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Casimir-Polder attraction and repulsion between nanoparticles and graphene
in out-of-thermal-equilibrium conditions
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The nonequilibrium Casimir-Polder force between a nanoparticle and a graphene sheet kept at different
temperatures is investigated in the framework of a Dirac model using the formalism of the polarization tensor. It is
shown that the force magnitude increases with increasing temperature of a graphene sheet. At larger separations
an impact of nonequilibrium conditions on the force becomes smaller. According to our results, the attractive
Casimir-Polder force vanishes at some definite nanoparticle-graphene separation and becomes repulsive at larger
separations if the temperature of a graphene sheet is smaller than that of the environment. This effect may find
applications both in fundamental investigations of graphene and for the control of forces in microdevices of
bioelectronics.
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I. INTRODUCTION

The Casimir-Polder force [1] acts between two electrically
neutral polarizable particles spaced at a distance far exceeding
their sizes or experienced by the neutral polarizable particle
which is well off a macroscopic interface. This is an attrac-
tive force caused by the combined action of the zero-point
and thermal fluctuations of the electromagnetic field. In the
condition of thermal equilibrium, i.e., under equal tempera-
tures of the particles, material surface, and the environment,
the Casimir-Polder free energy and force are expressed via
the dynamic polarizability of these particles (atoms) and
the reflection coefficients of electromagnetic fluctuations on
the surface in the framework of the Lifshitz theory [2,3]. The
respective expressions follow from the Lifshitz formula for
the Casimir force between two parallel plates when one of
them is treated as a rarefied medium.

The obtained results found numerous applications in both
fundamental and applied physics (see Refs. [4,5] for a review).
They were generalized [6–11] for out-of-thermal-equilibrium
conditions, e.g., for the case when the surface is kept at
one temperature whereas a nanoparticle or an atom and the
environment are characterized by some other temperature.
Recently the Casimir force out of thermal equilibrium was
considered for two similar plates with temperature-dependent
dielectric permittivity [12] and for two superconducting plates
[13]. The possibility of nonequilibrium repulsive Casimir
force between two parallel plates was demonstrated in
Ref. [14].

The Casimir-Polder force between a nanoparticle and
a flat surface is an important contribution to the total
particle-surface interaction which includes also Born repul-
sion and mechanical contact forces [15,16]. Investigation
of interaction between nanoparticles and material surfaces

is of great concern for designing sensing devices, such
as electrochemical sensors and biosensors for the needs
of bioelectronics [17–20]. The out-of-thermal-equilibrium
Casimir-Polder forces between a small sphere and a plate and
between two small spheres were studies in Ref. [21] in the
framework of general scattering formalism. It was shown that
the force can be both attractive and repulsive and it turns into
zero at some separations. It was also shown [22] that in out-of-
thermal-equilibrium conditions a nanoparticle in the vicinity
of a substrate made of nonreciprocal plasmonic material may
even experience the lateral Casimir-Polder force.

During the last few years considerable study has been
given to graphene which is a one-atom-thick sheet of car-
bon atoms possessing unusual properties [23–25]. The most
important of them is that at energies below approximately
3 eV [26] the electronic quasiparticles in graphene are mass-
less and are described by the relativistic Dirac equation,
rather than by the Schrödinger equation, where the speed of
light c is replaced with the Fermi velocity vF ≈ c/300. The
Casimir-Polder interaction of different atoms with graphene in
thermal equilibrium was studied in Refs. [27–38]. Interaction
of nanoparticles with graphene also attracted much recent
attention [39–43], in particular, for graphene on lipid mem-
branes, taking into consideration prospective applications in
bioelectronics [44–48].

In this paper, we investigate the Casimir-Polder force be-
tween nanoparticles and the freestanding graphene sheet in
out-of-thermal-equilibrium conditions. In doing so, the tem-
perature of graphene Tg may be either higher or lower than
the temperature of nanoparticles which is assumed to be equal
to the environmental temperature TE . The electromagnetic
response of graphene is described on the basis of first prin-
ciples of quantum electrodynamics at nonzero temperature
using the polarization tensor in (2+1)-dimensional space-time
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[49–52]. An important point is that the response functions
of graphene strongly depend on temperature. This leads to
an unexpectedly large thermal effect in the Casimir force
from graphene at short separations even in the state of ther-
mal equilibrium [53–55]. We show that with increasing Tg

the magnitude of graphene-nanoparticle force increases. For
Tg > TE the nonequilibrium Casimir-Polder force remains at-
tractive. However, according to our results, for Tg < TE the
force between a nanoparticle and a graphene sheet vanishes
at some separation distance and becomes repulsive at larger
separations. Unlike Ref. [21], where the response functions of
interacting bodies are temperature independent and nonequi-
librium effects at short separations are negligible, in our case
they become large for nanoparticles remote from graphene for
only a few hundred nanometers. Possible applications of these
results are discussed.

II. NONEQUILIBRIUM CASIMIR-POLDER FORCE
BETWEEN A NANOPARTICLE AND A GRAPHENE SHEET

We consider the dielectric or metallic spherical nanopar-
ticles of radius R at the environmental temperature TE .
They are spaced at a distance a � R from the graphene
sheet which is kept at the temperature Tg. In line with the
Clausius-Mossotti equation, the polarizabilities of dielectric
and metallic nanoparticles are given by

α0 = R3 ε − 1

ε + 2
, α0 = R3, (1)

respectively, where in the separation region considered be-
low one can employ the static dielectric permittivity ε of a
dielectric material (the Gaussian system of units is used). It is
assumed also that R � λE ,g ≡ h̄c/(kBTE ,g) [21]. Note that for
TE = 300 K we have λE ≈ 7.6 μm.

The nonequilibrium Casimir-Polder force acting on a
nanoparticle on the source side of graphene is represented as
a sum of the term which is often referred to in the literature
as “equilibrium” and the proper nonequilibrium addition to it
[8,10]

Fneq(a, TE , Tg) = F (a, TE , Tg) + �F (a, TE , Tg). (2)

Explicit expressions for both contributions on the right-
hand side (r.h.s.) of this equation presented below were
derived under the condition that our system is in local thermal
equilibrium, i.e., the temperatures of a nanoparticle and a
graphene sheet are constant, as well as the temperature of the
environment. The sphere radius and the separation distance
between a sphere and a plate satisfy the conditions formulated
above.

The term F in Eq. (2) is equal to half a sum of the Casimir-
Polder forces

F (a, TE , Tg) = 1
2 [F̃eq(a, TE ; Tg) + F̃eq(a, Tg; Tg)], (3)

where the first temperature argument in F̃eq indicates the
temperature of the environment and the second relates to the
graphene sheet. If the dielectric response of the plate does not
depend on T , the quantities F̃eq are calculated by the standard
Lifshitz formula [2–5] with the environmental temperatures
equal to TE and Tg, respectively. If, however, the dielectric
response is temperature dependent, one should again calculate
F̃eq(a, TE ; Tg) and F̃eq(a, Tg; Tg) using the standard Lifshitz
formula with TE and Tg as the temperatures of the environment
but in both cases substitute there the reflection coefficients on
a graphene sheet calculated at the graphene temperature Tg

[12]. As an example,

F̃eq(a, TE ; Tg) = −2kBTEα0

c2

∞∑
l=0

′ ∫ ∞

0
k⊥dk⊥e−2aql

× [(
2q2

l c2 − ξ 2
l

)
RTM(iξl , k⊥; Tg)

− ξ 2
l RTE(iξl , k⊥; Tg)

]
. (4)

In Eq. (4), kB is the Boltzmann constant, the prime on the
sum in l divides the term with l = 0 by 2, k⊥ is the magni-
tude of the wave vector projection on the plane of graphene,
ξl = 2πkBTE l/h̄ with l = 0, 1, 2, . . . are the Matsubara fre-
quencies calculated at the temperature TE , q2

l = k2
⊥ + ξ 2

l /c2,
and RTM,TE are the reflection coefficients on a graphene sheet
for the transverse magnetic (TM) and transverse electric (TE)
polarizations of the electromagnetic field, calculated at the
temperature Tg. It is assumed that an attractive force is neg-
ative.

Note that the force F̃eq(a, Tg; Tg) is obtained from Eq. (4) by
replacing TE with Tg in front of the sum and in the Matsubara
frequencies, so that they become equal to ξl = 2πkBTgl/h̄.
The tilde in the used notations F̃eq underlines that, although
this quantity has the form of an equilibrium force, its physical
meaning is somewhat different. Thus, the proper equilibrium
Casimir-Polder force at the environmental temperature TE

is defined as Feq(a, TE ) = F̃eq(a, TE ; TE ) where F̃eq is given
in Eq. (4). It is convenient to identically present the term
F (a, TE , Tg) in Eq. (3) as

F (a, TE , Tg) = F̃eq(a, TE ; Tg)

+ F̃eq(a, Tg; Tg) − F̃eq(a, TE ; Tg)

2
, (5)

where the first contribution on the r.h.s. is given in Eq. (4). For
our purposes, it is appropriate to write the second contribution
on the r.h.s. of Eq. (5) not according to Eq. (4) but using the
equivalent representation of the Casimir-Polder force as an
integral along the real frequency axis [4,5]

F̃eq(a, Tg; Tg) − F̃eq(a, TE ; Tg)

2
= h̄α0

πc2

∫ ∞

0
�(ω, TE , Tg)

{∫ ω/c

0
k⊥dk⊥ Im

[
e2ia

√
(ω2/c2 )−k2

⊥
∑

κ

AκRκ (ω, k⊥; Tg)

]

+
∫ ∞

ω/c
k⊥dk⊥ e−2a

√
k2
⊥−(ω2/c2 ) Im

[∑
κ

AκRκ (ω, k⊥; Tg)

]}
. (6)
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In this equation, κ = TM, TE is the index indicating the palarization state, the quantities Aκ are equal to

ATM = 2k2
⊥c2 − ω2, ATE = ω2, (7)

and

�(ω, TE , Tg) = (eh̄ω/kBTE − 1)−1 − (eh̄ω/kBTg − 1)−1. (8)

Note that the explicit expressions for two reflection coefficients Rκ in Eq. (6) are presented below in Eq. (13).
The general expression for a nonequilibrium addition in Eq. (2) was obtained in Ref. [10] for an atom-plate interaction under a

condition of local thermal equilibrium. For real and constant polarizabilities (1) describing spherical nanoparticles whose radius
satisfies the conditions formulated above, it is given by

�F (a, TE , Tg) = − h̄α0

πc2

∫ ∞

0
�(ω, TE , Tg)

{∫ ω/c

0
k⊥dk⊥ Im

[
e2ia

√
(ω2/c2 )−k2

⊥
∑

κ

AκRκ (ω, k⊥; Tg)

]

−
∫ ∞

ω/c
k⊥dk⊥ e−2a

√
k2
⊥−(ω2/c2 ) Im

[∑
κ

AκRκ (ω, k⊥; Tg)

]}
. (9)

It is seen that Eqs. (6) and (9) contain the contributions from both propagating waves, for which k⊥ < ω/c, and evanescent
waves, for which k⊥ � ω/c. In doing so, the contributions of the propagating waves enter Eqs. (6) and (9) with the opposite sign.
Substituting Eqs. (5), (6), and (9) in Eq. (2), for the nonequilibrium Casimir-Polder force between a nanoparticle and a graphene
sheet one finally obtains

Fneq(a, TE , Tg) = F̃eq(a, TE ; Tg) + 2h̄α0

πc2

∫ ∞

0
�(ω, TE , Tg)

∫ ∞

ω/c
k⊥dk⊥e−2a

√
k2
⊥−(ω2/c2 ) Im

[∑
κ

AκRκ (ω, k⊥; Tg)

]
, (10)

where F̃eq(a, TE ; Tg) is given by Eq. (4).
It is pertinent to note that in representation (10) the

nonequilibrium contribution is determined by only the evanes-
cent waves whereas the propagating waves contribute to Fneq

implicitly only through F̃eq(a, TE ; Tg).

III. ELECTROMAGNETIC RESPONSE OF GRAPHENE
IN TERMS OF THE POLARIZATION TENSOR

The explicit expression for the polarization tensor of
graphene �i j (ω, k⊥, T ), i, j = 0, 1, 2 valid over the entire
plane of complex frequencies ω was found in Refs. [51,52]
in the framework of the Dirac model applicable at ener-
gies below 3 eV (the absorption peak of graphene at the
wavelength of 270 nm corresponds to a higher energy of
h̄ω = 4.59 eV). Note that the characteristic energy of the
Casimir-Polder interaction h̄ωc = h̄c/(2a) at a > 100 nm is
below 1 eV. Therefore, at these separations the description of
the electromagnetic response of graphene using the results of
Refs. [51,52] is well founded.

It is convenient to express the reflection coefficients on
a graphene sheet via �00 and the combination of the tensor
components

� = k2
⊥� i

i − q2�00, (11)

where

q2 ≡ q2(ω, k⊥) = k2
⊥ − ω2

c2
. (12)

In terms of these quantities the reflection coefficients are
given by [28,34,50,56]

RTM(ω, k⊥; T ) = q�00(ω, k⊥, T )

q�00(ω, k⊥, T ) + 2h̄k2
⊥

,

RTE(ω, k⊥; T ) = − �(ω, k⊥, T )

�(ω, k⊥, T ) + 2h̄k2
⊥q

. (13)

General expressions for the components of the polarization
tensor at real ω are obtained in Ref. [51]. Here, we explicitly
specify the form of �00 and � in the region of evanescent
waves k⊥ > ω/c used in Eq. (10). It is convenient to present
�00 and � as

�00(ω, k⊥, T ) = �
(0)
00 (ω, k⊥) + �

(1)
00 (ω, k⊥, T ),

�(ω, k⊥, T ) = �(0)(ω, k⊥) + �(1)(ω, k⊥, T ), (14)

where the first terms on the right-hand sides indicate the zero-
temperature contribution and the second ones—the thermal
correction. In the plasmonic region [57] ω/c < k⊥ � ω/vF ≈
300ω/c it holds [51]

�
(0)
00 (ω, k⊥) = i

παh̄k2
⊥

p
, �(0)(ω, k⊥) = −iπαh̄k2

⊥ p, (15)

where α = e2/(h̄c) is the fine structure constant and

p2 ≡ p2(ω, k⊥) = ω2 − v2
Fk2

⊥
c2

. (16)

These quantities are pure imaginary.
The quantities �

(1)
00 and �(1) in the plasmonic region are

more complicated. They have nonzero real and imaginary
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parts. Thus, from the results of Ref. [51] one obtains

Re�(1)
00 (ω, k⊥, T ) = 8αh̄c2

v2
F

(I1 + I2 + I3), (17)

where

I1 = 2
∫ u(−)

0

du

eβu + 1

[
1 − 1

2cp

∑
λ=±1

B1(2cu + λω)

]
,

I2 = 2
∫ u(+)

u(−)

du

eβu + 1

[
1 − 1

2cp
B1(2cu + ω)

]
, (18)

I3 = 2
∫ ∞

u(+)

du

eβu + 1

[
1 − 1

2cp

∑
λ=±1

λB1(2cu + λω)

]
.

Here, β = h̄c/(kBT ), u(±) = (ω ± vFk⊥)/(2c), and B1(x) =
(x2 − v2

Fk2
⊥)1/2.

The imaginary part of �
(1)
00 is given by

Im�
(1)
00 (ω, k⊥, T ) = −8αh̄c2

v2
F p

∫ u(+)

u(−)
du

√
v2

Fk2
⊥ − (2cu − ω)2

eβu + 1
.

(19)
In a similar way, from Ref. [51] after some identical trans-

formations, for the real part of �(1) we find

Re�(1)(ω, k⊥, T ) = 8αh̄c2

v2
F

(J1 + J2 + J3), (20)

where

J1 = 2
∫ u(−)

0

du

eβu + 1

[
1 − cp

2ω2

∑
λ=±1

B2(2cu + λω)

]
,

J2 = 2
∫ u(+)

u(−)

du

eβu + 1

[
1 − cp

2ω2
B2(2cu + ω)

]
,

J3 = 2
∫ ∞

u(+)

du

eβu + 1

[
1 − cp

2ω2

∑
λ=±1

λB2(2cu + λω)

]
. (21)

Here, B2(x) = x2/(x2 − v2
Fk2

⊥)1/2.
The imaginary part of �(1) takes the form

Im�(1)(ω, k⊥, T )

= 8αh̄cp

v2
F

∫ u(+)

u(−)

du

eβu + 1

(2cu − ω)2√
v2

Fk2
⊥ − (2cu − ω)2

. (22)

This concludes the consideration of the plasmonic region.
In the remaining region of evanescent waves k⊥ > ω/vF ≈

300ω/c in Eq. (10), one finds [51]

�
(0)
00 (ω, k⊥) = παh̄k2

⊥
p̃

, �(0)(ω, k⊥) = παh̄k2
⊥ p̃, (23)

where

p̃2 ≡ p̃2(ω, k⊥) = v2
Fk2

⊥ − ω2

c2
. (24)

These quantities are real.
The form of thermal corrections to the zero-temperature re-

sults (23) also follows from the general expressions presented
in Ref. [51]:

�
(1)
00 (ω, k⊥, T ) = 8αh̄c2 p̃

v2
F

∫ ∞

0

dv

eDv + 1

[
1 − 1

2

∑
λ=±1

(
1 − v2 − 2λω

cp̃
v

)1/2
]
,

�(1)(ω, k⊥, T ) = 8αh̄ω2 p̃

v2
F

∫ ∞

0

dv

eDv + 1

⎡
⎣1 − 1

2

∑
λ=±1

( cp̃v
ω

+ λ
)2

(
1 − v2 − 2λω

cp̃ v
)1/2

⎤
⎦, (25)

where D = h̄cp̃/(2kBT ). Note that the quantities (25) are
complex. They have both real and imaginary parts.

Using Eqs. (13)–(25), one can compute the second,
nonequilibrium, contribution to the Casimir-Polder force in
Eq. (10). As to the equilibrium contribution, F̃eq(a, TE ; Tg), it
can be computed by Eq. (4) where the reflection coefficients
(13) are calculated at the pure imaginary Matsubara frequen-
cies ω = iξl . In doing so the expressions for �00 and � at
ω = iξl are well known. They can be found in Ref. [58].
Numerically the same values of �00 and � at ω = iξl are
obtained using the alternative representation for the polar-
ization tensor of Ref. [50] (this representation was used in
Refs. [28–31,59,60]).

IV. COMPUTATIONAL RESULTS FOR THE ATTRACTIVE
AND REPULSIVE FORCES

First we compute the ratio of nonequilibrium Casimir-
Polder force acting between a nanoparticle and a graphene

sheet, Fneq(a, TE , Tg), to the equilibrium one, Feq(a, TE ).
These computations are performed by Eq. (10) and by
Eq. (4) with TE = Tg = 300 K. The computational results
are presented in Fig. 1 as the functions of nanoparticle-
graphene separation by the top, middle, and bottom lines
for the graphene temperature Tg equal to 700, 500, and
77 K, respectively. These results are valid for both dielec-
tric and metallic nanoparticles of any diameter d = 2R �
a because the ratio under consideration does not depend
on α0.

As is seen in Fig. 1, the effects of nonequilibrium in-
crease the magnitude of the total Casimir-Polder force for
Tg > TE and decrease it for Tg < TE . In the latter case, the total
nonequilibrium force vanishes at some separation and changes
its sign at larger separations. Thus, for a graphene sheet kept
at 77 K the Casimir-Polder force vanishes at a ≈ 0.8 μm and
becomes repulsive at a > 0.8 μm. From Fig. 1 it is also seen
that with increasing separation an impact of the nonequilib-
rium effects becomes smaller.
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FIG. 1. The ratio of nonequilibrium to equilibrium Casimir-
Polder forces between a nanoparticle and a graphene sheet is shown
as the function of separation by the three lines for different graphene
temperatures Tg. In all cases the temperatures of a nanoparticle and of
the environment are equal to the temperature at thermal equilibrium
TE .
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FIG. 2. The magnitude of nonequilibrium Casimir-Polder force
between a metallic nanoparticle of diameter 5 nm and a heated
graphene sheet is shown as the function of separation by the lines
1 and 2 for two different graphene temperatures Tg. The respective
equilibrium force is shown by the bottom line. The region of short
separations is shown in the inset on an enlarged scale.
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FIG. 3. The magnitude of nonequilibrium Casimir-Polder force
between a metallic nanoparticle of diameter 5 nm and a cooled
graphene sheet is shown as the function of separation by the bottom
line. The force is attractive to the left of the dashed line and repulsive
to the right of it. The respective equilibrium force is shown by the
top line. The region of short separations is shown in the inset on an
enlarged scale.

In Fig. 2, the computational results for the magnitude of
the Casimir-Polder force, Fneq(a, TE , Tg), between a metallic
nanoparticle of d = 5 nm diameter and a graphene sheet are
presented as the functions of separation in a logarithmic scale
by the lines labeled 1 and 2 for Tg = 500 and 700 K, respec-
tively, in comparison with the equilibrium force, Feq(a, TE ),
calculated with Tg = TE = 300 K, shown by the bottom line.
In the inset, the region of short nanoparticle-graphene separa-
tions is shown on an enlarged scale. All forces in Fig. 2 are
negative, which corresponds to attraction. It is seen that with
increasing temperature the magnitude of the Casimir-Polder
force increases, which leads to stronger attraction.

Similar results for the case of graphene sheet cooled
down to Tg = 77 K are shown in Fig. 3. Here, the bottom
line demonstrates the magnitude of the total nonequilibrium
Casimir-Polder force, Fneq(a, TE , Tg), which vanishes at a ≈
0.8 μm and becomes repulsive at larger separations. The top
line reproduces the bottom line of Fig. 2 which shows the
equilibrium Casimir-Polder force, Feq(a, TE ), computed with
Tg = TE = 300 K. The inset again presents the region of short
separations on an enlarged scale. Although the force magni-
tude at Tg = TE = 300 K is again larger than at Tg = 77 K,
the qualitatively new effect arising at Tg < TE is the change
of attraction with repulsion for sufficiently large separations
between a nanoparticle and a graphene sheet.

V. CONCLUSIONS AND OUTLOOK

In the foregoing, we have considered the Casimir-Polder
interaction between a spherical nanoparticle and a graphene
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sheet in out-of-thermal-equilibrium conditions when the com-
mon temperature of a nanoparticle and of the environment can
be different from the temperature of graphene. This problem is
of interest for both fundamental and applied physics because
the electromagnetic response of graphene strongly depends on
temperature. The obtained expression for the Casimir-Polder
force between a nanoparticle and a graphene sheet is based on
the theory of atom-wall interaction out of thermal equilibrium
[6–11] adapted for the case of temperature-dependent dielec-
tric response in Ref. [12]. In so doing, the response function
of graphene is described by means of the polarization tensor
in the framework of the Dirac model.

In accordance with the results obtained, the magnitude
of the Casimir-Polder force on a nanoparticle increases with
increasing temperature of a graphene sheet although an impact
of the nonequilibrium conditions decreases with increas-
ing separation. An important qualitative effect is that at
some separation distance the attractive nanoparticle-graphene
force vanishes if the graphene temperature is lower than the
temperature of the environment and becomes repulsive at
larger separations. For a small sphere interacting with a di-

electric plate characterized by the temperature-independent
permittivity function, similar nonequilibrium effects were
obtained in Ref. [21] at separation distances of a few mi-
crometers. According to our results, in the case of graphene
the effects of thermal nonequilibrium become essential at
much shorter separation distances. This opens novel op-
portunities for the experimental investigation of graphene
systems and for the control of forces between nanoparti-
cles and graphene sheet with the aim of applications in
bioelectronics.
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