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The ABA-stacked trilayer graphene (TLG) has a parabolic dispersion band spanning the Fermi level, apart
from the linear dispersion band which is almost a duplicate of that in monolayer graphene (MLG). Such a band
structure implies that the TLG is a metal and seemingly has a larger conductivity than MLG due to the additional
contributions of the parabolic bands when the linear dispersion bands in TLG and MLG host the same number
of carriers. However, our numerical calculations indicate that the conductivity of TLG is smaller than that in
MLG roughly by 20% when a moderate carrier doping drives the Fermi energy away from the Dirac point by at
least 50 meV. To explain such a disagreement between the band structure and the conductivity, we find that the
out-of-plane atomic vibration, i.e., the so-called ZA phonon mode in the long-wavelength region, plays a critical
role in limiting the conductivity of TLG due to the strong interband scattering. In contrast to MLG, such a ZA
phonon mode is completely decoupled from the electron-phonon scattering due to the symmetry incompatibility.

DOI: 10.1103/PhysRevB.105.195433

I. INTRODUCTION

Graphene multilayers, i.e., the combined graphene mono-
layers by van der Waals interlayer interactions, have attracted
considerable attention due to their abundant electronic prop-
erties that depend on the stacking order [1–18]. For instance,
there exist two kinds of allotrope of trilayer graphene (TLG)
in terms of stacking order. As shown in Fig. 1, the first one of
the TLG obeys the Bernal or ABA stacking, where the atoms
of the topmost layer lie exactly on the top of the bottom layer.
And the other is called the rhombohedral or ABC-stacked
TLG, where one sublattice of the top layer lies above the
center of the hexagons in the bottom layer. So far, large-scale
synthesis of high-quality TLGs in the two stacking orders has
both been realized experimentally [19,20], which provides an
extra platform for designing graphene-based electronic de-
vices. The low-energy band structure around the Fermi energy
of ABA-stacked TLG consists of a combination of the linear
dispersion of monolayer graphene (MLG) and the quadratic
dispersion of bilayer graphene, whereas the electronic disper-
sion of ABC-stacked TLG is approximately cubic, with its
conduction and valence bands touching at a point close to the
highly symmetric K and K ′ points in the Brillouin zone (BZ).
The distinctive band structures of the two kinds of TLG are
expected to give rise to different transport properties [2,5,21].

It is well known that electron-phonon interaction is ubiq-
uitous in solids which is associated with many electronic
properties of materials, such as the conventional superconduc-
tivity, the intrinsic resistivity of metals and carrier mobility of
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semiconductors. Some works have studied the conventional
phonon-mediated superconducting properties of TLG experi-
mentally and theoretically [13,16,17,22]. Recently, two works
by Zhou et al. reported the experimental observation of super-
conductivity and ferromagnetism in ABC-stacked TLG even
without an interlayer magic-angle twist [13,17], which poses
a new perspective to the origin of superconductivity in the
graphene based systems. A sequent theoretical study provided
a simple explanation for the two distinct superconducting
phases of TLG observed in the experiment by assuming the
electron-acoustic-phonon coupling as the possible electronic
pairing mechanism [16]. Apart from the phonon-mediated
superconductivity, electron-phonon interaction also play an
important role on limiting the electronic transport in metallic
and semiconducting materials such as the TLGs. In particular,
at room temperature, the electron-phonon interaction becomes
the dominating scattering mechanism for limiting the elec-
tronic transport property. Like the MLG, the TLGs are also
two-dimensional planar materials. Therefore carrier polarity
(electron/hole) and concentration can be realized and adjusted
by gating effect besides the conventional chemical doping.
For the device applications of TLGs, it is absolutely neces-
sary to have a complete understanding about the electronic
transport properties of TLGs at room temperature, especially,
in comparison with the case of MLG. As aforementioned, the
ABA-stacked TLG has a pair of the linear dispersion bands
which bears a high analogy with their counterpart in graphene
monolayer. However, besides the linear band, it has an extra
parabolic band spanning the Fermi level. Hence, in contrast to
the case of MLG, the ABA-stacked TLG has more electronic
states in a certain energy shell around the Fermi level to take
part in the electronic transport under a driving electric field.
This implies that the intrinsic conductivity of ABA-stacked
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FIG. 1. Structure of ABA-stacked TLG. The atoms inside one
unit cell are plotted in orange and labeled by A1, B1, A2, B2, A3,
and B3 with Ai and Bi in ith layer. a1 and a2 are the in-plane lattice
vectors.

TLG should be larger than that in MLG from the viewpoint
of the electronic band structure. In fact, apart from its effect
of the electronic structure, the interlayer coupling distin-
guishes the ABA-stacked TLG from MLG also in the phonon
dispersion and the electron-phonon interaction. Therefore it
becomes much complicated to predict the electronic transport
property subject to the electron-phonon scattering. To sum
up the above statements from the conventional superconduc-
tivity and the electron-phonon scattering limited electronic
transport, there is a need to perform a systematic study on
the e-ph interaction in TLGs on the level of first-principles
calculations beyond the simple theoretical models. Such a
theoretical study is desirable for quantitatively explaining the
relevant experimental observation. However, to the best of our
knowledge, any first-principles study on the e-ph interaction
and the associated physical properties such as the intrinsic
conductivity of TLGs is yet lacking.

In this paper, the e-ph scattering limited conductivity of
ABA-stacked TLG at room temperature is calculated by us-
ing the iterative Boltzmann transport equation (BTE). And
all transport properties of ABA-stacked TLG are compared
with those of MLG. All the required quantities are obtained
via the first-principles calculations and free from any em-
pirical parameters. Our numerical calculations indicate that
the conductivity of ABA-stacked TLG is smaller than that in
MLG, though the former has one more band spanning the
Fermi level than the latter. By a detailed analysis, we find
that the out-of-plane vibration, i.e., the ZA phonon mode in
the long-wavelength region, plays the critical role on limiting
the conductivity of ABA-stacked TLG. Moreover, in view
of the ultrahigh conductivity of MLG, our numerical result
indicates that the ABA-stacked TLG is still a good conductor
under a moderate carrier doping. For simplicity, the TLG we
mention hereinafter only means ABA-stacked TLG unless it
is stated explicitly because we focus on only the intrinsic
conductivities of ABA-stacked TLG in this paper.

The rest of the present work is organized as follows. In
Sec. II, we give a brief description of the theoretical meth-
ods, including the technology details of the first-principles
calculations and the formulas for calculating the intrinsic
conductivity. In Sec. III, numerical results are presented and
discussed. Finally, we summarize the main conclusions in
Sec. IV.

II. COMPUTATIONAL METHOD

To investigate the e-ph scattering limited conductivity of
TLG on the level of first-principles calculations, the electronic
and phononic dispersions and the e-ph coupling matrix ele-
ments of TLG and MLG are calculated within the DFT [23]
and DFPT [24] frameworks firstly. Then, the e-ph scattering
limited conductivity driven by an electric field in a given di-
rection is calculated according to the linearized BTE [25,26],
which reads

σ = 2e2

Nk�kBT

∑
nk

fnk(1 − fnk)(vnk · ε)(Fnk · ε), (1)

where e, kB, and T are the elementary charge, Boltzmann
constant, and temperature, respectively, fnk is the Fermi-Dirac
distribution for the electronic state ϕnk with n and k being the
band index and wave vector, ε is the unit vector in the electric
field direction, Nk is the number of the k points for sampling
the BZ, � stands for the unit cell area, and vnk is the electron
velocity, defined by vnk = ∇Enk/h̄. For two-dimensional ma-
terials, the conductivity and the conductance have the same
unit of Siemens (S), the inverse of ohm.

In Eq. (1), Fnk is referred to as the electron free path as-
sociated with the e-ph scattering which satisfies the linearized
BTE

Fnk = vnkτnk + τnk

∑
mqν

(
Gmk+q

nk,−qν
+ Gmk+q

nk,qν

)
Fmk+q (2)

with

Gmk+q
nk,−qν

= 2π

h̄

∣∣gmk+q
nk,qν

∣∣2
(1 + N−qν − fmk+q)

× δ(Enk − h̄ω−qν − Emk+q) (3)

and

Gmk+q
nk,qν

= 2π

h̄

∣∣gmk+q
nk,qν

∣∣2
(Nqν + fmk+q)

× δ(Enk + h̄ωqν − Emk+q), (4)

where q, Enk, ωqν and Nqν denote the phonon wave vector,
electronic energy, phonon frequency, and the phonon Boson
distribution function, respectively. gmk+q

nk,qν
is the scattering ma-

trix element, which stands for the electron transition from
state ϕnk to state ϕmk+q with a phonon in state φνq emitted
or absorbed. It takes the form

gmk+q
nk,qν

= 〈ϕmk+q|∂qνV |ϕnk〉. (5)

The derivative of the potential is defined as

∂qνV =
√

h̄

2Mωqν

∑
Rsα

∂RsαV (r, Rsα)eqν

Rsαeiq·R, (6)
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where M is the atom mass of carbon, s denotes an atom
inside the unit cell positioned by the lattice vector R, which
can be A1, B1, A2, B2, A3, and B3 as shown in Fig. 1,
α (=x, y or z) stands for the vibration direction of atom s,
eqν

Rsα is the Rsα component of phonon eigenvector eqν , and

∂RsαV is the derivative of potential with respect to the atomic
displacement.

In Eq. (2), τnk stands for the relaxation time, the inverse
of which represents the scattering rate due to e-ph coupling
which reads

1

τnk
=2π

h̄

∑
mqν

∣∣gmk+q
nk,qν

∣∣2
[(1 + N−qν − fmk+q)δ(Enk − h̄ω−qν − Emk+q) + (Nqν + fmk+q)δ(Enk + h̄ωqν − Emk+q)]. (7)

To solve Eq. (2) numerically, the iteration approach is adopted
to obtain the electron free path. During the iteration, the values
of F ′

mk+qs were guessed for the first iteration step, then they
were put into the right-hand side of Eq. (2) to update the val-
ues of F ′

nks as the second guess. Such an iteration procedure
is repeated until convergence.

If the second term to the right-hand side of Eq. (2) is
neglected, we have the approximate solution of the electronic
free path as Fnk = vnkτnk. Consequently, Eq. (1) is simplified
into

σ = 2e2

Nk�kBT

∑
nk

fnk(1 − fnk)(vnk · ε)2τnk. (8)

Such a treatment is called energy relaxation time approxi-
mation (ERTA), which was widely employed to deal with
the e-ph scattering limited conductivity [27,28]. However, the
accuracy of ERTA should be checked by comparing with the
iteration solution of the BTE if one want to explain or predict
the conductivity of a material accurately.

In order to calculate the conductivity of TLG and MLG
according to Eqs. (1)–(7), the electronic eigenenergy Enk,
phonon frequency ωqν and e-ph scattering matrix element
gmk+q

nk,qν
on an ultradense k and q mesh are needed. Two steps

of the calculations are adopted in this paper. Firstly, we take
relatively coarse 16 × 16 k mesh and 8 × 8 q mesh to cal-
culate the electron band structures, phonon dispersion and
e-ph scattering matrix by using DFT and DFPT methods
implemented in QUANTUM ESPRESSO package [29]. For these
calculations, the norm-conserving pseudopotential [30], the
exchange-correlation functional with the generalized gradient
approximation proposed by Perdew-Burke-Ernzerhof [31],
and the kinetic energy cutoff of 150 Ry are adopted. The van
der Waals interaction was included by considering the DFT-D
correction. A large vacuum space of 20 Å along the z direc-
tion was used to avoid the interactions between the periodic
images. Then the Wannier interpolation technique [32] real-
ized by EPW code [33] is adopted to obtain the values of
Enk, ωqν , and gmk+q

nk,qν
on an ultradense 600 × 600 k mesh and

600 × 600 q mesh.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Electronic structures and phonon band dispersions

The crystal structure of TLG is shown in Fig. 1. The opti-
mized interlayer spacing and in-plane lattice constant are 3.24
and 2.46 Å, respectively. The band structure and its zoom-in
around K point and in the vicinity of the Fermi energy are

shown in Figs. 2(a) and 2(b). The band structure around K ′
point is the same as those around K due to the symmetry and
not shown. The results indicate that there are a pair of linear
dispersion bands and a pair of parabolic dispersion bands near
the Fermi energy, which is almost a combination of a MLG
and a bilayer graphene except for the small but observable
gaps. The appearance of the small gaps is mainly attributed
to the nonzero interlayer hopping energy [34]. As shown in
Fig. 2(b), the four bands of TLG around the Fermi energy are
labeled by 1, 2, 3, and 4. Bands 1 and 4 (2 and 3) are linear
(parabolic) bands and bands 1 and 2 (3 and 4) are at the hole
(electron) side. Besides, the linear dispersion bands in TLG
have a slightly upward shift (0.013 eV) relative to MLG. But
they have almost the same Fermi velocity. In order to present
our results conveniently, we define the Dirac point of TLG
as the extrapolated intersection of the linear bands inside the
small band gap [see Fig. 2(c)]. So the Dirac point of TLG is
located at 0.013 eV above the charge neutrality point.

The comparison of the phonon dispersions between TLG
and MLG are shown in Figs. 3(a) and 3(b). The results in-
dicate that the phonon modes of TLG are the same as those
of MLG and triply degenerate over almost the whole BZ
except for the region around  point. In terms of the long-
wavelength vibration characteristics, the phonons in TLG can
be classified as out-of-plane acoustic (ZA), transverse acoustic
(TA), longitudinal acoustic (LA), out-of-plane optical (ZO),
transverse optical (T O), and longitudinal optical (LO) vibra-
tion modes. Around  point, the triple degeneracies of the
acoustic branches are obviously lifted. The ZA mode in MLG
splits into one ZA and two ZO modes in TLG [see Fig. 3(b)].
For the evolution of ZA mode from MLG to TLG, the three
layers can vibrate synchronously and asynchronously in TLG,
although the two nonequivalent carbon atoms inside one layer
vibrate synchronously along the z direction. That three layers
vibrate synchronously corresponds to the lowest frequency of
the three split phonon branches with vanishing frequency in
the long-wavelength limit, that is the ZA mode in TLG. For the
other two branches, the three layers vibrate asynchronously,
namely two optical branches with higher frequency in TLG.
Therefore, after introducing another two layers, the acoustic
ZA mode in MLG evolve into one acoustic plus two optical
modes in TLG. The other two acoustic modes TA and LA un-
dergo the similar degeneracy lifting. Please refer to Ref. [35]
for more details about the phonon dispersions in TLG.

B. Electron-phonon coupling and intrinsic conductivity

In contrast to the conductivity due to impurity or de-
fect scattering, we refer to the conductivity due to phonon

195433-3



FENG, LIU, ZHU, AND ZHENG PHYSICAL REVIEW B 105, 195433 (2022)

FIG. 2. (a) Band structure of TLG with inset showing the BZ and special k points. (b) Four bands of TLG (red solid lines labeled by 1, 2,
3, and 4) and two bands of MLG (gray dashed lines) around K point. The charge neutrality point E 0

f is used as the energy reference in both two
subplots. The linear bands in TLG (bands 1 and 4) have a shift of 0.013 eV upwards relative to those of MLG. Inset in (b) is the Fermi surface
for energy at 0.2 eV. The eigenstates in bands 3 and 4 have the odd and even parity with respect to the mirror reflection M̂z. (c) The zoom-in of
the band structures around the Dirac points of TLG and MLG. The linear bands of TLG are fitted by dashed blue lines and the intersection is
defined as the Dirac point of TLG, which is above the Dirac point of MLG by 0.013 eV.

scattering as the intrinsic conductivity, because e-ph scattering
is inevitable even in a perfect lattice. We restrict our interest
on the intrinsic conductivity of TLG at 300 K because the e-ph
interaction is the leading scattering mechanism in metals and
semiconductors at room temperature in spite of the presence
of other kinds of scatterings, such as defects, interfaces, impu-
rities, and so on. In order to make a quantitative comparison

of the calculated conductivity between the TLG and MLG,
we align their Dirac points as the energy reference. Thus, at
a specific Fermi energy, the linear band of the TLG has the
Fermi surface with the same size as that in MLG.

First of all, we compare the conductivities of TLG by using
the iteration method and ERTA as shown in Fig. 4(a). The
results indicate the ERTA predicts smaller conductivities than

FIG. 3. (a) Phonon dispersions of TLG (red solid lines) and the comparison with that of MLG (black dashed lines). (b) Zoom-in of phonon
dispersions around  point. The blue and green solid lines stand for the phonon modes of TLG with odd and even parity, respectively, with
respect to the mirror reflection Mz. Note that the even-parity phonons do not take part in the intraband e-ph scattering. The phonon modes of
MLG are plotted in black dashed lines for comparison. (c) Phonon mode resolved e-ph scattering strength γ ν

nm(q) for the intraband (3 → 3 and
4 → 4) and interband (3 → 4 and 4 → 3) scatterings at Ef = 0.2 eV. Stronger scattering strength is denoted by the green dot with larger size.
Bands 3 and 4 are the parabolic and linear bands, respectively, as shown in Fig. 2.
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(a) (b) (c) (d)

FIG. 4. (a) Intrinsic conductivities of TLG and MLG calculated by the iteration method with the Dirac points of MLG and TLG used as the
energy references to make sure the linear bands in MLG and TLG show the same Fermi surface. The conductivities of TLG calculated under
the ERTA are also shown in blue dashed line for comparison. The green dashed line gives the conductivity of TLG with only the contribution of
band 4 (the linear band as shown in Fig. 2) and the intraband scattering. (b) The comparison of mobilities of MLG with previous theoretical and
experimental results. Our results for MLG are plotted in blue dashed lines. The experimental data are from graphene (G) heterostructures of
BN/G/BN [36] and WSe2/G/BN [37]. The black dashed line is the mobility limit due to the acoustic phonon scattering with uncertainties of
the order of 20% at most, and the data is extracted directly from Ref. [37]. (c) The relationship between Fermi energy and carrier concentration
for TLG and MLG. (d) Intrinsic conductivity of TLG along various directions. In (c) and (d), the Fermi energy Ef is measured relative to the
charge neutrality point.

the iteration method especially at the relatively large Fermi
energy, so it is necessary to perform the iteration procedure
to obtain the quantitatively accurate conductivity of TLG,
although the two methods predict the similar trend in conduc-
tivity with the change of Fermi energy. Therefore we discuss
only the results obtained by the iteration method hereafter. In
Fig. 4(b), we compare our calculated mobility of MLG with
previous theoretical and experimental results [36,37]. The
acoustic phonon limit curve in Fig. 4(b) is extracted from [37]
directly, which is constructed based on some experimental
and theoretical works [38–46]. The agreement demonstrates
the accuracy and reliability of our calculations. In Fig. 4(a),
we also show the comparison of intrinsic conductivities of
TLG and MLG along the x direction calculated by using
iteration method for Fermi energy in the range −0.2–0.2 eV.
This energy range is still in the linear band region and cor-
responds to the carrier concentration −0.2–0.2 × 1013 cm−2

for TLG [see Fig. 4(c)]. This carrier concentration can be
realized readily experimentally for two-dimensional materials
[47,48]. In Fig. 4(a), the conductivities of the MLG around
the Dirac point are not shown, because the Boltzmann equa-
tion we adopt is a semiclassical theory, which fails to predict
the correct conductivity of MLG around the Dirac point be-
cause there are strong quantum coherence effects between the
electronic waves with long wavelength, and the coherence ef-
fects are not covered by the Boltzmann equation. Hereinafter,
only the conductivity along the x direction is discussed due
to its isotropy as shown in Fig. 4(d). With the Dirac points
of MLG and TLG used as the energy references and at the
same Fermi energy (E f ), the linear dispersion bands in TLG
and MLG can host the same number of carriers, and they
have the same Fermi surface. Therefore, in the sight of band
structure, the linear dispersion bands in TLG and MLG should
contribute the same conductivity, and TLG should have larger
total intrinsic conductivity due to the additional contribution
from its parabolic bands. Such a prediction can be verified

by calculating and comparing their intrinsic conductivities
[see Fig. 5(a)] under the constant relaxation time approxima-
tion for all electronic states, i.e., τnk = τ , because the results
given in Fig. 5(a) reflect the sole contribution of the band
structure on the conductivity. However, after considering the
e-ph scattering, our numerical results [see Fig. 4(a)] show
that the additional parabolic bands spanning the Fermi level
do not result in a larger intrinsic conductivity in TLG, but
20% smaller at E f > 0.1 eV and 50% smaller at hole doping,
in comparison with MLG. These results mean that the e-ph
scattering is much stronger in TLG than MLG, which results
in a smaller intrinsic conductivity.

C. The reason for the conductivity reduction of TLG

To understand the origin of the decrease in conductivity, it
is necessary to perform a detailed study on the e-ph scattering
in TLG. In Fig. 5(b), we show the numerical results of the e-ph
scattering rates [defined in Eq. (7)] for the electronic states
in the energy range 0.05–0.2 eV. The corresponding results
of MLG are also given for comparison. It can be found that
the scattering rates of TLG are obviously larger than those in
MLG for the whole energy range, which can well account for
the relatively small intrinsic conductivity of TLG compared
with MLG. Moreover, if we calculate the scattering rates for
the states in the linear or parabolic dispersion band by restrict-
ing the scattering final state in the same band, namely, we only
count in the contribution of intraband scattering. The results
shown in Fig. 5(b) indicate that the intraband scattering rates
in TLG are even smaller than the ones in MLG. Consequently,
the linear dispersion band in TLG can contribute a higher
conductivity than that in MLG if only intraband scattering is
considered, which is verified by the numerical results shown
in Fig. 4(a). The reason that the intralinear-band-scattering
rates in TLG are smaller than those in MLG lies in the dif-
ference of the low-frequency phonon dispersions as shown
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(a) (b)

FIG. 5. (a) Conductivities of TLG and MLG calculated by using the constant relaxation time approximation with τ = 0.05 fs. Blue and
green lines are the contributions of bands 3 and 4 in TLG, respectively. (b) Electron-phonon scattering rates in TLG for electrons in the energy
range of 0.05–0.25 eV. Full (empty) squares and diamonds correspond to the electrons in bands 3 and 4 with the intraplus interband (only
intraband) scatterings under consideration. The electron-phonon scattering rates in MLG are given in black dots for comparison. Bands 3 and
4 are the parabolic and linear bands as shown in Fig. 2. In (a) and (b), the Dirac points of MLG and TLG are used as the energy references.

in Fig. 3(b). Due to the interlayer coupling, the degenerate
ZA modes of three isolated layers (one ZA mode for one
layer) evolve into one acoustic mode (ZA) and two optical
modes (ZO) in TLG, and the frequencies of the two optical
modes are pushed upwards around  point. This evolution
also occurs in the degenerate LA and TA modes. Just due to
such a rising of frequency, these optical phonon modes are
less excited for scattering carriers in the TLG, in contrast to
their predecessor, i.e., the acoustic phonon modes in the MLG.
As a result, the scattering rates of the electron states in the
linear band of TLG are notably smaller than the case in MLG.
Hence the conductivity of TLG contributed from the linear
bands is larger than that of MLG. All of our numerical results
and analysis indicate that the interband scatterings between
the linear and parabolic dispersion bands play the key role on
limiting the intrinsic conductivity of TLG.

From the lattice structure shown in Fig. 1, one can easily
find that the TLG has the mirror symmetry with respect to
the middle layer, and we label the mirror operation as M̂z.
Therefore both the electronic and phonon states are also the
eigenstates of M̂z, and the eigenvalues of 1 and −1 for M̂z

correspond to the even- and odd-parity states. The electronic
states from the linear and parabolic bands as shown in Fig. 2
are the even- and odd-parity states, respectively. All of the
even- and odd-parity phonon states at low frequency are
plotted in green and blue as shown in Fig. 3(b). When the
electron-phonon coupling is under consideration, whether one
scattering process occurs or not is governed by the selection
rule (see Table I) due to the existence of the mirror symme-
try, where one scattering process means that one electron is
scattered from one state to another by one phonon which is de-
scribed by the scattering matrix element gm,k+q

nk,qν
[see Eq. (5)].

For the interband scatterings, the initial and final electronic
states have the opposite parties, so only the odd functions
∂qνV , which correspond to the even-parity phonon states, con-
tribute the interband scattering conductivity according to the
selection rule. Our results demonstrate that the ZA, lowest LO
and T O, and second lowest ZO phonons have the even-parity
states and contribute the interband scattering.

To demonstrate the importance of symmetry for restricting
the intra- and interband scatterings, there is a need to compare
the e-ph interaction strength among the low-frequency phonon
modes, just as done in the previous literatures [33,49,50]. In
so doing, we define the quantity

γ ν
nm(q) = Nqν

Nk

∑
k

∣∣gmk+q
nk,qν

∣∣2
δ(Enk − E f )δ(Emk+q − E f ), (9)

which is the phonon linewidth [51] weighed by the phonon
number. Please note that the restriction of the initial and
final electronic states on the Fermi energy does not mean
that the phonon energy vanishes because the e-ph interaction
matrix element gmk+q

nk,qν
does not respect energy conservation.

The value of γ ν
nm(q) is just an average of the e-ph interac-

tion matrix elements on the Fermi surface. Hence it is not
equivalent to the e-ph scattering rate which obeys the energy
conservation. But we can use such a quantity to account for
the numerical results of the e-ph scattering rate, especially
the symmetry prohibition of some scattering processes. As an
example, the values of γ ν

nm(q) for the intra- and interband e-ph
couplings at E f = 0.2 eV and under the temperature of 300 K
are calculated numerically and plotted in Fig. 3(c), where only
the low-frequency phonons with |q| < 0.1π/a are considered,
because 0.1π/a is very close to the average spacing between
the two pieces of the Fermi surfaces and only low-frequency
phonons are excited effectively at room temperature. Our

TABLE I. Selection rule for scattering processes with nonzero
e-ph coupling matrix element gmk+q

nk,qν
. ϕnk and ϕmk+q are the initial and

final electronic states, and φqv is the phonon state. ∂qνV and phonon
state φqv always have the opposite parities.

Scattering ϕnk ϕmk+q ∂qνV φqv

intraband odd odd even odd
intraband even even even odd
interband odd even odd even
interband even odd odd even
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results indicate that the e-ph coupling respects the symmetry
restriction. That is the even- and odd-parity phonons [the
green and blue lines in Fig. 3(b)] take part in only the inter-
and intraband scatterings, respectively. Among these phonon
modes, the ZA phonon mode in the long-wavelength region
contributes the interband scattering more than 50%, so it is
the most important phonon mode for limiting the intrinsic
conductivity of TLG. This result can be attributed to the
fact that, compared with other phonons, the number of ZA
phonons is largest because it has the smallest dispersion and
lowest frequency [see Fig. 3(b)]. But the ZA phonon mode is
absent for the intraband scattering due to the prohibition of the
mirror symmetry in spite of the existence of a large number
of ZA phonons. As we have discussed above, the intraband
scattering can not well explain the small intrinsic conductivity
of TLG compared with MLG. Therefore we can say that the
ZA phonons in the long-wavelength region have the key effect
for limiting the intrinsic conductivity of TLG.

D. Discussion

As aforementioned in the introduction section, there are
naturally two kinds of trilayer graphenes. The ABC-stacked
TLG is a semiconductor with the Fermi level just at the band
touching point where the carrier concentration vanishes and
the Fermi surface is small, just like the case of MLG. Thus,
the semiclassical BTE seems invalid for well describing the
e-ph scattering limited conductivity because of the strong
quantum coherence effects. As for the case of carrier doping,
our numerical results within BTE (not shown in the present
work) indicate that the ABC-stacked TLG has a room temper-
ature conductivity limited by e-ph scattering comparable to
its counterpart of the ABA-stacked TLG as discussed above
when the Fermi level is away from the band touching point
by at least 0.1 eV. According to our findings, the mirror sym-
metry Mz of MLG prohibits the ZA phonon being involved
in the intraband scattering, but the ZA mode has the crucial
effect on the intrinsic conductivity of ABA-stacked TLG via
interband scattering. Such an argument can be generalized
to thicker graphene multilayers with ABA stacking and odd
number layer since the same mirror symmetry remains. As
for ABC-stacked TLG, mirror symmetry Mz is broken but
3D spatial inversion symmetry appears, and the effect of the
symmetry on the conductivity of ABC-stacked TLG is under
our current study.

Just like the case of MLG, the linear dispersion bands
in ABA-stacked TLG form a pair of circular Fermi surfaces
centered at K and K ′ points (two inequivalent k points at
the hexagonal BZ corners). According to our numerical re-
sults, the warping of the Fermi surface from a circle can be
safely ignored within 0.4 eV relative to the Dirac point. Thus,
there must appear a strong nesting effect between the two
circular Fermi surfaces connected by the so-called nesting
wave vector of q0 = |K|. Usually, the Fermi surface nesting
effect implies strong e-ph scattering when the phonon wave
vector agrees with the nesting wave vector. Hence such a
nesting effect is expected to affect the intrinsic conductivity
sizeably. However, our calculations indicate that the nesting
effect on the intrinsic conductivity of ABA-stacked TLG at
room temperature is so trivial that it can be safely ignored.

The underlying reason is simple. As shown in the phonon
spectrum in Fig. 3(a), even for the lowest phonon frequency
with the nesting wave vector, for example at K point, the
corresponding thermal excitation temperature is about 800 K,
much larger than 300 K. It means that at room temperature
such a phonon mode has not been excited effectively. Conse-
quently, it can not bring about any nontrivial nesting effect.

In this work, we are mainly concerned with the ZA
phonons which play the important role to limit the intrinsic
conductivity of ABA-stacked TLG due to the nontrivial in-
terband e-ph scattering. However, it does not mean that other
phonon modes are always less important than ZA phonons
to influence other electronic properties of TLG dominated by
e-ph interaction such as the superconductivity and optical ad-
sorption. Therefore, before ending our work, it is significant to
compare the e-ph interactions associated with various phonon
modes in the ABA-stacked TLG. In so doing, we choose
to show phonon mode resolved Eliashberg spectral function
which is much involved in all physical properties dominated
by the e-ph coupling. For example, in the Migdal-Eliashberg
theory, a more systematic superconductivity theory than the
simple Mcmillian-Allen-Dynes formula, the Eliashberg spec-
tral function is the central physical quantity. This spectral
function is defined by

α2F (ω) = 1

N (E f )

∑
qν

δ(ω − ωqν )γqν, (10)

which consists of the contributions of all phonon modes,
namely α2F (ω) = ∑

ν α2F ν (ω), and α2F ν (ω) reads

α2F ν (ω) = 1

N (E f )

∑
q

δ(ω − ωqν )γqν, (11)

where N (E f ) is the electronic density of states at Fermi en-
ergy, and γqν is the linewidth for phonon with mode ν and
wave vector q, which is defined by

γqν =
∑
nm

γ ν
nm(q)

Nqν

. (12)

Our calculated spectral function of ABA-stacked TLG and the
contributions of eighteen phonon modes when Fermi energy
is at 0.2 eV above the charge neutrality point are shown in
Fig. 6. Our results indicate that the spectral function peaks ex-
ist only in three frequency regions, such as the low-frequency
region less than 200 cm−1 contributed by the phonon modes
1–9 evolved from only the acoustic phonon modes of MLG,
the middle frequency region around 900 cm−1 contributed
by the phonon modes 10–12 evolved from the optical ZO
modes of MLG, and high-frequency region more than 1500
cm−1 contributed by the phonon modes 13–18 evolved from
the optical TO and LO modes of MLG. Among the three
frequency regions, the peaks in the low-frequency region
dominate the superconducting properties. Compared with the
ZA mode (mode 1 in Fig. 6), the contributions of modes 6 and
7 (the second TO and LO modes originated from the acoustic
TA and LA modes of MLG) to the spectral function and the
superconducting properties should be much stronger, although
they influence the intrinsic conductivity of TLG weaker than
the ZA mode.
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FIG. 6. The spectral function α2F (ω) of ABA-stacked TLG with the contributions of all eighteen phonon modes α2F ν (ω) for Fermi energy
at 0.2 eV above the charge neutrality point. The spectral functions of 18 phonon modes labeled from 1 to 18 are shifted upwards by different
values for comparison. The total spectral function plotted in shade is multiplied by 0.05, and the spectral function values of the phonon modes
6, 7, 15, 16, 17, and 18 are multiplied by 0.1.

Recently, the e-ph couplings in ABC-stacked TLG also
attract much of attention because of the experimental observa-
tion of the exotic superconductivity [17], which was explained
as the acoustic-phonon-mediated conventional superconduc-
tivity based on a simple model of the e-ph interaction in
theory [16]. However, the quantitative accuracy of this simple
model is questionable, so it is a necessary and interesting
topic to study systematically the phonon-mediated supercon-
ducting behavior of ABC-stacked TLG by means of the full
first-principles calculations based on the Migdal-Eliashberg
formalism.

IV. MAIN CONCLUSION

In summary, within the theoretical framework of the BTE,
we study systematically the room-temperature conductivity of
ABA-stacked TLG limited by e-ph scattering. All the required
quantities such as the electronic band structure, the phonon
frequency and e-ph interaction matrix elements are obtained
by performing the first-principles calculations. Then, by em-
ploying the Wannier interpolation technique, we can obtain
the reliable numerical results of the conductivity of TLG with
high precision. Firstly, we find that the ABA-stacked TLG is a
semimetal since there are a linear dispersion band, together
with a parabolic dispersion band spanning the Fermi level,
reminiscent of a combination of the band structures of a
mono- and bilayer graphene. Then, our calculations indicate
that the conductivity of such a TLG is always smaller than that

in a monolayer graphene roughly by 20% when the carrier
concentration varies in a moderate doping range though the
TLG has more than one band spanning the Fermi level to
contribute the conductivity. To explain such a disagreement
between the band structure and the calculated result of the
conductivity of TLG, we find that the out-of-plane vibration,
i.e., the ZA phonon modes in the long-wavelength region,
plays the critical role on limiting the conductivity of TLG,
which brings about the strong e-ph scattering between the
linear and parabolic bands with opposite parities, which is
allowed by the mirror symmetry in TLG. In contrast, the ZA
phonon mode is completely decoupled from the e-ph scatter-
ing in the MLG in which there is only one linear dispersion
band around the Fermi level. The mirror symmetry prevents
the ZA phonon from the intraband scattering. In short, in
ABA-stacked TLG the nontrivial interband scattering arising
from the ZA phonon has the predominate suppression on the
room temperature conductivity. Consequently, the TLG has a
relatively weak electronic transport ability at room tempera-
ture. However, in view of the ultrahigh conductivity of MLG,
our numerical result indicates that the TLG is still a good
conductor under a moderate carrier doping.
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