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A general expression for the orbital magnetization of a Floquet system is derived. The expression holds
for a clean system and is valid for any driving protocol and arbitrary occupation of the bands. The orbital
magnetization is shown to be large not only for Chern insulators, but also for anomalous phases where the Chern
number does not fully account for the topology. In addition, the orbital magnetization is shown to take significant
values both for a thermal equilibrium occupation of the Floquet bands and for occupations determined by a
quantum quench from an initial state with zero orbital magnetization. For the latter case, the orbital magnetization
is shown to be highly sensitive to van Hove singularities of the Floquet bands.

DOI: 10.1103/PhysRevB.105.195426

I. INTRODUCTION

A frontier topic in condensed matter physics and atomic,
molecular, and optical systems is the engineering of new states
of matter by Floquet driving [1-6]. Such driving can give
rise to myriad topological [7-24] and ordered phases [25-33]
that have no analog in static systems. For example, in two
spatial dimensions (2D), the Chern number does not fully
characterize the topology under Floquet driving. An extreme
case is one where the Chern number is zero and yet chiral edge
modes exist in the system [9]. These edge modes can give rise
to a quantized charge pumping [34] and a quantized orbital
magnetization [35,36] when the bulk states are fully localized
by spatial disorder, with the corresponding system known as
an anomalous Floquet Anderson insulator [34].

Despite this progress, understanding the linear response
properties for Floquet topological systems is a largely open
question. While many new topological invariants have been
constructed for Floquet systems, how these manifest when
external probe fields are applied is mostly unexplored. As a
first step, a topological quantum field theory for the driving
protocol of Ref. [9] was derived in Ref. [37], and the appear-
ance of an orbital magnetization as a linear response to an
external magnetic field was shown. However, the orbital mag-
netization for general Floquet driving and when the bulk states
are not fully localized is an open and important question both
from a theoretical point of view and for experiments where
bulk states may be conducting. In contrast, orbital magnetiza-
tion of static systems has been actively studied [38—40], with
recent applications to twisted bilayer materials [41-43] that
have been shown to exhibit large orbital magnetic moments
[44,45].

We derive a general formula for the orbital magnetization
of 2D Floquet systems in the absence of disorder. Our for-
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mula holds for any driving protocol as well as any filling of
the bands. We apply our formula to graphene under Floquet
driving, and we present results for two filling profiles, one
where the Floquet states are occupied according to a ther-
mal distribution, and the second where the occupation of the
Floquet states is set by a quantum quench from an initial
state with zero orbital magnetization. We show that the orbital
magnetization is large even for anomalous phases where the
Chern number C does not capture all the edge modes of the
system, including the extreme case of C = 0.

A schematic of the setup is shown in Fig. 1(a). A Floquet
system with broken time-reversal symmetry can host chiral
edge modes that traverse the Floquet zone centers (¢ ~ 0,
yellow) and zone boundaries (¢ & 7 /T, red), with € being the
quasienergy and 7' being the period of the drive. We study
the response of such a system to an infinitesimal external
magnetic field, under spatially periodic boundary conditions,
and show that such a probe induces a significant orbital mag-
netization.

The outline of the paper is as follows. In Sec. Il we describe
the setup and derive the expression for the orbital magne-
tization. In Sec. III we apply the results to three different
topological phases of periodically driven graphene. In addi-
tion, we present the results for each topological phase for two
different occupation probabilities of the Floquet bands. We
present our conclusions in Sec. IV and provide intermediate
steps in the derivation of the formulas and additional plots in
the Appendices.

II. SYSTEM AND DERIVATION

Let us consider a general spatially periodic and time-
periodic Hamiltonian in 2D. If k is the quasimomentum and

©2022 American Physical Society
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FIG. 1. (a) Schematic showing system irradiated by a circularly polarized laser. The yellow (red) loops denote chiral edge modes at the
Floquet zone center (boundaries). A perturbing perpendicular magnetic field induces an orbital magnetization (tiny loops with arrows indicate
induced magnetic moments). (b) and (c) Floquet bands of driven graphene on a cylinder with periodic boundary conditions in the x direction.
The bands have a Chern number of C = 3 (b) and C = 0 (c). Edge states at the Floquet zone center (boundary) are indicated by yellow
(red) color. In (b), the insets show two edge states at the Floquet zone boundary (red) and one edge state at the Floquet zone center (yellow)
[see schematic in (a)]. The chirality of the edge modes changes from 2 to —1 from the zone center to the zone boundary consistent with
C =2 — (—1) = 3.In (c), the zone center and the zone boundary each host two edge modes, with no change in the chirality of the edge modes
from the zone center to the zone boundary, consistent with C = 0. In (c), for orientation, the bands of static graphene are shown as black
dashed lines. We take 50 sites [(b) and (c)] in the y direction and keep Floquet harmonics up to |mm,| = 5 (b) and |mm,«| = 20 ().

T is the period of the drive, the Hamiltonian may be written as
H(,t), where H(k,t + T) = H(k, t). According to Floquet
theory [46,47], the Floquet eigenstate |, x(¢)) can be decom-
posed as [, (1)) = €% |¢, (1)), where |, k(1)) is the
time-periodic Floquet quasimode and ¢, k is the quasienergy,
with n labeling the bands. The first Floquet Brillouin zone
corresponds to €, x € [—m /T, /T]. It is convenient to define
the Floquet Hamiltonian Hp = H(k, t) — id,, which obeys
Hr|6ni(0) = €nkldni()).

Let us assume that the system has reached a steady state
characterized by an occupation f,x of the Floquet bands
[48-51]. Thus the system is described by a density matrix
p) =3 « [ukl®nk(@®)) (P (?)|. Note that due to the time
periodicity’of the Floquet quasimodes, the steady state still
involves oscillations that are periodic in time. Depending
on the value of f,k, we could be studying pure states or
mixed states. The density matrix can also have off-diagonal
components. However, when evaluating the average of typical
observables, the off-diagonal terms lead to rapid oscillations
at incommensurate frequencies. A summation over all the
rapidly oscillating terms leads to a decay in time. Since we are
interested in the steady-state behavior of the expectation value
of observables, we will neglect the off-diagonal components
of the density matrix.

We are interested in studying the linear response of the
above system to a weak external magnetic field. It was shown
that the orbital magnetization in a Floquet eigenstate time
averaged over one drive cycle equals the rate at which the
quasienergy of that eigenstate changes due to the applied
magnetic field (see, for example, Ref. [35]). With this as the
starting point, we will compute the change in the average
quasienergy of each Floquet eigenstate due to the applied
magnetic field, weighting the result by the occupation prob-
ability of each Floquet eigenstate.

The average quasienergy for a system described by the
denSity matrix ,()(I) = Zn,k fn,k'd’n,k(t)) (d’n,k(t)' is

E =Y fuxlénx@IHr|u(®) =Y fukenk. (1)

nk nk

Our goal is to study the linear response of the above system to
a small magnetic field B applied in the perpendicular Z direc-
tion and varying slowly with an in-plane wave vector q = g7,
B = ZBcos(gy) [40]. Using a gauge where the vector potential
is A = —XBsin(gy)/q, the perturbing term corresponding to
this magnetic field is (we set e = 1, i = 1; see Appendix A)

Vi)=Y Ap-J o) =A, I +ee., ()
P

where the current operator is J¢(t) = ), cli +q /zv(k, 1)Ck—q/2,
v(k,1) =oH(k, 1), with A, =—%B/(2ig). Denoting
8|Ynx(t)) as the change in the eigenstate to O(V), and
assuming that the perturbation is switched on at time t = 0,
we have (see Appendix A)

Buac()) = — iy e [y 1o (1) fo dr’

n K

X (G i 0V (1) (1)) e~ et =D ¥iEw w0 (=)
3)

Since the quasienergy does not change to O(V) [or, equiva-
lently, to O(B); cf. Appendix A], the leading change to the
quasimode is 8|, k(1)) = e §|1, (1)). We also assume
that the perturbation is switched on slowly so that it does not
change the occupation of the Floquet states. This is also justi-
fied from the fact that changing the occupation requires real
inelastic processes that move particles from one eigenstate
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to another. At O(B), only virtual processes are allowed, and
therefore to this order, there is no change in the occupation.

Thus the change in the average quasienergy due to the
external magnetic field is

SE(r) = Z Jonx[(Dn k() HE |8¢nx (1)) + c.c.] = M(1)B,

nk
4)

where M (¢) is the induced magnetization. We are interested in
the limit of long wavelengths, ¢ — 0, and long times t — oo.
Even in the long-time limit, the time periodicity of the Floquet
states gives rise to a residual time dependence to the mag-
netization. We will explore the magnetization averaged over
one drive cycle, i.e., M = lim,_, o, flt” dt'M(t')/T, where O
indicates the average of a quantity over one drive cycle. We in-
troduce the following notation for the mth Fourier component
of various matrix elements:

A 1 ! i ! 'NIA(+! ’
[O]Tk,n’k-f-q = ?/O dt/e_lmgt <¢n,k(t )|0(t )ld’n/,k-‘rq(t ))

(5)
We find (see Appendix A for intermediate steps)
. | m
M = 11_1;% 2_ Z (ﬁLk - fn’,k+q)|:[HF]nk,;z’k+q
4 q n,n’ K,meint
i
x [vE (K" c.C.|. 6
[U ( )]n k+q,nk €nk + mo — P + i| ( )

Above, v* is the velocity operator along the X direction.
Taking the long-wavelength limit is subtle, and the final
expression depends on the distribution function f, k. In par-
ticular, we find (restoring e, &; see Appendix A)
M=— iIm

2h py”

X |:fn,k<ak¢n,k(t)|(€n,k + Hp) X |0xn k(1))

. { lim (fn,k - fn,k+q) }Gn,k

9—=0 €,k — €nk+q

X (O k(D|(€nx — Hp) X |3k¢n,k(t))] (N

The cross product indicates that the orbital magnetization
depends on the Berry curvature of the bands. Since the orbital
magnetization is related to the operator r x v, withv = g,r =
—i[r, H(t)], and since r in the momentum basis corresponds
to J, that explains why we have two partial derivatives in
momentum weighted by Hr, €, x [39].

In order to explore the physics, we need to make some as-
sumptions about the occupations f;, x. This requires us to think
carefully about the initial state before the periodic driving
was switched on and to also account for relevant dissipative
processes. When the system is coupled to an ideal reservoir
described by a Fermi-Dirac distribution function with a chem-
ical potential y and temperature f~!, and when the Floquet
system is driven at frequencies that are large compared with
the bandwidth, it has been shown that the Floquet system ac-
quires the ideal distribution function of the reservoir [48,49].

However, for driving frequencies that are resonant, i.e., com-
parable to the bandwidth, the occupation of the Floquet states
can be complicated and highly dependent on the details of
the system-reservoir coupling [48,49]. Nevertheless, one can
imagine performing careful reservoir engineering to obtain
desired results for the Floquet occupation. For this reason,
we first consider the case where all states are occupied by a
Fermi-Dirac distribution function at a temperature 8~! and a
chemical potential 1. Moreover, we study corrections to the
combination £ — u(N), where N is the number operator. This
involves shifting €, x, Hr by €,x — n, Hr — p, thus arriving
at the following expression for the orbital magnetization (see
Appendix A):

M =M, +M,, (8a)

5|

|

|
sl
8

[

P

3

X (OkPnk (DI(€nx + Hr —2p) ¥ |ak¢n,k(t))i|a (8b)

€ /
2= ﬁlm[Xk: fn,k(én,k )

X (O (O(€nx — HF) X |3k¢n.k(t)>]. (8¢)

Above, f, = 9,, f. Since M, is proportional to the occupa-

tion, it survives at zero temperature; M5, being proportional
to the derivative of the occupation times the energy, con-
tributes only at nonzero temperature. Equations (8a)—(8c)
reduce to the equation for a static system [40], with Hp being
replaced by the static Hamiltonian H. However, for static
systems in thermal equilibrium, the orbital magnetization is
determined as a linear response correction to the free energy
F =E — u(N) — B~'S, S being the entropy and 8~' being
the temperature. In contrast, here we are considering the linear
response of a closed quantum system described by a density
matrix p. For the orbital magnetization, this corresponds to
determining corrections to the quasienergy of each Floquet
eigenstate weighted by the occupation of that state [35]. Thus
the natural object that appears here is corrections to E or
E — 1(N), where ((N) is a convenient shift.

For a two-band Floquet system with particle-hole symme-
try, the orbital magnetization per unit area A when one of
the bands is fully occupied and the other is empty reduces to
M /A = —(e/h)Cu/2m (see Appendix A). Thus the magneti-
zation vanishes for this ideal filling for anomalous phases with
C = 0. Therefore, in order to probe the C = 0 phase, we need
to either break particle-hole symmetry or raise the temperature
in order to occupy the other band, or we could simply have a
nonequilibrium occupation of the Floquet bands.

As discussed above, the occupation of Floquet states is not
guaranteed to be in thermal equilibrium even when they are
coupled to an ideal reservoir [48—50] except for some limiting
cases of high-frequency driving or for very careful reservoir
engineering. The most natural distribution is one arising from
a quantum quench from an initial state where a drive was
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absent, and then the drive was switched on following a certain
protocol. For a sudden switch-on of the drive at a time ¢ = 0,
the quench distribution function is

Jok = Z |(¢n,k(0)|‘/f;n,k>}2f;l?k’ &)

where | ;fk) are the eigenstates of the Hamiltonian in the ab-
sence of drive and foi(‘?k is the occupation of these states, which
we take to be a Fermi-Dirac distribution at a temperature g~!
and a chemical potential w.

The orbital magnetization following a quantum quench and
obtained from corrections to the average quasienergy E is (see
Appendix A)

My =— %Im Z |:fn,k(ak¢nk(t)|(enk + Hp) x |0x¢u (1))

nk

_ in \|2 in U;"(Ol, k)
{ Lllonslvadl o g

0, (|(@nx | win)|) }
vy(n, k)

+ ik

X €k (Ox@nk ()| (€nx — HF) X |ak¢n,k(t)):|' (10)

There are two main differences between Eq. (10) and
Egs. (8a)—(8c). One is that the occupation probabilities
entering in Eq. (10) are given by Eq. (9) rather than a Fermi-
Dirac distribution function. Second, the term coming from
limgo(fok — foicra)/ (€nk — €nterq) [cf. Eq. (7] is quite
subtle for the quench as the energies entering in f, x are those
of the prequench Hamiltonian before driving was switched
on. Thus a ratio of velocities of the pre- and postquench
systems, vi,“(a, k)/vy(n, k), appears in the formula for the
quench, with the orbital magnetization becoming sensitive to
van Hove singularities (vHs) [vy (7, ko) = 0] of the Floquet
bands. We emphasize that vHs are always important whenever
a sum on all momenta is involved. Thus vHs play a role even
for a thermal occupation of the bands. However, as Eq. (10)
shows, the role of vHs, especially those coming from v, = 0,
becomes more important for a quench occupation of the bands
than for a thermal equilibrium occupation of the bands.

III. APPLICATION TO DRIVEN GRAPHENE

We now apply the above formulas for the orbital mag-
netization to periodically driven (solid-state or artificial)
graphene. We choose a driving protocol where kay —
kag + Apap[cos(€2)X — sin(£2¢)y] (corresponding to a circu-
larly polarized laser), where ay is the spacing between
nearest-neighbor sites, Agap is the dimensionless drive am-
plitude, and €2 is the drive frequency. The chosen driving
protocol effectively breaks time-reversal symmetry, with the
high-frequency limit [52-55] corresponding to the Haldane
model [56]. Denoting the hopping amplitude of graphene by
tp and the velocity at the Dirac points by vg, the gap at the
Dirac points in the high-frequency limit is ~2(Aqvr)*/Q [2],
where v = (3/2)tag [57].

On varying the drive frequency and amplitude, a rich phase
diagram is obtained which includes conventional Chern insu-
lators with edge modes completely characterized by the Chern
number, as well as anomalous phases where the Chern number
is insufficient to characterize the topology [49,58-61]. The
bandwidth of graphene is D = 6fy. In order to highlight the
main physics, we will study three qualitatively different cases.
One is that of high-frequency driving 2 > D, the second is
that of a weak Agag < 1 but resonant drive 2 < D, while the
third is that of a strong Apag > 1 and resonant drive Q2 < D
where the Floquet bands bear little resemblance to that of
graphene. The high-frequency case shows physics identical to
the Haldane model. The other two cases, for our parameters,
correspond to anomalous phases.

In particular, the case of weak amplitude but resonant drive
[Fig. 1(b), 2 = 5ty, Apap = 0.5] has Chern number C = 3.
On a cylinder, the system hosts three chiral edge modes,
with two of them of the same chirality and traversing the
Floquet zone boundary (red), while the third is of the opposite
chirality and traversing the zone center (yellow). The Chern
number of 3 measures the change in the chirality from the
zone center to the zone boundary but cannot determine the
number of edge modes at the two gaps. The second anomalous
phase [Fig. 1(c), 2 = 0.5#y, Apap = 10] is an example of a
low-frequency and high-amplitude drive for which C =0,
but the system still hosts chiral edge modes on the cylinder.
In particular, the Floquet zone center (yellow) and boundary
(red) each host two chiral edge modes, with all edge modes of
the same chirality.

While Fig. 1 is for a system with boundaries, the rest of
the paper presents results for a spatially periodic system. The
results for the orbital magnetization for the three cases are
plotted in Fig. 2. The first, second, and third columns corre-
spond to C = 1, 3, and 0, respectively, with results presented
in units of etoag /h on the left axes, and in Bohr magnetons
up = eh/(2m,) on the right axes, where m, is the mass of the
electron and #y, ay are for solid-state graphene. We choose a
temperature of B~ = 0.05t,, with the Floquet zone bound-
aries +£2/2 indicated by vertical dashed lines and the Floquet
band edges indicated by vertical solid lines. The magneti-
zation M for a thermal equilibrium occupation is plotted in
the first row, while the second row shows the quench orbital
magnetization M.

As expected, the high-frequency case of C = 1, for a ther-
mal occupation of the bands, agrees with the Haldane model
[Fig. 2(a)], with the orbital magnetization showing structure
as u traverses the gap at zero quasienergy. The steep linear rise
in M across j1 = 0 is proportional to C. The quench magneti-
zation M [Fig. 2(b)], in addition to changing rapidly around
w = 0, also shows sharp features due to the dependence of M
on vHs [see coincidence with sharp structures in the density
of states (DOS), purple dashed lines].

The C = 3 case shows the same behavior as C = 1 close
to u = 0 [Fig. 2(c)]; however, the largest orbital magnetiza-
tion appear near the Floquet zone boundaries 1 = +/2 (in
contrast, the C = 1 case has zero orbital magnetization near
w = £/2). We associate the large peaks visible in M, M
(see Fig. 4 for the orbital magnetization over the full range)
at u~ +Q/2 for C =3 as an example of bulk-boundary
correspondence as two additional edge modes of the opposite
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FIG. 2. Orbital magnetization per unit dimensionless area A/a} of the spatially periodic system as a function of chemical potential u for
Chern numbers C = 1, 3, 0, with the latter two being anomalous phases. Floquet bands filled according to a thermal distribution function with
B~! = 0.05¢ [(a), (c), and (e)] and according to a sudden quench from graphene at thermal equilibrium with 8=' = 0.05¢, [(b), (d), and (f)].
Up to |mmax| = 3 [(a) and (b)], [mmax| = 5 [(c) and (d)], and |mpy.| = 20 [(e) and (f)] Floquet harmonics were kept. A 1001 x 1001 & grid
was used for all panels. The vertical axes on the right indicate values in units of the Bohr magneton ug = ehi/2m,. Vertical black dotted lines
indicate the Floquet zone boundary p = £€/2. Vertical black solid lines indicate Floquet band edges. (a) The black dashed lines indicate
reference results obtained from the Haldane model with next-nearest-neighbor hopping #, = 0.01¢;, flux ¢ = 0.5, and the same temperature.
(c) and (e) Black triangles indicate the chemical potential values used in Figs. 3 and 6. (b), (d), and (f) The renormalized Floquet DOS is
indicated by purple dashed lines (Fig. 5 gives more details of the DOS). The magnetization changes sign around p = 0 (all panels) and shows
strong peaks at the zone boundaries = £2/2 for the anomalous case C = 3 [(c) and (d)] (see Fig. 4 for orbital magnetization over the full
range). The orbital magnetization after the quench [(b), (d), and (f)] is very sensitive to the vHs, making (d) and (f) depend on the k grid close
to momenta where vHs are found.

The final case is C = 0 [Figs. 2(e) and 2(f)], where the
bands have a nonzero Berry curvature, although it integrates
to zero. The nonzero orbital magnetization arises from the
nonzero Berry curvature. Since the chirality does not change
from the Floquet zone centers to the zone boundaries, the
strength of the orbital magnetization is of the same magnitude

chirality appear at u = £/2 relative to u = 0, enhancing
the orbital magnetization. In addition, the sharp features in
My coincide with the vHs [Fig. 2(d)].
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FIG. 3. Total magnetization density [integrands of Egs. (8a)- —6 :
(8¢)] as a function of quasimomentum for C =3 (a) and C =0 t T t - —10
(b) and fixed chemical potential u = 2.3y (a) and u = 0.1¢ (b) (as -5.0 —2.5 0.0 2.5 5.0
indicated by black triangles in Fig. 2). Floquet bands are filled ac- 7 (to)

cording to a thermal distribution with 8~! = 0.05¢,. We employed
(@) |Mmax] =5 and (b) |mpy| = 20 Fourier modes and a 1001 x
1001 k grid. Cyan (a) and black (b) contours indicate regions where
the Berry curvature has significant contributions.

FIG. 4. Same as Fig. 2(d), i.e., the orbital magnetization for a
quench occupation of the bands for C = 3, but with the full magne-
tization range shown.
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FIG. 5. Floquet bands and Brillouin-zone-averaged density of states (DOS) for the three different driving cases with Chern number C = 1
[(a) and (b)], C = 3 [(c) and (d)], and C = O [(e) and (f)] within the first Floquet Brillouin zone, for periodic boundary conditions in x and y.
Black dashed lines indicate the respective values for the static case (undriven graphene). The inset in (a) shows the driving-induced gap. We
assume a Lorentzian broadening of the energy levels with a width of 0.057; ' (b), 0.025t; ' (d), and 0.005z, ! (f). Numerical parameters such
as number of Floquet harmonics and k-grid size are the same as for Fig. 2.

at these points. Note that a temperature of 8~! = 0.05¢ is
“high” for this case and as a result the orbital magnetization
is smoother and gives nonzero contributions even when u is
outside the band edges. Despite the Chern number being zero,
the orbital magnetization takes values comparable to those of
the C = 1 case, making it a good probe of anomalous Floquet
phases.

The integrand of Eqgs. (8a)—(8c), namely, the orbital mag-
netization density, is shown in Fig. 3 [and that for Eq. (10)
is shown in Fig. 6] for a chemical potential where the orbital
magnetization takes large values [black triangles in Figs. 2(c)
and 2(e)]. The plots highlight the connection between peaks
in the orbital magnetization density and peaks in the Berry
curvature. A nonzero Berry curvature is a prerequisite for a
nonzero orbital magnetization density. However, the distribu-
tion functions, defined by the chemical potential x and the
temperature 8!, determine which parts of the band Berry cur-
vature actually contribute. In Fig. 3(a) the Dirac points (small
cyan circles) do not contribute to the magnetization density
because a chemical potential of i = 2.3#; was chosen so that

the Dirac points are fully occupied and the Berry curvature
contributions from both Dirac bands cancel out (see also Fig. 5
). The area around the I" point (big cyan circle), however, is
only partly occupied, which together with the peaks in Berry
curvature in this region leads to a strong magnetic response.
The same reasoning applies to Fig. 3(b), where we chose a
different chemical potential, u = 0.1¢,.

IV. CONCLUSIONS

We derived a general expression for the orbital magneti-
zation of bulk Floquet systems and applied it to periodically
driven graphene. The orbital magnetization has a lot more
information than the Chern number, showing a significant
response even for anomalous phases with C = 0. Thus orbital
magnetization is a more sensitive probe of Floquet induced
topology than traditional metrics such as the Chern number.
Reference [35] showed that when the bulk states are local-
ized, the orbital magnetization is quantized and related to a
3D winding number [9]. However, in our setting where the
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FIG. 6. The orbital magnetization density, but with occupations according to a sudden quench [Eq. (9)] and with the magnetization
density corresponding to the integrand of Eq. (10). Black contours in both panels indicate regions where the Berry curvature has significant
contributions. White dots in both panels indicate regions that have vanishing Floquet band velocity in the y direction and therefore are related
to the vHs. The initial state, i.e., the state of undriven graphene, is taken to be in thermal equilibrium at a temperature 8~' = 0.05fy and a
chemical potential u = 2.31y (a) and u = 0.17y (b). Grid size and number of Floquet harmonics are the same as in Fig. 3.

bulk states are delocalized, the response is nonuniversal. In
addition, while a C = 0 phase shows a nonzero orbital mag-
netization, its time-averaged value does not determine in any
obvious way how many edge modes the C = 0 phase has. In
contrast, when C # 0, so that edge modes at the center and
boundaries of the Floquet Brillouin zone have opposite chi-
rality, this manifests very clearly in the orbital magnetization
(cf. C =3 and C = 1 in Fig. 2). Despite this lack of complete
information, our results will be useful for experiments in
Floquet systems where bulk states are likely to be delocalized.

In this paper we studied the orbital magnetization aver-
aged over one drive cycle. It will also be useful to study the
time-dependent orbital magnetization and extract its Fourier
components. For this case we expect to see a large response
at values of u that coincide with the vHs and also its Floquet
sidebands, i.e., for u = o, . = o £ 2, © = o =22, ....
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APPENDIX A: INTERMEDIATE STEPS
IN THE DERIVATION OF EQUATION (7)

The Floquet quasimodes |¢,(¢z)) are time periodic,
|Gni (1)) = | (t + T)), and therefore can be expanded in
Fourier components as follows:

e (0)) =Y ™| pp)- (A1)
meint
The Floquet quasimodes obey
Hp|pn (1)) = €| ());  Hp = H(t) — iy, (A2)
and the Floquet eigenstates are
Yk (0)) = "M i (1)). (A3)

Let us define the time-evolution operator for the Floquet
system as
U(t,0) = Te Hh dHO!, (A4)

Thus the Floquet unitary translates the Floquet eigenstate
forward in time as follows:

U (t, 0)|¥m(0)) = [ (1)) = ™"y (1)).

The perturbing term V (¢) is (settinge = 1 = 1)

(A5)

V()= Ay Jp(0). (A6)
P

Since we choose a perturbation at a specific wave vector g,
A(r) = —xBsin(gy)/q, the sum on p only involves two terms,
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p = ¢y and p = —¢g¥y. Thus we arrive at Eq. (2), which we In the presence of a perturbation V (¢), the Floquet unitary
rewrite below for convenience: expanded to O(V) is

Te”’f(; dr'[H(1")+V (1)]
Vi) =A, - J_4@)+c.c, (A7) t
~U(t,0)— iT[[ dr'ut, YU (', 0)]. (A8)
0

with A, = —%B/(2iq). The change in the wave function to leading order in V' is

t

8|V (1)) = —i/O dt'u(t, t")V (U, 0)[¢u(0))

= —iZIW/k/(I))/O dt' (e ONU @, WV (EHU ', 0) ¢ (0))
n'k’

= _izwfn’k/(t»/(; dt' (Y O)U (0, YU (2, ")V "YU (', 0)| ¥, (0))
n'k’

= —iZII/fn/k/(t))/O dt' (Y (0)|U (0, )V ("YU (', 0)[ ¥ (0))
n'k'

= =i e g (1) f dt' (i IV (1)l (1) 1o

wk 0
t

=—i) e g (1)) f dt (@i W)V (1) i (1)) e~ O HEw 0, (A9)
n/k/ 0

Above we have used that the Floquet states constitute a complete set of states, and we have employed the identity
Uuo,nu@,t')y=U(@,¢).

Note that to O(B) the change in the quasienergy is given by 8¢, x = (¢ni|V (t)|¢ni). V(t) is proportional to the velocity
operator, and the average velocity vanishes in an eigenstate, (¢, x|V (t)|¢,.x) = 0. Therefore the change in the quasimode comes
entirely from the change in the Floquet eigenstate, i.e., 8| (t)) = € 8|y (1)) to O(B). Substituting for V (¢), the change in
the quasimode to O(B) is

B ! ’ INJ 2 X ’ ’ —ien (t'—1)+i€,y '~
8|¢nk(t)>=52|¢nfk+q(t» /O At (Pukg (V" (k 4 q/2, 1) (1)) e ™ ey 020

B ' / / X / ’ —i ! —t)+i '
T2 > lwi—g () / dt (i ()0 (k = q/2, 1) (') e G20, (A10)
n 0
Above,
d
Uerq/z(l) = vx(kx» ky +4q/2,1) = WH(kxv ky +4q/2,1). (A11)

Thus the change in the average quasienergy to O(B) is

SE) =Y fullne(t) | Hr |8pui(1)) + c.c.]

n,k

B ! - , ,
=2 Zfnk[<¢nk<t)|HF|¢>nlk+q(r>> /0 At (kg (1|32 ()| (1))~ =D H ka0

n,n' k

— (uk ()| HE | pri—q (1)) /0 At (Gwi—g (1) Vi_y )2 ()| (¢ e~ e D Hewi—y0=0)

+ (Gukrg (O Hr | duic (1)) /0 At (1) Vg2 ()| B g (£ =D 7 6uksa =0

— (Guwi—g(O1HE |G (1)) / dr’(¢nk(r’)|vz_q/z(ﬂ)\m_q(r/))e"f"k“’—”—"fn’kN’—”}. (A12)
0
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In the second and last terms we find it convenient to shift k — k + ¢, and interchange n, n’. This gives

SEW =5 Z(fnk J W[¢nk<t>|HF|¢n/k+q(r)> / dt/(qsnfkﬂ(t/)|v;§+q/2(r/>|¢nk(t/))e—""k(”">+"~k+q<”-’>+c.c.] = BM ().

n,n' k

(A13)

Note that the term multiplying B/(2q) is O(g) because it is a product of a term which is symmetric under exchange of n, n’ when
g = 0 (the term in square brackets for ¢ = 0) and another which is antisymmetric under exchange of n, n’ when g = 0 [the term
(fu.k — fw.1)]. Thus the prefactor of B/2q vanishes when ¢ = 0. Now the goal is to expand this prefactor to O(q) and determine
M(t). When n = r/, the O(g) correction comes from Taylor-expanding (fix — fuk+q) to O(g), while for the n # n’ term, the O(g)
correction comes from Taylor-expanding (@ (1)|HF [¢wi+4(1)). Thus, in what follows, we may replace vy, 02 by v;.

We introduce the following notation for the Fourier transform of matrix elements between Floquet quasimodes:

1 (7 o A
(O kv = T /0 dt'e™™ " (G (t)|Oluisq (1)), (A14)

In Eq. (A13) we perform the ¢’ integral by including a small imaginary part and extending the integral to co. This gives the
following expression for the average orbital magnetization:

— 1 i
M = lim — o v [H , IO .c. |, AlS5
limy zqn;;m [(fk Tk ) HHE L iy o[V (K], e +cc:| (A15)
where
1 ! _—im ! my—m m
(Hr g = / dt' e (G (t ) Hp | pwisq () = [en/ kg + Enk +mR1Y (o0 " b)) (A16)
0 m
and
T
W g = = | 1€ (G g(t)]0e, HE )| it))
0
ro LT
=; '€ (g ()]0 [H (1)l b ()] = / dt'e" " (puicr (N H ()| 04, i ()
0 0
1 g 7 _imQt’ ’ . ’
=7 [ A" (Puarg (1)) [€nt + idy |fui(t))]
0
1 [T o
- are” " [ewiral®wieg )]0k, (1)) = (B Pk ()|, bk )]
0
o | I
= (ak Enk) T / dt/elm ! (¢n k+q(l )|¢nk(t )) T / dr'e™™ (6nk — €n'k+q + iat’)(¢n’k+q(t/)|akx(bnk(l‘/))
0 0
= (O enc) D (B |S5) + (enk — €mwirg +m) D (dU™ |0k i")- (A17)
my my

Equation (A15) corresponds to Eq. (6).
In order to Taylor expand in g, it is convenient to separate the terms into n # n’ and n = n’ as follows:

— 1 i
M =1lim — wk — Skt HE 1 g VTR +c.c.
i g #nz]; ) [(fk Tt ) UHE L i g [V GO Ly gk e T — enrre ]
i = S ot — e g [0 GO i + (AL8)
im — " ; v c.c.|.
4—0 2q ot k — Jnk+q Fluk nk+q nk+q, nk e + me) — €nkiq
Substituting for matrix elements of v, and Hr, we obtain
— 1 (my—m)| 4 (my)
M = lim o #;m(fnk fn/m)“ [ g + Enk +mS] mz Po |¢n/k'+q>}
B gl | ) e Q ) . p0m) i e,
( - k) §< s |¢ >+ (6o = Cutra )mzz (¢n ra | i ) €k + ML — €y jyqg -
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i 1 1 my—m m
+ ;E}I(l) Z Y; (fnk - fnk+q)[{ E[Gn,k+q + €nk + mQ] Z <¢,(1k1 )’¢r(t,klﬁ)-q>}

my

i + c.c.i|. (A19)

(m+mz) (mz) (m-+my) (m2)
(O enk)§ NN )+ (Enk — Encrg +m2) D (8 |9k, Do >}

x q nk n nk+q nk+q _
{ = Enk + M2 — €444
m) ) is such that when g = 0, this term vanishes, i.e.,

When n # ', the term in the first line above Y, (%" ™™o e

Zml (qb(’"‘ m)|¢,(l’"‘)) = 0. This is because (¢,(t)|¢,(t)) = 0 and therefore all the Fourier components of this overlap should
™)y to O(g). In addition, for the n = n’ term,

be zero. Thus, for the n # n' term, we need to Taylor expand only )", (o g

1 7 . 1 [T
D (e ) x Y (ph ) = [7 /0 drelm9'<¢nk(r>|¢nk+q<r>>}[7 fo dr' e (Gt g () e (¢ )>} (A20)

mg nyp
and is purely real. Thus the term proportional to (0 €,«) does not contribute due to the i factor multiplying it. This leads to

1
|:<§[6n/,k+6n,k+m9]2( (m m)|3 ¢(m1)>}{z< (m+m2)|a ¢1(111?2)>}i+c‘c'i|

the expression

1
E Z (fnk fnk)
n#n' k,m my my
+ hm— D U= fnk+q)[{ [enirg + €nic +mQ1Y_ (o4 '">|¢,521;)Hi2< a0, ¢<""))} +c.c}. (A21)
nkm m my

As before, since (¢(¢)|¢(t)) = 1, the term Z (’"' "’)|¢’3’,:"+)q) = 8m=0 + O(q)8m0. This is because, when g = 0, all time
dependence should vanish (i.e., m = 0). So to leadlng order in ¢, only the m = 0 term in the second line survives, giving

1
|:{§[6n’,k+€n,k+fn9]2(¢f$' e ¢<'"1>)”Z( ooy, ¢(m2)>}l+cc:|

Z (ﬁzk - fn’k)
n#n' k,m my my
+ 11m — Z (fax — fnk+q) [€nktq T €n k]|: Z( ,(121),1’3 ¢(ml)> + c.c.:|. (A22)
n,k my
Now we divide and multiply by (€,x — €5.4+4) in the second term and use the identity
(énk - 6n,k+q) Z ¢£,;:ljr)q|a ¢(m|)> <¢;1k+q|€nk - HF |akx¢nk) ~ q(ak),¢'1k|€nk - HF |akx¢nk) (A23)
my
to obtain
— 1
M= (fuk — fn/k)H [€w i+ €nic +mR1Y_ (d5 ™" |0, ¢(’”'))H > (gt oy, ¢<’"2’)}i +c.c.:|
n#n' . k,m m m
(A24)

1 . (fnk - fnk+q)

— 1 — € a nk — H, a
S i e AR A o]
Since (¢ 1 (¢)|Pnr(t)) = constant in time, O [{(@n x()|Pnr(¢))] = 0. This must hold for each Fourier component giving

y] = 0 for each m. Using this, we can move the derivatives between the bras and kets to show that

ak [Zml d)(ml m)|¢(ml)]

Z (f,,k—fn/k)mQHZ( NARIT ¢,§f’;'>)}{2( 0| 3y ¢>(m2))}i+c.c.:| =0. (A25)
Similar manipulatio:j&snl’;z to : )
M= %Im[,,;;mfnk(en”k+€"’k){;< gl m>|¢<ml>)”;< AR PN ¢<m7>”
+%Im[“ k’mfnfk<enf,k+en,k){%j( oo™k, ¢(”“’>”m22(a ¢<’”+’”2)|¢“"2>)H (A26)
(A27)

(1_)0 €nk — €nk+q

+ Im|: { li M }En,k(ak)(Pnk (t)|€nk - HF |akx¢nk (t)>:| .
n,k
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The above can be written as

M=—

N =

n,n' k

Im [ > fuklr k()| €nic + Hr |¢n/k(t>)(¢nfk(r)|ak)¢nk(r)>]

1
+ 5Im [ D Fur{ Ok bwic ()| €wic + Hr \¢>nk(t>><¢nk<r>|ak‘,¢nfk<r>>] (A28)

n,n'k

Cm [Z {hm (fk = frksq)

=0 €pk — €nk+q

n,k

}en,k<ak}¢nk(l‘)‘enk — Hp ’akx¢nk(t)>j|-

(A29)

Now we remove the complete set of states, D, [¢u (1)) (¢n(t)| = 1, and by noting that the second line is simply the complex

conjugate of the first, we obtain

M =—1Im [Z k(00 Dot ()| €k + H }akxmk(r))} + Im[

n,k

> {lim Unic = Jricra) }en,k(akvm(r)knk = HF}akxqsnk(r))}.

9=>0 €xx — €nk+q

(A30)

Multiplying by —e/h, and writing Im(a) = (a — a*)/2i, we obtain

— e
M=——Im
2h —

The above is Eq. (7).

[fnk(a,;%k(t)l(enk + Hp) X |9;¢ui (1)) — { fim Yk~ Jnksa)

4—=0 €xp — €nk+q

}En,k(a,;%k(t)l(enk — Hp) x Ia,;¢nk(l)>]-

(A31)

Simplified formulas for the two-band model
When there are only two bands n = u,d as in the case of periodically driven graphene, the formulas for the orbital
magnetization can be simplified. For the orbital magnetization under assumptions of thermal equilibrium, and taking into account

corrections from E — p(N), we have

J— e R — —_— ,
M=---Im |:(fdk — fud(€a i + €ur — 20)Foy (k. 1) — (€ak — €ur)Fy ki 1) Y fr(eme — M)]~ (A32)
k n=d,u
For the orbital magnetization for a quench occupation of the bands, and looking at corrections only to E, we have
J— e _
Mgy = —ﬁlm |:(fdk — fu)(€ak + €ui)Fy(k, 1) (A33)
k
- o v a, k) 2 e VR, k)
_ — €, F:r k,t m 8 m ) » m a mn "
(€d.k — €ui)Fy( ); {|(¢dk|¢ak>| e S —vy(d, 0 €ak + (Duk |V )| 0 S —vy(u, 0 €uk
) 2
i O ({(Darver)) i O ((Duelvai)[)
in Ky ak in % ak
» ) A34
+foak 0(d, k) €ak + fux 0,1, ) €uk (A34)

Above, F,, is the time average of the Berry curvature, and o
are the bands of the system before the quench. Note that when
there is particle-hole symmetry €;; = —€,, then the first
term in the above equations proportional to €, + €, does
not contribute. In addition, when the system is in thermal equi-
librium at zero temperature, with one band fully occupied, and
the other empty, then Eq. (A32) gives M/A = —(e/h)Cu /2.

APPENDIX B: VAN HOVE SINGULARITIES

For the sake of completeness, in Fig. 4 we show the same
data as in Fig. 2(d) but with the full magnetization range.
Figure 5 shows the Floquet band structure within the first Flo-
quet Brillouin zone along the Dirac point for the three driving

(

cases with C =1 [Fig. 5(a)], C = 3 [Fig. 5(¢)], and C =0
[Fig. 5(e)]. For better orientation the static bands are shown
by black dashed lines. The inset in Fig. 5(a) shows the Dirac
point with the light-induced gap opening. The corresponding
density of states is presented in Figs. 5(b), 5(d), and 5(f).

APPENDIX C: ORBITAL MAGNETIZATION
DENSITY FOR THE QUENCH

In Fig. 6 we present the k-resolved orbital magnetization
density after a sudden quench, as described by Eq. (10),
for the driving schemes corresponding to C = 3 [Fig. 6(a)]
and C =0 [Fig. 6(b)]. We use the same parameters for u
and B! as for Fig. 3, where u and B~' now characterize
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the state before the quench, i.e., the temperature and oc-
cupation of undriven graphene. Due to the nonequilibrium
occupations, the magnetization shows more complexity, for
example, clouds of nonzero magnetization density at the Dirac

point position [Fig. 6(a)]. In contrast, for thermal equilibrium
occupation of the bands, and for the same chemical poten-
tial, the magnetization density at the Dirac points is zero
[cf. Fig. 3(a)].
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