias voltage. To
avoid band edge effects in the transport properties, we set the
band-width to WK = 104 eV, which effectively describes the
wide-band limit. Throughout this paper, we assume symmet-
ric molecule-lead coupling scenarios, i.e., VK,m = V ∈ R and
�K,mn = �.

B. Hierarchical equation of motion approach

We describe nonequilibrium charge transport with the
HEOM formalism (also referred to as HQME method in this
context). We omit a detailed derivation and closely follow
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Refs. [13,28,73,80]. The HEOM approach provides an equa-
tion of motion for the reduced density operator by introducing
a set of hierarchically coupled auxiliary density operators. The
equation of motion for the nth tier auxiliary density operator
reads

ρ̇
(n)
j = − i

[
HS , ρ

(n)
j

] −
n∑

k=1

γ jk
ρ

(n)
j

− i
∑

jk

A jk ρ
(n+1)
j+k

− i
n∑

k=1

C jk
ρ

(n−1)
j−k

. (10)

Here, ρ (n=0) ≡ ρ denotes the reduced density operator and
ρ

(n>0)
j are the auxiliary density operators, for which we have

defined the multi-index vectors j = jn . . . j1, j+k = jk jn . . . j1
and j−k = jn . . . jk+1 jk−1 . . . j1 with j = (K, σ, l ). The opera-
tors A and C specify the coupling between different tiers,

A jk ρ
(n+1)
j+k

=
∑

m

VK,m

(
d σ̄

mρ
(n+1)
j+k

+ (−)nρ
(n+1)
j+k

d σ̄
m

)
, (11a)

C jk
ρ

(n−1)
j−k

=
∑

m

VK,m

(
η j d

σ
mρ

(n−1)
j−k

+(−)nη∗
j ρ

(n−1)
j−k

dσ
m

)
. (11b)

The auxiliary density operators contain information on bath-
related observables such as the electrical current for lead K

IK = ie
∑
m,l

VK,mTrS
(
dmρ

(1)
(K,+,l ) − H.c.

)
, (12)

where TrS denotes the trace over system degrees of freedom.
For the characterization of the transport behavior, the

steady-state of the hierarchical equations in Eq. (10) is of
primary interest. We utilize our recently proposed iterative
solving technique to calculate the steady-state [94].

III. RESULTS

In this section, we investigate nonadiabatic vibronic effects
on charge transport through single-molecule junctions. To this
end, we employ models for a molecular junction, where the
molecule is described by the system Hamiltonian in Eq. (2)
for Nel = 2 and Nvib � 2.

To facilitate a detailed analysis, we first introduce in
Sec. III A a scheme to identify transport channels in the con-
text of vibrationally coupled charge transport. In Sec. III B,
we investigate model systems with a single vibrational mode
and Sec. III C considers multimode systems.

A. Analysis of transport processes

Charge transport in models which incorporate solely adi-
abatic electronic-vibrational coupling can be characterized
based on the Franck-Condon matrix elements [87,88]. They
provide the transition probability between two vibrational
states in a charging or decharging process. We extend them
to the scenario of nonadiabatic electronic-vibrational coupling
by calculating the expression

Pi,σ
n,ν;ν′ =

∑
n′

| 〈n; ν| χ†dσ
i χ |n′; ν′〉 |2. (13)

Here, χ corresponds to the unitary transformation which di-
agonalizes the system Hamiltonian in Eq. (2). We evaluate the
expression in a basis of product states |n; ν〉 ≡ |n〉 |ν〉, which

TABLE I. Overview of the model systems examined in Sec. III B,
which include a single vibrational mode. All parameters are given in
meV.

Model ε1 ε2 λ
(1)
11 λ

(1)
22 λ

(1)
12

NONAD 250 400 0.0 0.0 80
INTPLY 250 400 80 80 80
AD 250 400 80 80 0.0

span the subspace of both the electronic and vibrational de-
grees of freedom. The electronic basis functions |n〉 are given
in the occupation number representation, i.e., |n〉 = |n1n2〉,
where ni ∈ {0, 1} for the ith electronic level. The vibrational
basis functions |ν〉 correspond to the harmonic oscillator ba-
sis functions expressed in angular momentum or occupation
number representation, depending on the investigated model
system (see below). More specifically, we denote with |ν〉 =
|ν〉 the basis functions for a model with a single vibrational
degree of freedom and consider with |ν〉 = |ν1ν2〉 the two-
mode scenario. Being initially in state |n; ν〉, Pi,σ

n,ν;ν′ in Eq. (13)
provides the transition probability of populating (σ = +) or
depopulating (σ = −) the ith noninteracting molecular elec-
tronic level with final vibrational state |ν′〉. Generally, the
nonadiabatic transition matrix elements in Eq. (13) do not
provide a complete picture of charge transport, since pro-
cesses such as the nonequilibrium excitation of the vibrational
mode are not considered [20,28]. Nevertheless, they provide
a helpful tool to identify the dominant transport channels in
vibrationally coupled charge transport.

In the sequential electron tunneling regime, transport
mechanisms can be divided into several subprocesses. To fa-
cilitate the identification of the processes, we denote in the
following with |n; ν〉 the eigenstate of HS which has the largest
overlap with the noninteracting state |n; ν〉. Being initially in
the vibronic eigenstate |n; ν〉 with energy E , the molecule is
occupied by an electron transferred from the left lead resulting
in the change of the molecular state to the eigenstate |n′; ν′〉
with energy E ′. The transport process ends with the transfer
of the electron toward the right lead. To provide an instructive

interpretation, we introduce the notation |n; ν〉 LS/SR−→ |n′; ν′〉,
which denotes the transition between the eigenstates |n; ν〉
and |n′; ν′〉 within a transfer event from the left lead L to the
system S or from the system S to the right lead R. The thresh-
old bias voltage corresponding to the onset of the transport
process is given by


 = 2(E ′ − E ). (14)

To identify transport mechanisms, the eigenenergies of the
isolated molecule are related to features in the current.

B. Single-mode model systems with avoided level crossing

In the scenario of a single vibrational degree of freedom,
the avoided level crossing has been identified as a signature of
nonadiabatic electronic-vibrational coupling in previous stud-
ies [36,41]. We investigate such systems with the two models
NONAD and INTPLY, whose parameters are summarized in
Table I. For comparison, we also show the transport properties
of model AD, which solely incorporates adiabatic electronic-
vibrational coupling. To obtain converged results for these
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FIG. 1. Conductance dI
d


as a function of bias voltage and vibra-
tional frequency for models NONAD, INTPLY and AD (from top to
bottom). Table I summarizes the parameters used. Furthermore, we
set the temperature to T = 50 K and molecule-lead coupling strength
� = 1 meV to obtain sharp features in the conductance. We assume
the Coulomb interaction strength to be U = 0. The white dashed
lines indicate the positions of the unperturbed resonances. Three
regimes can be identified: I corresponds to weak, II to intermediate,
and III to strong coupling.

model systems, it is sufficient to employ second tier calcula-
tions and include NP = 27 Padé poles and up to NV,1 = 35 vi-
brational basis states, depending on the electronic-vibrational
coupling strength. Figure 1 depicts the conductance for the
three model systems. To identify transport mechanisms with
Eq. (14), we show in Table II in the Appendix the eigenener-
gies for the models NONAD and INTPLY.

We begin our investigations by introducing a simplified
model for nonadiabatic charge transport and proceed with
the study of model NONAD, which solely includes nonadia-
batic electronic-vibrational coupling. Finally, we examine the
interplay between adiabatic and nonadiabatic coupling in
model INTPLY.

1. Effective two-state model

To facilitate the analysis of nonadiabatic transport prop-
erties, we define an effective (mean-field) purely electronic

model with system Hamiltonian

Heff =
2∑

m=1

εmd†
mdm + teff(d

†
1 d2 + d†

2 d1 ), (15)

teff =λ
(1)
12 TrS[(a1 + a†

1)ρ]. (16)

Here, we have introduced the effective interstate coupling teff.
It corresponds to the average displacement of the vibrational
mode in a model system, which explicitly incorporates the
vibrational degree of freedom. The two-state Hamiltonian in
Eq. (15) can be diagonalized analytically giving the eigenval-
ues and molecule-lead coupling strengths

ε̃1/2 = ε1 + ε2

2
∓

√(
ε2 − ε1

2

)2

+ t2
eff, (17)

�̃1/2 = 2πV 2[cos(θ ) ± sin(θ )]2, (18)

θ = 1

2
arctan

(
2teff

ε1 − ε2

)
. (19)

The effective two-state model is introduced to analyze
the transport behavior of a system including nonadiabatic
electronic-vibrational coupling. To this end, we first deter-
mine the effective interstate coupling teff in Eq. (16) as a
function of the bias voltage. Subsequently, we compute the
current-voltage characteristics for the two-state Hamiltonian
in Eq. (15). The results can be entirely rationalized by the
eigenenergies in Eq. (17) as well as the molecule-lead cou-
pling strengths in Eq. (18).

2. Purely nonadiabatic electronic-vibrational coupling

Here, we analyze the transport characteristics of the nona-
diabatic model NONAD, whose conductance map is depicted
in Fig. 1(a). The large number of transport features shows
that the vibrational mode is highly involved in charge trans-
port processes. The conductance maps of the nonadiabatic
and adiabatic models, NONAD and AD, differ substantially
which indicates that the breakdown of the Born-Oppenheimer
approximation results in new transport phenomena. Since the
occurring transport mechanisms depend on the dimensionless
electronic-vibrational interaction strength λ

(1)
12 /�1, we divide

the subsequent analysis into four different coupling regimes.
Weak electronic-vibrational coupling (λ(1)

12 /�1 � 1). The
weak coupling regime has been previously studied in Ref. [41]
with a nonequilibrium Green’s function approach, which ne-
glects nonequilibrium vibrational processes and incorporates
the electronic-vibrational coupling in a perturbative manner.
We thus expect additional transport channels to occur in the
numerically exact HEOM framework used in this work. For
the sake of clarity, Fig. 2(a) depicts selected vibrational fre-
quencies �1 � 200 meV for regime I in Fig. 1(a).

Due to the weak electronic-vibrational coupling, the
eigenenergies of the isolated molecule are close to the non-
interacting energies (see Table II in the Appendix). The
transport mechanisms are thus expected to mainly consist
of purely electronic transitions as well as processes which
solely involve the energetically low-lying vibrational states.
Accordingly, the three dominant features in the conductance
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FIG. 2. Conductance dI
d


as a function of bias voltage for model
NONAD in the weak coupling regime in panel (a), for a frequency
in resonance in panel (b), and for the intermediate coupling regime
in panel (c). The results correspond to a section of the conductance
map in Fig. 1(a) for selected vibrational frequencies and are denoted
with I, II, and III, respectively. The dashed lines indicate the onset of

the transport processes |00; 0〉 LS−→ |10; 1〉 and |00; 0〉 LS−→ |01; 0〉.

correspond to the onset of resonant transport through the
vibrational ground state of the singly and doubly charged
molecule. Besides, nonequilibrium vibrational processes,

such as |00; 1〉 LS−→ |10; 1〉 at the bias voltage 
 ≈ 0.55 V,
and transport processes, which involve higher excited vibra-
tional states, provide a small contribution to charge transport.

Frequency in resonance. Next, we consider in Fig. 2(b)
the conductance of model NONAD in a parameter regime for
which the energy difference of the electronic levels equals the
energy of the vibrational mode, i.e., ε2 − ε1 = �1.

Satisfying the resonance condition enhances the influence
of nonadiabatic electronic-vibrational processes on the trans-
port properties, as shown in Refs. [36,41]. The processes
comprise the population of one electronic level followed by an
intramolecular transition to the other level. The electron then

leaves the molecule toward the right lead, as schematically
shown in Fig. 3(a).

As an example for a nonadiabatic process, we focus
on the transport mechanisms occurring for the transitions

|00; 0〉 LS−→ |10; 1〉 and |00; 0〉 LS−→ |01; 0〉. The bias voltages
at which the transport channels become active are indicated by
the dashed black lines in Fig. 2(b). We note the slightly differ-
ent peak intensities of the two features in the conductance. To
characterize this nonadiabatic process, Repp et al. introduced
in Ref. [36] a simplified two-state model which neglects all
noninteracting states except |10; 1〉 and |01; 0〉. Due to the
level-mixing property of the nonadiabatic coupling, the two
states would then provide equivalent transport channels in the
case of the resonance condition and thus, the simplified model
predicts symmetric peak intensities. Thus, the different peak
intensities indicate that processes, where more than one vi-
brational quanta are excited, need to be considered to capture
the entire picture of the nonadiabatic process, as sketched in
Fig. 3(b).

Intermediate electronic-vibrational coupling (λ(1)
12 /�1 ≈

1). For vibrational frequencies in the range between �1 =
50 meV and �1 = 150 meV, the electronic-vibrational cou-
pling strength enters the intermediate regime, which was not
covered in previous studies. Selected vibrational frequencies
for the intermediate regime II in Fig. 1(a) are depicted in
Fig. 2(c). For model AD, which incorporates purely adiabatic
coupling, it marks the onset of the well-known Franck-
Condon blockade [11].

Similar to the Franck-Condon blockade, the model
NONAD reveals the onset of current suppression in the low-
bias voltage regime for intermediate electronic-vibrational
couplings. We investigate the phenomenon with the nonadi-
abatic transition probabilities P1,+

00,ν;ν ′ [see Eq. (13)], which are
depicted in Fig. 4 for different vibrational frequencies. They
provide the probability of charging the unoccupied molecu-
lar levels by electrons transferred from the leads. Thereby,
the initial vibrational state |ν〉 changes to |ν ′〉. Unlike the
well-known Franck-Condon matrix elements, the transition
probabilities of model systems with nonadiabatic coupling are
not symmetric under the exchange of |ν〉 with |ν ′〉 due to
the level-mixing property. Transitions between energetically
low-lying vibrational states become less likely with decreas-
ing frequency and, as a consequence, the current is suppressed
in the low-bias voltage regime. This is accompanied by an
enhanced influence of transport processes involving higher

FIG. 3. Schematic representation of nonadiabatic electronic-vibrational processes (a, b) and adiabatic polaron-type transport mechanisms
in panels (c–e). The abbreviation L (R) denotes the left (right) lead and S corresponds to the system. Arrows indicate transport electrons and
the color indicates, on which state the electrons are transferred.
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FIG. 4. Nonadiabatic transition probabilities P1,+
00,ν;ν′ for �1 =

50 meV in (a) and for �1 = 80 meV in (b) for model NONAD.
For models with a single vibrational mode, we use the harmonic
oscillator basis functions |ν〉 in occupation number representation,
where ν ∈ N0 corresponds to the excitation number.

excited vibrational states of the lower electronic level such
as the transition |00; 0〉 LS−→ |10; 2〉 which is sketched in
Fig. 3(b).

In the voltage range between 
 = 0.6 V and 
 = 0.8 V,
transport channels with a small contribution to charge trans-
port become active. Further increasing the bias voltage leads
to the resonant tunneling through the second electronic state
including its vibrational satellites.

Strong electronic-vibrational coupling (λ(1)
12 /�1 
 1).

Next, we consider the conductance in Fig. 1(a) for fre-
quencies �1 � 40 meV in regime III. For large coupling
strengths, the transport characteristics exhibit negative dif-
ferential conductance (NDC). It is noted, that nonadiabatic
coupling has been reported as the source of NDC in pre-
vious investigations [41], however, in different scenarios
including asymmetric molecule-lead coupling strengths, weak
electronic-vibrational couplings, and quasidegenerate molec-
ular electronic levels.

To analyze the mechanism responsible for the NDC, we
utilize the effective two-state model introduced in Sec. III B
1. Figure 5 depicts the current Ieff of the effective model in
Fig. 5(b), the effective interstate coupling teff in Fig. 5(c) and
the ratio of the molecule-lead coupling strength of the lower
to the upper eigenstate in Fig. 5(d). In addition, the current I
obtained with the system Hamiltonian of the complete model
[Eq. (2)] is shown in Fig. 5(a).

The discrepancy to the current of the complete model
indicates that the effective two-state model cannot provide
a complete picture of the transport processes. Nonetheless,
the reduced model facilitates the analysis of the NDC, as de-
scribed in the following. We first focus on the frequency �1 =
25 meV, since the feature is particularly dominant in this case.
NDC occurs in the bias voltage range between 
 ≈ 0.5 V and

 ≈ 1.05 V, where the upper eigenstate is located outside of
the bias window and, thus, the only active transport chan-
nel is the lower eigenstate. The effective interstate coupling
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FIG. 5. Current for system Hamiltonian of the complete model in
Eq. (2), current for the effective two-state Hamiltonian in Eq. (15),
effective interstate coupling in Eq. (16) and ratio of the molecule-lead
coupling strengths in Eq. (18) (from top to bottom).

increases in this regime along with the bias voltage, which
results in the reduction of the effective molecule-lead coupling
strength of the lower eigenstate [see Eq. (18)]. Hence, the
current also decreases until the upper eigenstate of the two-
state model enters the bias window. For frequencies �1 �
30 meV, the effective interstate coupling is generally lower
due to the smaller electronic-vibrational coupling strength.
Accordingly, the asymmetry in the molecule-lead coupling is
less pronounced and thus is the NDC.

Although the molecule-lead coupling strength of the eigen-
states cannot be derived analytically for the vibrationally
coupled model NONAD, the effective two-state model indi-
cates that the source of NDC in Fig. 5(a) is a bias-dependent
asymmetry in the molecule-coupling strength induced by
a strong level-mixing. Test calculations reveal that the oc-
currence of NDC is robust against variations of model
parameters, e.g., increasing electronic level spacing or tem-
perature of the electrodes. However, coupling the vibrational
mode to an additional phononic environment [95], which
induces vibrational relaxation, results in a less pronounced
feature.

The basic requirement for the occurrence of NDC in the re-
duced two-state model are strong effective interstate couplings
teff which, according to Eq. (16), are caused by large average
displacements in the vibrationally coupled model. First fo-
cusing on �1 = 25 meV, the interstate coupling in Fig. 5(c)
increases along with the bias voltage in the range between

 ≈ 0.4 V and 
 ≈ 1.05 V. In this regime, the nonadiabatic

process |00; 0〉 LS−→ |10; 1〉 drives the vibrational mode to-
ward a nonequilibrium distribution and induces large average
displacements resulting in strong interstate couplings. The
decrease of teff for bias voltages 
 � 1.05 V can be referred to

the fact that the transport channel |00; 0〉 LS−→ |01; 0〉 becomes
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(a) and P2,+
00,ν;ν′ in panel (b) for model INTPLY. The vibrational fre-

quency is set to �1 = 240 meV.

active which enables the transfer of electrons with a less
excited vibrational mode. Reducing the electronic-vibrational
coupling strength by increasing the frequency results in a
less likely occurrence of the nonadiabatic process and thus,
a decreased average displacement.

3. Interplay between adiabatic and nonadiabatic
electronic-vibrational coupling

Electronic and vibrational degrees of freedom in molecules
may be subject to both adiabatic and nonadiabatic coupling.
This scenario is represented by model INTPLY with param-
eters summarized in Table I. In the following, we investigate
the transport characteristics of this model, whose conductance
map is depicted in Fig. 1(b), in different regimes of the dimen-
sionless electronic-vibrational interaction strength λ

(1)
i j /�1.

Weak electronic-vibrational coupling (λ(1)
i j /�1 � 1). The

weak coupling regime of model INTPLY has also been studied
in Ref. [41] using the perturbative nonequilibrium Green’s
function approach. As shown below, there are differences
to the results of the HEOM method which motivate further
investigations. To this end, Fig. 6 depicts the nonadiabatic
transition probabilities [Eq. (13)] of model INTPLY for the
vibrational frequency �1 = 240 meV. Similar to the Franck-
Condon matrix elements in an adiabatic polaron-type model,
the off-diagonal transitions are clustered along a parabola.
The nonadiabatic electronic-vibrational coupling induces an
asymmetry along the parabola due to the level-mixing prop-
erty. As a consequence, the charging process, which occupies
the upper (lower) molecular electronic state, has an enhanced
probability to (de)-excite the vibrational mode. The interplay
between adiabatic and nonadiabatic coupling additionally re-
sults in diagonal transitions |ν〉 → |ν〉.

A section of the conductance map in Fig. 1(b) is shown
for selected vibrational frequencies in Fig. 7(a) for the weak
coupling regime I. As a result of the large diagonal nona-
diabatic transition probabilities, the transport mechanisms
mainly consist of purely electronic transitions including the
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FIG. 7. (a) Conductance for the weak coupling regime of model
INTPLY. (b) Comparison of models AD, NONAD, and INTPLY
for a vibrational frequency which satisfies the resonance condition
ε2 − ε1 = �1. The dashed lines indicate the onset of the transport

processes |00; 0〉 LS−→ |10; 1〉 and |00; 0〉 LS−→ |01; 0〉. (c) Conduc-
tance in the scenario of intermediate electronic-vibrational couplings
for model INPLY. The results correspond to sections of the conduc-
tance maps in Fig. 1 for selected vibrational frequencies and are
denoted with I and II, respectively.

vibrational ground state of the singly and doubly charged
molecule. We note that the peak intensity corresponding to

the onset of the transport process |00; 0〉 LS−→ |10; 0〉 is sig-

nificantly larger than |00; 0〉 LS−→ |01; 0〉, which is consistent
with the corresponding nonadiabatic transition probabilities.
Additional transport mechanisms with a small contribution
to charge transport correspond to nonequilibrium vibrational

processes, such as |00; 1〉 LS−→ |01; 0〉 or |00; 1〉 LS−→ |10; 1〉,
which occur, for example, at the bias voltages 
 ≈ 0.41 V and

 ≈ 0.62 V in the case of �1 = 200 meV.

Frequency in resonance. The influence of nonadiabatic
processes on the transport properties is enhanced for model
parameters which satisfy the resonance condition ε2 − ε1 =
�1. In Fig. 7(b), we investigate how these processes are af-
fected by the interplay between adiabatic and nonadiabatic
electronic-vibrational coupling.

Besides the different peak positions, the transport pro-

cesses |00; 0〉 LS−→ |10; 1〉 and |00; 0〉 LS−→ |01; 0〉, which are
indicated by the dashed black lines in Fig. 7(b), have peak
intensities which are comparable to model NONAD. We thus
conclude that the dominant transport mechanism is the nona-
diabatic process sketched in Fig. 3(a) and adiabatic transport
processes, as shown in Figs. 3(c) and 3(d), play a minor role.

Characteristic for model systems with purely adiabatic
electronic-vibrational coupling is the renormalization of
the electronic energies [89,90], which is also referred to
as the polaron shift. The interplay between adiabatic and
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nonadiabatic coupling increases the renormalization pro-
foundly for the resonance of the first electronic level.

Intermediate electronic-vibrational coupling (λ(1)
i j /�1 ≈

1). For vibrational frequencies in the range between �1 =
110 meV and �1 = 130 meV the large deviation of the
eigenenergies (see Table II in the Appendix) from the non-
interacting energies results in a transport behavior which is
strongly influenced by the vibrational mode. Accordingly, the
conductance depicted in Fig. 7(c), which corresponds to the
regime II in Fig. 1(b), shows a large number of transport
channels.

Along with increasing electronic-vibrational coupling
strengths, the onset of resonant transport through the vibra-
tional ground state of the first electronic state is shifted to
lower bias voltages. The accompanying reduction of the cor-
responding peak intensity marks the onset of low-bias current
suppression already for λ

(1)
i j /�1 < 1. The importance of vi-

brationally excited states is enhanced, as the increased step

height of the processes |00; 0〉 LS−→ |10; 1〉 and |00; 2〉 LS−→
|10; 0〉 indicates. The corresponding mechanism of the latter
transport process is sketched in Fig. 3(e), where two vibra-
tional quanta are excited in a decharging process.

In the regime of bias voltages 
 � 0.9 V, the interplay
of adiabatic and nonadiabatic electronic-vibrational coupling
results in the onset of transport through a large number of
transport channels with a small contribution to the charge
transport.

C. Nonadiabatic effects in multimode systems

In molecular nanojunctions with polyatomic molecules,
typically more than a single vibrational degree of freedom
participates in charge transport representing a significantly
more complex scenario [12,31–33,35,96–98]. In this section,
we extend our studies to the simplest case of a two-state two-
mode model, which is described by the system Hamiltonian
in Eq. (2) for Nel = 2 and Nvib = 2. We choose the electronic-
vibrational coupling to be adiabatic for the first (λ = λ

(1)
11 =

−λ
(1)
22 ) and nonadiabatic (λ = λ

(2)
12 ) for the second mode. A

large Coulomb repulsion U is assumed which prevents the
double charging of the molecule.

Adiabatic potential energy surfaces of polyatomic
molecules can generally intersect. At the molecular geometry,
for which the surfaces become degenerate, a so-called
conical intersection is formed [30]. In the vicinity of
the crossing, the vibronic coupling between the adiabatic
electronic states diverges which results in the breakdown of
the Born-Oppenheimer approximation. The probability of
nonadiabatic processes is significantly enhanced and thus,
such model systems are well suited to investigate nonadiabatic
effects in charge transport.

In the following, we study charge transport through model
molecules which differ by the energy spacing of the electronic
states. We first investigate in Sec. III C 1 the influence of
nonadiabatic effects on charge transport in nonsymmetric sys-
tems including nondegenerate electronic levels and proceed
in Sec. III C 2 with a model of degenerate electronic states
exhibiting Jahn-Teller effect.
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FIG. 8. Conductance dI
d


as a function of bias voltage for the
electronic-vibrational coupling to one or two vibrational modes
with frequencies �1 = 100 meV and �2 = 150 meV. The blue
(green) dashed line corresponds to a model system incorporating
a (non)adiabatically coupled single vibrational mode with a large
Coulomb repulsion U . Furthermore, we set temperature T = 100 K
and � = 2πV 2 = 1 meV.

1. Transport in a nondegenerate two-state two-mode model

Here, we study nonadiabatic effects in charge transport
of molecular nanojunctions with two nondegenerate nonin-
teracting electronic levels, i.e., with energy spacings which
are larger than the broadening induced by the coupling to
the leads as well as the thermal broadening. In the following,
we assume the electronic-vibrational coupling strength to be
λ = 0.08 eV and set the electronic energies to ε1 = 250 meV
and ε2 = 400 meV.

Important for the analysis are the eigenenergies, which are
depicted in Table III in the Appendix for selected energetically
low-lying eigenstates. We note that in two-mode models, the
eigenenergies of charged vibrationally excited states cannot
be related in a simple way to the fundamental frequencies
�1 and �2. While the coupling to the adiabatically coupled
vibrational mode maintains the levels spacing between vi-
brationally excited states, the nonadiabatically coupled mode
induces an enhanced level spacing. Accordingly, the bias
voltage difference between two transport channels does not
correspond to multiples of the frequencies. [32,99]

Comparison to single-mode models. We begin our anal-
ysis by comparing the transport behavior of the two-state
two-mode model to systems with a single vibrational degree
of freedom, to determine which transport phenomena are
induced in multimode systems. To this end, we choose the
vibrational frequencies such that significant adiabatic (�1 =
100 meV) and nonadiabatic (�2 = 150 meV) vibrational ef-
fects are expected. We depict in Fig. 8 the conductance as a
function of the bias voltage for a two-mode model and two
models with a single vibrational degree of freedom. The
transport characteristics of similar single-mode systems has
been studied in Sec. III B, however, we consider here a large
Coulomb repulsion.

Although the results in Fig. 8 show common features, the
transport processes of the two-mode system cannot be entirely
rationalized in terms of single-mode models. Nevertheless, in
the low-bias voltage regime, the conductance of the two-mode
system and the model, which includes a single adiabatically
coupled vibrational mode with frequency �1, are qualitatively
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as a function of bias voltage for the
electronic-vibrational coupling to two vibrational modes with dif-
ferent vibrational frequencies. Furthermore, we set temperature T =
100 K and � = 2πV 2 = 1 meV.

similar. Besides varying step heights, the main difference be-
tween the two curves are the peak positions which are located
at lower bias voltages for the two-mode model. Based on the
observed similarities, we conclude that the first three trans-
port processes in the two-mode model, which correspond to

|00; 00〉 LS−→ |10; 00〉, |00; 10〉 LS−→ |01; 00〉 and |00; 00〉 LS−→
|10; 10〉, are dominated by adiabatic transport mechanisms in
the regime of low to intermediate bias voltages.

For bias voltages 
 � 0.6 V, the results indicate that
including two vibrational modes results in many transport
processes with a small contribution to charge transport.

Dependence on electronic-vibrational coupling strength.
To provide further insight in the transport behavior, we depict
in Fig. 9 the conductance as a function of bias voltage for
different vibrational frequencies.

We first focus on reducing the frequency of the adiabat-
ically coupled mode, which corresponds to the blue line in
Fig. 9. As a consequence of the accompanying increased
dimensionless adiabatic coupling strength, transport processes
of higher vibrationally excited states are more involved in the
charge transport. Besides, the enhanced adiabatic electronic-
vibrational coupling suppresses the influence of nonadiabatic
effects, since the current-voltage characteristics can be ra-
tionalized in terms of vibrationally excited states of the
adiabatically coupled mode.

The effect of a reduced vibrational frequency of the nona-
diabatically coupled mode is demonstrated by the green line in
Fig. 9. In the intermediate bias voltage regime between 
 =
0.6 V and 
 = 0.8 V, i.e., when the nonadiabatic process be-
comes relevant, the conductance reveals a slightly different
transport behavior. An increased dimensionless nonadiabatic
coupling strength leads to a more pronounced asymmetry

between the two transport processes |00; 00〉 LS−→ |10; 00〉 and

|00; 00〉 LS−→ |01; 00〉 and is not causing the onset of current
suppression, as previously shown for single-mode models.

2. Transport in a degenerate two-state two-mode model

Particularly interesting and well-studied examples of
symmetry-induced conical intersections occur in molecules
that exhibit Jahn-Teller effects [100,101]. According to the
Jahn-Teller theorem [102], the molecule undergoes a geo-
metrical distortion to form a system with lower symmetry,

which has the effect of partly removing the degeneracies and
reducing the overall energy. Charge transport through model
systems which exhibit Jahn-Teller effect has been studied
before in Refs. [31–33,35].

More specifically, we consider here a model of E ⊗ e sym-
metry represented in the system Hamiltonian in Eq. (2) by
two vibrational modes with degenerate frequencies � and two
electronic states with degenerate energies ε. Here, we modify
the spectrum of the harmonic oscillators by adding the con-
stant term � in the system Hamiltonian. The neutral molecule,
which can be described by the two-dimensional isotropic har-
monic oscillator basis functions in polar representation |l, n〉
with radial excitation n ∈ N0 and angular momentum l ∈ Z,
has then the energy (n + 1)�.

For a model exhibiting degeneracies, coherences between
degenerate states can have a major influence on the transport
characteristics [103]. The HEOM approach used in this work
is well suited to treat such model systems, since coherences
and populations are treated on an equal footing.

Selection rule. To simplify the analysis of the transport be-
havior, we exploit the symmetry of the model as introduced in
Refs. [104–107]. We first describe the electronic manifold in
a pseudospin notation with the electronic angular momentum
operator σ. Due to the presence of the conical intersection,
the corresponding eigenvalues must be half-integer for the
charged molecule. To this end, we assign the eigenvalue s = 1

2
(s = − 1

2 ) to the singly occupied electronic state |10〉 (|01〉),
while s = 0 holds for the neutral molecule. Second, we in-
troduce the vibrational angular momentum operator l whose
eigenstates correspond to the two-dimensional isotropic har-
monic oscillator basis functions in the polar representation
|l, n〉, where l ∈ Z is the angular momentum and n ∈ N0 the
radial excitation number. Overall, we combine the electronic
pseudospin basis with the two-dimensional harmonic oscilla-
tor basis to the vibronic states |s; j − s, n〉 by including the
quantum number j = l + s as the vibronic angular momen-
tum. In general, the eigenstates of the charged molecule can
be expanded by

|1; j, n〉 =
∑
ñ,± j

(
Aj

n,ñ

∣∣∣∣1

2
; j − 1

2
, ñ

〉
+ B j

n,ñ

∣∣∣∣−1

2
; j + 1

2
, ñ

〉 )
,

(20)

with real coefficients Aj
n,ñ and B j

n,ñ obtained by numerical
diagonalization. Thereby, only states with the same value
of j are coupled. Characteristic for the eigenenergies is
the dimensionless electronic-vibrational coupling strength,
which we set to λ/� = 1 in the following. Moreover, we
choose the frequency � as the general unit. Table IV in the
Appendix summarizes the eigenenergies of selected energeti-
cally low-lying eigenstates in the case of ε/� = 0.

The shape of the potential energy surfaces in the degen-
erate two-state two-mode model corresponds to the mexican
hat potential [99]. The azimuthal symmetry reflects the ex-
istence of an additional conserved quantum number, which
is the vibronic angular momentum j. As a consequence,
some charging/decharging transitions are prohibited result-
ing in a selection rule [21]. We utilize the nonadiabatic
transition probabilities [Eq. (13)] to determine which transi-
tions are allowed. Specifically for the degenerate two-state
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energy of the electronic levels for the two-state two-mode Jahn-
Teller model. (b) Current-voltage characteristics for the two-state
two-mode Jahn-Teller model which corresponds to a section of the
conductance map in panel (a). All quantities are given in units of
the vibrational frequencies �. Furthermore, we set � = T

2 = 4.5 ×
10−3�.

two-mode model, the quantity Pi,−
s1, j1n1;s2,l2n2

with s1 = ± 1
2

and s2 = 0 corresponds to the probability of the molecule
to undergo the following transition: Being initially in the
charged configuration |s1; j1 − s1, n1〉, an electron leaves the
molecule and the final state corresponds to the neutral state
with angular momentum l2 and radial excitation n2. The
transition probabilities vanish unless the angular momentum
fulfills [31]

j1 = l2 ± 1
2 . (21)

Transport phenomena. The conductance map as a function
of the bias voltage and energy of the electronic levels is
depicted in Fig. 10(a). The strongly correlated dynamics be-
tween electronic and vibrational degrees of freedom manifests
itself in the large variety of transport features. In the results,
the phenomenon of NDC occurs which will be the primary
focus of the following investigations. Schultz et al. have in-
vestigated in Ref. [31] the underlying transport mechanisms
with a rate equation approach. As shown below, there are
differences to the results of the HEOM method used in this
work, which motivate further investigations.

We show in Fig. 10(b) the current-voltage characteris-
tics for the selected energies ε/� = 0.25 and ε/� = 0.65.
The two cases are representative for two different transport
regimes. While the results for the larger electronic energy do

not show any irregularities, the model parameters with the
lower electronic energy lead to NDC, which we study in the
following.

The first step in the current for ε/� = 0.25 marks
the onset of resonant tunneling through the Jahn-Teller

eigenstate |1; 1
2 , 0〉, which corresponds to the vibrational

ground state of the charged molecule. Further increasing the
bias voltage leads to the reduction of the current which can
be explained as follows. At bias voltage e
/� ≈ 1.47, the

eigenstate |1; 1
2 , 1〉 enters the bias window and contributes

as an additional transport channel. The decharging process

|1; 1
2 , 1〉 SR−→ |00; 11〉 can then increase the radial excitation

and subsequently, an electron transferred from the left lead to

the molecule can cause a transition to the eigenstate |1; 3
2 , 0〉.

Once the molecule is in this Jahn-Teller eigenstate, the only
energetically allowed transition to a neutral state, which corre-

sponds to the process |1; 3
2 , 0〉 SR−→ |00; 00〉, is prohibited due

to the conservation of vibronic angular momentum. Allowed
transitions to other neutral states, e.g., |00; 22〉, are energet-

ically suppressed, since the energy of eigenstate |1; 3
2 , 0〉 is

considerably lower than the energy of the neutral vibrationally
excited states (n + 1)� with n � 1. Overall, the combination
of the special spectrum with the selection rule leads to trap-
ping states.

In the degenerate two-state two-mode model, two mech-
anisms provide escape routes from trapping states. First,
higher-order processes enable energetically suppressed tran-
sitions, as discussed below. Second, increasing the bias
voltage provides enough energy to allow transport processes
which are energetically suppressed at lower voltages. In
principle, every state |1; j, 0〉 with | j| � 3

2 corresponds to a
trapping state and the trapping mechanism always involves
the interplay between the selection rule and the complex
spectrum.

Increasing the electronic energy to ε/� = 0.65 leads to the
disappearance of NDC, as seen in Fig. 10(b). If the system

is in the eigenstate |1; 3
2 , 0〉, a transition to the neutral state

|00; 11〉 is energetically possible, since the eigenenergy of

eigenstate |1; 3
2 , 0〉 increases to 1.494 and thus, the eigenstate

is no longer a trapping state.
Higher-Order processes as escape mechanism from trap-

ping states. Once the charged molecule is in a state whose
transitions to neutral states are either prohibited by the
selection rule or energetically suppressed, higher-order tun-
neling processes such as cotunneling [11,28,85,108] provide
escape routes. In previous studies [31], Schultz et al.
employed rate equations [109,110] to investigate charge trans-
port through the degenerate two-state two-mode Jahn-Teller
model. Conventional rate equation approaches do not in-
clude higher-order tunneling processes and thus, exclude
escape mechanisms from trapping states. Depending on the
initial conditions, the system may then occupy different trap-
ping states resulting in different steady-state reduced density
matrices [31]. Higher-order processes prevent this unphysi-
cal behavior and ensure the uniqueness of the steady-state.
Schultz et al. included in their rate equation formalism vi-
brational relaxation processes which drive the vibrational
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modes toward the thermal equilibrium distribution. It thus
enables mechanisms which can release the system from trap-
ping states. In the HEOM method used here, higher-order
processes are fully included and in the following, we discuss
the resulting escape processes.

The transport dynamics of the Jahn-Teller model is deter-
mined by the time, during which the molecule is locked in
trapping states [31], as well as the timescale of cotunneling
processes, which is in the order of 1/�2. In the following,
we investigate the influence of the molecule-lead coupling
strength on the transport characteristics affected by trapping
states. To this end, we depict in Fig. 11 the current-voltage
characteristics for different molecule-lead coupling strengths.
We have chosen the energy of the molecular electronic level
to be ε/� = 0.25, where the system gets locked in Jahn-

Teller eigenstate |1; 3
2 , 0〉. The nonzero current at bias voltage

e
/� ≈ 1.55 highlights the importance of cotunneling pro-
cesses as escape routes from trapping states. The minimum
current at the trapping state increases along with the molecule-
lead coupling, as explained in the following.

Cotunneling generally involves the virtual occupation of
states by energetically prohibited transitions. It becomes the
dominant contribution to the current when the charged system
is in a trapping state. In general, cotunneling can be classified
into two categories involving inelastic and elastic processes.
Considering the latter, the system remains in the same molec-
ular state as it was before the tunneling event. If the molecule
is locked in a trapping state, then elastic cotunneling does
not provide an escape mechanism. Contrarily, inelastic co-
tunneling changes the state of the system and thus provides
processes which enable the escape from trapping states by al-
lowing energetically suppressed transitions. To be specific, the

previously discussed trapping state |1; 3
2 , 0〉 can be released

by the decharging process |1; 3
2 , 0〉 SR−→ |00; 11〉, followed by

a repeated charging of the molecule. In general, increasing the
molecule-lead coupling strength results in a reduced timescale
of the cotunneling processes. Accordingly, the time which the
molecule spends in trapping states is decreased and leads to
an enhanced current through the system, as seen in Fig. 11.

IV. CONCLUSION

In this paper, we have employed the numerically exact
HEOM approach to study nonadiabatic electronic-vibrational
effects in nonequilibrium charge transport through single-
molecule junctions. More specifically, we have considered a
molecular junction described by a model with two electronic
levels and investigated the transport behavior for an increasing
number of vibrational degrees of freedom.

In case of a single vibrational mode, we first studied the
dependence of the transport properties on the nonadiabatic
electronic-vibrational coupling strength. Intermediate cou-
plings entail the onset of low-bias current suppression which
is based on the suppression of transition between energetically
low-lying vibrational states similar to the Franck-Condon
blockade reported in adiabatic polaron-type transport. In the
regime of strong electronic-vibrational coupling, nonadiabatic
effects induce a mechanism which, depending on the ap-
plied bias voltage, effectively decouples one electronic level
from the charge transport eventually resulting in the phe-
nomenon of negative differential conductance. Investigating
the interplay between adiabatic and nonadiabatic electronic-
vibrational coupling, our numerical results revealed a strong
low-bias current suppression already for low to intermediate
electronic-vibrational coupling strengths.

In addition, we investigated two-mode models whose trans-
port characteristics depend profoundly on the energy spacing
of the electronic states. For a model with well-separated
electronic states, we showed that the transport behavior is
dominated by adiabatic polaron-type transport processes in
the low-bias voltage regime while nonadiabatic transport
mechanism play an enhanced role for intermediate bias volt-
ages. As an example for molecules with degenerate electronic
states, we investigated a model exhibiting Jahn-Teller effects.
Extending previous studies [31], we found that the molecule
can become trapped in a nonconducting state leading to a
current-blockade. Higher-order processes such as inelastic
cotunneling, which are fully included in the HEOM approach,
provide an escape mechanism from the trapping states. Our
results revealed that an increasing molecule-lead coupling
strength can partly lift the current-blockade.

In the present work, we have focused on weak to interme-
diate electronic-vibrational coupling strengths in the scenario
of two vibrational modes. To investigate the strong coupling
regime, the treatment of the vibrational modes as a part of the
reservoir subspace [26,95,111,112] is an interesting topic for
future research.
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TABLE II. Eigenenergies of selected energetically low-lying
eigenstates of the isolated molecule for the investigated models with
a single vibrational mode. All energies are given in meV.

�1 |10; 0〉 |10; 1〉 |10; 2〉 |01; 0〉 |01; 1〉 |11; 0〉
NONAD 50 184 185 225 414 511 650

60 199 206 247 418 530 650
80 213 234 289 463 564 650

150 227 299 420 449 612 650
200 231 481 503 330 703 650
220 232 494 533 338 737 650
240 233 509 562 346 770 650

INTPLY 110 78.9 276 571 183 417
120 96.9 301 553 209 437
130 112 320 538 231 453
150 135 265 443 482 479
200 171 315 413 508 522
220 180 327 436 535 534
240 187 335 458 560 543

APPENDIX: EIGENENERGIES OF THE
ISOLATED MOLECULE

In this Appendix, we list the eigenenergies of selected
eigenstates of the isolated molecule.

TABLE III. Models with two vibrational modes and well-
separated electronic states: eigenenergies of selected energetically
low-lying eigenstates of the isolated molecule computed for differ-
ent vibrational frequencies. Depending on the electronic-vibrational
coupling strength, we consider thereby up to NV,1/2 = 9 vibrational
basis states. All energies are given in meV.

�1 �2 |10; 00〉 |10; 10〉 |10; 01〉 |01; 00〉
100 150 172 268 273 319
100 80 167 207 247 311
80 150 158 236 267 314

TABLE IV. Vibronic eigenenergies of selected energetically
low-lying eigenstates of the isolated molecule computed for the
degenerate two-state two-mode model. The energy of the electronic
levels was set to ε/� = 0.

|1; 1
2 , 0〉 |1; 1

2 , 1〉 |1; 3
2 , 0〉 |1; 5

2 , 0〉
0.233 1.488 0.844 1.540
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