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In this article, we report on a critical assessment of dielectric function calculations in electron gas through the
comparison of different modeling methods. This work is motivated by the fact that the dielectric function is a
key quantity in the multiple scattering description of plasmon features in various electron-based spectroscopies.
Starting from the standard random phase approximation (RPA) expression, we move on to correlation-augmented
RPA, then damped RPA models. Finally, we study the reconstruction of the dielectric function from its moments,
using the Nevanlinna and memory function approaches. We find the memory function method to be the most
effective, being highly flexible and customizable.
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I. INTRODUCTION

Plasmon effects occur in many electron-driven spectro-
scopies and are the signature of the response of the system
to the sudden appearance of an extra charge (a traveling
electron, a hole left behind, etc.). In core-level photoemission
for instance, plasmons appear as separate peaks at energies
below the core peak. The energy differences with the core
peaks are multiples of the plasmon energy nh̄ωp. Here, n is
the number of plasmon losses suffered by the photoelectron
before escaping the material under study. Values of n at least
up to 6 have been observed by Barman and coworkers [1]
in aluminum. More recent results using 6 keV hard x-ray
photoelectron spectroscopy (HAXPES) seem to exhibit up to
14 plasmon peaks [2]. For surface-sensitive photoemission,
the surface plasmon peak can be distinguished from the bulk
one as they appear at different energies.

The information embedded into plasmon peaks has not
been much studied so far in photoemission. Back in 1990,
Osterwalder and coworkers showed that they exhibited
photoelectron-diffraction-like features just as their core-level
peak [3]. More recently, David, Godet, and coworkers pro-
posed to use these plasmon peaks to extract from their energy
distribution some information on the system’s dielectric func-
tion [4,5]. They termed this new spectroscopy “photoemission
electron energy loss spectroscopy” (PEELS). Similarly, plas-
mon structures originating from valence band electrons have
also been studied by Guzzo and coworkers [6,7]. Therefore,
although not used that much yet as a system’s information
provider, plasmon structures seem a promising tool to extract
some new information from spectroscopies, and in our case,
from photoemission.

From the theoretical point of view, Hedin and coworkers
introduced two approaches in order to model plasmon features
in photoemission and x-ray absorption: the GW + cumulant
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expansion and the quasiboson model Hamiltonian method
[6–8]. The two methods have been shown to be formally
equivalent by Vigil-Fowler et al. [8]. The GW + cumulant
expansion has been favored by Reining and coworkers [6,7]
to model plasmon structures originating from valence bands.
They showed in particular that neither DFT nor GW were able
to model the plasmon satellite. On the other side, Fujikawa
and coworkers have used Hedin’s quasiboson model in or-
der to incorporate it into the multiple scattering description
of spectroscopies [9–11]. Following Fujikawa’s approach, it
can be shown that, using reasonable approximations, the first
plasmon peak cross section can be written as the product of
the core peak cross section times a loss function, which is
very convenient as standard multiple scattering codes such as
MsSpec [12,13] compute the core peak cross section. There-
fore, the implementation of the plasmon peak into a core-level
code only involves the computation of this loss function. Fu-
jikawa and coworkers have shown that this function can be
expressed as [11] ∫

fc(r)V i(r)dr, (1)

where fc(r) is a function involving the core-hole wave func-
tion and the escaping photoelectron wave function. V i(r) is
the so-called fluctuation potential that describes the excitation
of a plasmon (by either the core hole or the photoelectron).
The only unknown in this approach is the fluctuation po-
tential. Both Hedin and Fujikawa have used for V i(r) the
analytical expressions derived either by Inglesfield [14] or
by Bechstedt [15,16]. These descriptions are based on a 3D
metallic-type material with a well-identified surface, and for
photoelectrons of low kinetic energies, originating from the
vicinity of the surface. Therefore, they completely exclude
lower-dimensional systems (quantum dots, quantum wires,
quantum wells, etc.) or semiconductors, heterostructures, and
Dirac systems such as graphene and related layers or bilayers.
Moreover, they are not suited to HAXPES experiments where
the surface is basically overlooked by the escaping electron.
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In order to treat more diverse types of materials and spec-
troscopies involving more energetic electrons, we propose an
alternative method to the problem of the description of the
fluctuation potential. For this, we go back to the definition that
was given by Hedin and coworkers. In Ref. [15] they define
this potential as

V q(r) =
∣∣∣∣ VC (q)

∂ε(q,ω)
∂ω

∣∣
ω=ω(q)

∣∣∣∣
1/2

eiq·r, (2)

where VC (q) is the Fourier transform of the Coulomb poten-
tial and ε(q, ω) is the dielectric function of the system. The
derivation is taken along the plasmon dispersion ω(q) which
can be obtained by solving Re[ε(q, ω)] = 0, where Re[. . .]
indicates the real part.

Through the use of the dielectric function, this definition
offers us a convenient, flexible, and general way to compute
the fluctuation potential needed to evaluate the cross section of
plasmon peaks for any type of material and dimensionality.
Moreover, being based on a proper description of the dielec-
tric function, it makes a direct connection with the PEELS
method developed by Godet, David, and coworkers [4,5],
thereby reinforcing their idea that this spectroscopy could be
used ultimately to map somehow the bulk or surface dielectric
functions.

It is not the purpose of this article to implement the calcula-
tion of the plasmon peak. This will be done in a forthcoming
study. Rather here, we dedicate our work to reviewing and
documenting different models of dielectric functions in order
to assess their sensitivity to various parameters. In this view,
we remark that some spectroscopies such as photoemission do
not resolve the momentum of the plasmon and therefore will
need to integrate over it, while others such as electron energy
loss spectroscopy (EELS) are plasmon momentum sensitive,
at least for small values of q.

Ideally, we could obtain the dielectric function from an ab
initio electronic structure calculation.

Some codes can do it for nonzero q values, but as ul-
timately the dielectric function will be embedded into an
optimization loop as an external parameter that can be varied
(think of PEELS), we have developed a separate, simpli-
fied (approximate) computer code that can compute it in a
matter of seconds. This code, which is called MsSpec-DFM
(dielectric function module), will be published as a separate
module of MsSpec [12,13]. It can compute different model
dielectric functions for a very large range of materials. The
purpose of this article is to compare different approaches to
analytically model a dielectric function and try to ascertain
the most accurate. All the methods we use are based either on
the homogeneous gas approach or on a Fermi liquid one. This
means that the electron system that responds to the sudden
appearance of either a core hole or a photoelectron has no
structure whatsoever. Later, in a forthcoming work, we will
try to assess the effect of the band structure (nonhomoge-
neous distribution of electrons) and of the crystal structure
(interaction with phonons) on the plasmon description. Work
is currently in progress using the Questaal LMTO code [17]
to model a band-structure-sensitive plasmon dispersion [18],
and preliminary results are very promising.

In Sec. II, we recall the basics of the Hedin-Fujikawa
quasiboson multiple scattering description of the plasmon
photoemission peak. Section II A describes the theoretical
context of the multiple scattering of spectroscopies, while
Sec. II B introduces the quasiboson model Hamiltonian. Sec-
tion II C introduces the fluctuation potential, and Sec. II D the
essentials on dielectric function formulation. Section III is de-
voted to the description of various model dielectric functions
encompassing (i) the simple plasmon pole approximation, (ii)
the random phase approximation (RPA) approximation, and
(iii) the correlation-augmented RPA approximations. As these
models do not conserve the number of particles, we consider
in Sec. IV two approximations that ensure this conservation:
(i) the Mermin approximation and (ii) the Hu-O’Connell ap-
proximation. More refined methods that also conserve the
momentum and the energy such as the Atwal-Ashcroft method
[19] are not tested here because they can be easily imple-
mented into the family of dielectric functions described in
Sec. V. Section V deals with a more unusual pathway to
build up a dielectric function. Indeed, as we mentioned before,
most standard model dielectric functions do not conserve the
number of particles. In addition, the RPA does not contain cor-
relation effects and they have to be added externally through
local field corrections (LFCs). It can be shown however that
the ω1 moment of the inverse of the dielectric function is
nothing else than an expression of the conservation of the
number of particles. Likewise the ω3 moment can be shown to
reflect the electron pair correlations [20] and the ω5 moment
the electron triplet correlations [21]. Consequently, if we can
reconstruct the dielectric function, or its inverse, from its
moments, we will have “built-in” both the conservation of
the number of particles and the correlations. We document
here two methods based on this approach: (i) the Nevanlinna
function method and (ii) the memory function method. We
show that these two methods do improve upon the correlation-
augmented RPA methods or the damping methods (Mermin,
Hu-O’Connell). In addition, complex energies can be used
that incorporate plasmon damping. Although in this article
we will limit ourselves to the scalar memory function ap-
proach, we note that it can be augmented to a matrix version
that will incorporate the conservation of the momentum and
the conservation of the energy. As the memory function is
based on the way a system relaxes, other features, such as
the timescales of different plasmon decay modes, can also
be added into the memory matrix method which makes it
the most flexible and general way to model “analytically” a
dielectric function. Furthermore, it can be shown that most, if
not all, other methods can be considered as particular cases. A
comparative discussion is proposed in Sec. VI.

Note that throughout this article, we consider the case of
aluminum for our calculations. This particular choice comes
from the fact that aluminum is a much studied system usually
considered as a test case, or toy model.

II. THEORETICAL BACKGROUND

A. Spectroscopies and multiple scattering

The form of multiple scattering (MS) used in spectroscopy
codes nowadays has a long history that dates back to the late
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1940s and early 1950s and the seminal articles by Korringa
[22] and Kohn and Rostoker [23]. It was conceived as a
method to solve the bound-state electronic structure problem
and it is still known now under the acronym KKR, made
from the initials of the three authors. Later, it was extended
to treat continuum states, which allowed one to apply it to the
description of spectroscopies involving electrons. In this case,
it is called more often multiple scattering, a generic name that
is used also in other areas of physics. Indeed, many important
results of multiple scattering have been first demonstrated in
nuclear physics and then rediscovered in condensed matter.

For the case of the present work, we are interested to embed
the description of plasmon satellites in spectroscopies within
this multiple scattering formalism. Let us take the case of
photoemission as an example. A core-state peak in the overall
spectrum can be modeled as

I0(k, h̄ω) ∝ | 〈φ̃k|�|c〉 |2. (3)

Here, |c〉 is the core state excited by a photon of energy h̄ω,
� is the photon-electron interaction operator, usually reduced
its dipole part, and 〈φ̃k| is the continuum multiple scattering
wave state of the escaping electron with momentum k. This
continuum state contains all the interactions of the excited
electron with the atoms of the material before detection by
the analyzer. Although it usually incorporates a description of
inelastic losses through a suitable optical potential, it cannot
account for plasmon losses which appear in the spectrum as
separate satellite peaks. Hence, a supplementary theoretical
model is needed for such a description.

B. The quasiboson approximation

As already mentioned in the introduction, Hedin and his
coworkers introduced two separate frameworks to incorporate
plasmons into photoemission and x-ray absorption: the GW +
cumulant expansion, and the quasiboson model Hamiltonian
[6–8].

In Hedin’s quasiboson model Hamiltonian method
[15,24,25], the coupling to the plasmon field is added exter-
nally and treated as a perturbation. This allows one to embed
it easily into the MS formalism.

In our case, the quasiboson model Hamiltonian can be
written as

H =
∑

q

h̄ωqb†
qbq +

∑
k

εkc†
kck

+
∑
qkk′

[
V q

kk′b†
q + (

V q
kk′

)∗
bq

]
c†

kck′ −
∑

q

V q
cc(bq + b†

q),

(4)

where the first term describes the free boson field, the second
term corresponds to the ejected photoelectron, and the third
term corresponds to the interaction between the photoelectron
and the boson field. The last term represents the core hole–
boson coupling. In this approach, the interaction between an
external charge and the electrons in the system is described
through the fluctuation potential V q given by Eq. (2) where,
specializing to plasmons, h̄ωq is the excitation energy of a
plasmon of momentum q. The momentum vector of a plasmon
is given by q = kin − ksc where kin is the momentum of the

electron before the plasmon loss and ksc is the the momentum
of the electron after the plasmon loss.

In their respective works, Hedin and coworkers and Fu-
jikawa and coworkers relied on two analytical fluctuation
potentials developed separately by Bechstedt [16] and In-
glesfield [26], which we will describe later for the sake of
completeness.

In the Hedin-Fujikawa formalism, the intensity of the first
plasmon peak is given by [11]

I1(k, h̄ω, h̄ωq) = I0(k, h̄ω)
α(h̄ωq)

h̄ωq
, (5)

where k is the momentum of the detected electron, and q that
of the plasmon. The “no-loss” core-peak cross section is [11]

I0(k, h̄ω) = 4π2αFS
h̄

m2ω
| 〈φ̃k|�|c〉 |2

× exp

[
−

∫ +∞

0

α(ε)

ε
dε

]
. (6)

The term before the multiplication sign is the usual core-level
cross section which is computed by standard MS codes such
as MsSpec [12,13]. αFS is the usual fine-structure constant.
The last term results from an overlap matrix element and is
often neglected.

Within the Hedin-Fujikawa formalism, the loss function
α(ε)/ε can be expressed as

α(ε)

ε
=

∑
q

∣∣∣∣
∫

fc(r)V q(r)dr

∣∣∣∣
2

δ(ε − h̄ωq), (7)

where fc(r) is a well-defined core-state related function and
V q(r) is the fluctuation potential corresponding to the excita-
tion of a plasmon of energy h̄ωq. So, for quantitative modeling
of plasmon features in spectroscopies it is imperative to have a
good fluctuation potential as it is the only unknown in Eq. (7).
For V q(r) both Hedin and Fujikawa have used the analytical
expressions derived either by Inglesfield [14] or by Bechst-
edt [15,16]. As already described in the introductory section,
these two fluctuation potentials have strong limitations due to
the fact that (i) they have been derived for metals only, and (ii)
they are surface related.

C. Fluctuation potentials

The fluctuation potential describes the coupling between
the electron and the bosons. It is not the purpose of this article
to go into the details of the analytical derivation of the ones
that can be found in the literature. From Eq. (2), we see that it
can be factorized as

V q(r) = V q eiq·r. (8)

The different models of analytical fluctuation potentials
available in the literature have been obtained within linear
response theory. In addition, in the case of Inglesfield and
Bechstedt, the choice of a semi-infinite electron gas implies
that the exponential in (8) reduces essentially to the form
exp[q‖z]. In the following, ω(q) is the plasmon dispersion,
and ωp is the plasmon (threshold) frequency, which can be
obtained from the constant density n̄ of the electron gas.
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1. Plasmon pole

The plasmon pole fluctuation potential was originally de-
rived by Lundqvist [19]. Its value is

V q(z) =V q
PP eiq·r,

V q
PP =

√
VC (q)

ω2
p

ω(q)
1

2V ,

where V q
PP is the electron plasmon coupling constant and V is

the system volume. For the surface case, we replace the 3D
Fourier transformation of the bare Coulomb potential VC (q)
by the 2D transformation and take into account that q is
parallel to the surface. It is easy to verify that the application
of Eq. (2) to the plasmon pole dielectric function allows one
to recover Lundqvist’s result.

2. Inglesfield

Inglesfield introduced a more realistic analytical potential,
using the fact that the bulk modes in a semi-infinite system
are standing waves, i.e., phase-shifted cosines modified at the
surface [26]. The Inglesfield bulk plasmon potential is given
as

V q(z) = V q
IN[cos(−qzz + φq) − eq‖z cos φq]θ (z), inside,

= 0, outside,
(9)

where

V q
IN =

√
ω2

p

ω(q)

1

V
VC (q),

φq = tan−1

(
q‖
qz

)
. (10)

Similarly, the Inglesfield surface plasmon potential is given
as

V q(z) = V q
IN eq‖z,

V q
IN =

√
V 2D

C

ωp

A
√

8
. (11)

A is the area of the surface, with the Coulomb potential Fourier
transforms being

VC = V 2D
C = e2

2ε0

√
q2 + k2

s

, (12)

where ks is a screening momentum.

3. Bechstedt

Bechstedt and coworkers derived an expression for the
screened potential W . It was recast in terms of the fluctuation
potential by Hedin and coworkers [15]:

V q(z) = Nb [eq‖zθ (z) + {(2 + C1 + C3) cos(qzz)

−C2 sin(qzz) − (1 + C1)eq‖z

− C3 exp(
√

ωp + ω(q) + q2
‖z)} θ (−z)], (13)

FIG. 1. Radial variations of the standard analytical fluctuation
potentials. Red: Plasmon pole (PP); black: Inglesfield (ING); green:
Beschstedt (BS).

where the coefficients are given by

C1 = ω2
p

ω(q)2 − ω2
p

,

C2 = − q‖ω2
p

2ω(q)[ω(q) − ωp]qz
,

C3 = − q‖ω2
p

2ω(q)[ω(q) + ωp]qz

√
ωp + ω(q) + q2

‖
. (14)

In the surface case,

V q(z) = Ns[e
−q‖zθ (z) + a(q‖, z, ω)θ (−z)]. (15)

a(q‖, z, ω) is related to the bulk dielectric function through
[16]

a(q‖, z, ω) = 2q‖
π

∫ ∞

0

cos(qzz)

q2ε(q, ω)
dqz, (16)

where ε(q, ω) can be computed within the simple plasmon
pole model.

These three potentials are the standard analytical fluc-
tuation potentials available in the literature. Their space
variations are represented in Fig. 1, for the aluminum case.
However, due to the fact that they are surface related (and
derived for metals), they cannot be used to describe spectra
derived for reduced-symmetry systems such as quantum dots,
quantum wells, graphene and other 2D materials, Dirac ma-
terials, etc. In addition, they are not suited to high-energy
spectroscopies such as HAXPES where the surface can be
safely ignored.

In order to overcome the limitations of these potentials, we
will go back to Hedin’s definition of the fluctuation potential
[Eq. (2)], which expresses this potential as a function of the
dielectric function. This will allow us a much more flexible
approach where the true dimensionality and structure of the
material can be properly taken into account.
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FIG. 2. Real (above) and imaginary (below) part of dielectric function ε(q, ω) for (left) plasmon pole, (center) RPA, (right) RPA + UTI1.
UTI1 incorporates the Utsumi-Ichimaru static local field corrections. The dashed line is the RPA analytical approximate dispersion curve
computed up to q4. It serves as a guideline to the eyes. The exact plasmon dispersion for a given model corresponds to the upper white band.
The space between the ω+ (dotted line) and ω− (dash-dotted line) parabolas is the so-called Landau region where electron-hole pairs are
excited.

D. Dielectric function: General background

The dielectric function of a system describes the response
of this system to an external perturbation. It is determined
by the properties of the system and its interaction with the
perturbing object. Several related quantities can be found in
the literature, together with their relationship with various
spectroscopies. For instance, it is well known that the cross
section of the EELS is related to the loss function. Therefore,
in the following subsection, we will introduce the different
quantities of interest for spectroscopies and their relation to
the dielectric function.

We start by decomposing the dielectric function into its real
and imaginary parts,

ε(q, ω) = ε1(q, ω) + iε2(q, ω). (17)

Then, the loss function L(q, ω) is related to the dielectric
function of the solid through

L(q, ω) = Im

[ −1

ε(q, ω)

]
= ε2(q, ω)

| ε(q, ω) |2 . (18)

Similarly, in the case of 3D systems at T = 0, the dynamical
structure factor can be expressed as [27]

S(q, ω) = h̄

π

1

n̄

1

VC (q)
Im

[ −1

ε(q, ω)

]
. (19)

As before, VC (q) is the Fourier transform of the Coulomb
potential and n̄ the constant electron density. It describes the
spectrum of excitations in the system as a function of the
momentum transfer q and the energy transfer.

Likewise, the susceptibility, or density-density response
function, can be defined as

χ (q, ω) = 1

VC (q)

[
1

ε(q, ω)
− 1

]
. (20)

With these tools, we can access many different ways to
model the dielectric function, and compute cross sections.

The simplest case: Plasmon pole

The plasmon pole dielectric function describes the re-
sponse of the system entirely in terms of collective modes.
The dielectric function is just the analytic continuation of a
simple pole and is given by [28]

ε(q, ω) = 1 − ω2
p

ω2 + ω2
p − ω(q)2

. (21)

Here, ω(q) is the plasmon dispersion and ωp the plasmon
frequency. The real part and imaginary part of ε(q, ω) are
represented in Fig. 2 for the case of aluminum.

The plasmon dispersion band corresponds to the upper
band of Re[ε(q, ω)] = 0, in white on the figures.

III. RPA AND BEYOND

The plasmon pole approximation’s main drawback, as
can be seen from the left-hand part of Fig. 2, is that it
does not incorporate any damping mechanism. Therefore, we
have a plasmon [the upper white band in the real part of
ε(q, ω)] which, once created, never decays. This is clearly not
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physical. Historically, the first expression of the dielectric
function to include a damping mechanism is the random phase
approximation (RPA) originally derived by Lindhard [29].
This approximation is based on the description of the delo-
calized electron system as a homogeneous and noninteracting
electron gas. The real and imaginary parts of the RPA dielec-
tric function are represented in the middle figure of Fig. 2.
The region comprised between the two parabolas ω+ and ω−
is the region where excitation of single electron-hole pairs is
allowed. It is called the Landau region. We see clearly now
that we have damping into this region. Therefore, this damp-
ing comes from the decay of the plasmon into an electron-hole
pair. There is however no damping mechanism built-in outside
the Landau region, which means that there, the plasmon will
“live” forever. In addition, being built on the assumption that
the electron gas is noninteracting, the RPA does not allow for
correlation effects.

Correlation effects can be introduced into the RPA through
the so-called local field corrections (LFCs) G(q, ω). These
corrections are related to the exchange and correlation term of
density functional theory (DFT). For a given correction term,
the correlation-augmented dielectric function can be written
as

ε(q, ω) = VC (q)RPA(q, ω)

1 + VC (q)G(q, ω)RPA(q, ω)
, (22)

where G(q, ω) is the dynamical local field correction. The
RPA dielectric function is given by

εRPA(q, ω) = 1 − VC (q)RPA(q, ω), (23)

where RPA(q, ω) is the RPA polarization.
Very few models of dynamical local field corrections exist

in the literature, while a lot of attention has been devoted to
static corrections G(q). Therefore, we will restrict ourselves
here to the latter.

In order to investigate the effect of such corrections on the
behavior of the dielectric function, we consider here three dif-
ferent types of static corrections, the Hubbard model (HUBB),
which takes only into account the exchange effect, the Pathak-
Vashista correction (PVHF) [20], and the Utsumi-Ichimaru
(UTI1) one [30]. They can be expressed respectively as

G(q)HUBB = 1

2

x2

1 + x2
,

G(q)PVHF = 1

ω2
p

J (q),

G(q)UTI1 = 3(4 − x2)(28 + 5x2)

16x
× ln

∣∣∣∣2 + q

2 − q

∣∣∣∣, (24)

where we have used the notation x = q/kF . Here, J (q) is the
Kugler function [31]

J (q) = e2

mπ

∫ +∞

0
k2[S(k) − 1]J (k, q)dk, (25)

where J (k, q) is given by

J (k, q) = 5

6
− k2

2q2
+ q

4k

(
k2

q2
− 1

)2

ln

∣∣∣∣k + q

k − q

∣∣∣∣. (26)

FIG. 3. Comparison of collective excitation dispersion lines for
RPA and some RPA + local field corrections. The plasmon disper-
sion corresponds to the upper band. We note very few differences
between the dispersion bands.

S(q) is the static structure factor. Here, we approximate it by
its Hartree-Fock value

SHF(q) = 3

4

q

kF
− 1

16

(
q

kF

)3

, for q < 2kF ,

= 1, for q > 2kF . (27)

The right-hand plots of Fig. 2 correspond to the real part
(up) and imaginary part (down) of the UTI1-enhanced RPA
dielectric function. We see clearly a change in the disper-
sion of the collective excitations (white band), with respect
to the RPA case. The comparison between this dispersion is
even clearer in Fig. 3 where we give a 2D representation of
the collective excitation bands for the RPA, RPA + Hubbard,
and RPA + Pathak − Vashista static local field corrections.
Nevertheless, even if we now incorporate correlation effects
into the dielectric function, we see clearly that, despite some
minor changes in the imaginary part of the dielectric function
(see Fig. 2), we are still unable to properly describe plasmon
damping outside the Landau regime. In principle, we could go
to dynamic LFCs, but in the following, we will rather explore
completely other ways to describe the dielectric function with
built-in damping.

IV. DAMPING-BASED DIELECTRIC FUNCTIONS

RPA alone has a certain number of limitations: (i) it fails
to conserve the number of particles, (ii) it does not contain
correlation effects (they have to be added externally through
local field corrections), and (iii) it does not incorporate plas-
mon damping outside the Landau regime. In order to cure
(i), Mermin [32] extended the Lindhard dielectric function
in the relaxation-time approximation, where essentially the
collisions relax the electronic density matrix not to its uniform
equilibrium value, but to a local equilibrium density matrix.
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FIG. 4. Real and imaginary part of the (left) Mermin dielectric function with a relaxation time of 0.5 fs, (right) Hu-O’Connell dielectric
function with a diffusion coefficient D = 2.9 × 10−5 m2 s−1. Both imaginary parts exhibit damping outside the Landau region.

The Mermin [33] dielectric function thus can be written as

ε(q, ω) = 1 +
(
1 + i

ωτ

)
[ε0(q, ω + i/τ ) − 1]

1 + i
ωτ

[
ε0(q,ω+i/τ )−1

ε0(q,0)−1

] , (28)

where ε0(q, ω) is the RPA dielectric function and ω̄ = ω +
i/τ is a complex frequency incorporating damping through
the relaxation time τ . Mermin’s interest here is in the long-
wavelength limit behavior of the electron gas where the focus
is on obtaining a modified Lindhard dielectric function which
reduces to the correct classical behavior in the q → 0 limit.

Following the same idea, Hu and O’Connell [34] gener-
alized the Lindhard dielectric function to include fluctuation
effects arising from electron-electron and electron-impurity
interactions. They also studied Friedel oscillations as an ex-
ample of the application of their generalized version of the
Lindhard function and observed that these oscillations are
damped due to the inclusion of fluctuation effects. Due to
the complexity of the Hu-O’Connell equations, which are
expressed in terms of the diffusion coefficient D, we do not
reproduce them here but refer instead to their article [34].
As displayed in Fig. 4, we now observe a damping in the
imaginary part of both the Mermin and the Hu-O’Connell
dielectric function in the non-Landau region. This damping
can be regarded as the signature of a built-in lifetime for
the plasmon. However, being based upon the standard RPA
model, they lack a proper description of correlations.

These two approaches are encouraging, as we do need a
proper damping of the plasmon in order to correctly describe
the relaxation of the system. This damping is clearly absent in

the standard plasmon pole and RPA methods, even when the
latter is augmented with various static local field corrections
in order to incorporate electron-electron correlations.

V. DIELECTRIC FUNCTION: ALTERNATIVE APPROACH

An alternative family of dielectric functions can be ob-
tained through a reconstruction from the first few moments.
Two independent approaches can be found in the literature, the
Nevanlinna approach [35] and the memory function approach
[36]. The main advantage of these two approaches is that
conservation of the number of particles and correlation are
built-in. We note that for larger values of ω, Im[ε−1(q, ω)]
tends quickly to zero, so that we have the expansion

ε−1(q, ω) = 1 +
+∞∑
n=1

〈ω2n−1〉L

ω2n
. (29)

As mentioned in the introduction, it is well known that the
RPA dielectric function does not satisfy the compressibility
sum rule and the frequency moment sum rules [37]. This
realization is the starting point of the two above-mentioned
approaches which we outline now.

A. The Nevanlinna function method

The Nevanlinna approach is based on the moments of the
loss function. It has been developed essentially in the context
of strongly coupled plasmas. The standard loss function de-
scribed in Eq. (18) is related to the Nevanlinna loss function
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by

L(q, ω) = L(q, ω)

ω
. (30)

The corresponding moments are defined as [35]

Cn = 1

π

∫ +∞

−∞
ωn−1 Im

[ −1

ε(q, ω)

]
dω = 1

π
〈ωn−1〉L. (31)

A dimensional analysis shows that the moment C2(q) has
the dimension of a squared frequency, and likewise for every
ratio Cn+2(q)/Cn(q). Therefore, we introduce the notation

ω2
n(q) = C2n(q)

C2n−2(q)
. (32)

The ωn(q) have the dimension of a frequency and are the char-
acteristic frequencies in the Nevanlinna function approach.
The same characteristic frequencies will appear in the mem-
ory function method. The connection between the different
types of moments can be made using, for the T = 0 K case,

L(q, ω) = Im

[ −1

ε(q, ω)

]
= VC (q)

π n̄

h̄
S(q, ω)

= −VC (q) Im[χ (q, ω)], (33)

where we find

VC (q)
π n̄

h̄
= π

2

ω2
p

ωq
, (34)

implying

〈ωn〉S = 2

π

ωq

ω2
p

〈ωn〉 = − h̄

n̄π
〈ωn〉χ, (35)

with n̄ being the number density. Here, ωq = h̄q2/2m, and
should not be mixed up with the plasmon dispersion ω(q).
Now, the frequency moments of the loss function can be
written as [38]

〈ω2n−1〉L = 2
∫ +∞

0
ω2n−1 Im

[ −1

ε(q, ω)

]
dω. (36)

So, then we have

〈ω−1〉L = π

[
1 − 1

ε(q)

]
, compressibility sum rule,

〈ω1〉L = π ω2
p, f -sum rule,

〈ω3〉L = π ω2
p

[
ω2

q + 4 ωq
〈t〉
h̄

+ ω2
p + J (q)

]
. (37)

J (q) is the Kugler function defined in Eq. (25) and 〈t〉 is the
average kinetic energy per electron.

n = 1 ( f -sum rule) ensures the conservation of the number
of particles and n = 2 ensures a proper account of two-body
correlation effects. The structure factor S(q, ω) for a nonzero
temperature system can be obtained from the loss function
through the fluctuation-dissipation theorem

Im

[ −1

ε(q, ω)

]
= π n̄

h̄
VC (q)

[
1 − exp

(
− h̄ω

kBT

)]
S(q, ω).

(38)

For low energies, or large temperatures, this can be approxi-
mated by

Im

[ −1

ε(q, ω)

]
≈ π n̄

kBT
VC (q) ω S(q, ω). (39)

The Nevanlinna method is mathematically involved. It
relies on the mathematical solution of the so-called noncanon-
ical solution of the Hamburger moment problem. It is not
the purpose of the present article to go into the details of
the method. We refer the readers interested by this approach
to the review article by Tkachenko [39]. The main point is
that it involves a reconstruction of the dielectric function in
terms of characteristic frequencies ωn that are functions of
the first moments of the loss function. Building up on the
mathematical theorems, one arrives at the equation

ε−1(q, ω̄) = 1 + ω2
p[ω̄ + Q2(q, ω̄)]

ω̄
(
ω̄2 − ω2

2

) + Q2(q, ω̄)
(
ω̄2 − ω2

1

)
× Im[ω̄] � 0 (40)

for the 3-moment expression. Here, ωp is the plasmon fre-
quency, Q2(q, ω̄) is the unknown Nevanlinna function, and ω̄

is the complex frequency whose imaginary part represents the
plasmon damping. We note that Q2(q, ω̄) has the dimension
of a frequency.

In an electron liquid, the Nevanlinna function plays the
role of the dynamical local field correction G(q, ω). More
precisely, we have [40]

G(q, ω̄) = 1 + 1

[εRPA(q, ω̄) − 1]
+ ω̄2

ω2
p

− ω̄ω2
2 + ω2

1 Q2(q, ω̄)

ω2
p[ω̄ + Q2(q, ω̄)]

. (41)

Nevanlinna functions must fulfill a number of mathematical
properties including having a Riesz-Herglotz representation
[39,41]. Therefore, finding relevant functions is a complex
mathematical problem that has led to several papers in the
literature [39,40,42,43]. Here, we make the choice [43]

Q2(q, ω̄) = i
π

2
ε(q)[ε(q) − 1](qa0)ωq

[
ω2

2

ω2
1

− 1

]
, (42)

which is well suited to our needs. a0 is the Bohr radius and we
choose the RPA value for the static dielectric function ε(q).

From Fig. 5, we observe that the correlations are properly
taken into account (there is a dramatic change into the plas-
mon dispersion with respect to RPA-based methods) and in
the imaginary part of the Nevanlinna dielectric function we
see some damping of the plasmon outside the Landau region,
especially along the plasmon dispersion line.

B. The memory function method

The derivation of the memory function is quite involved
so that we describe here only the different steps necessary in
order to arrive to the final result. For a detailed derivation,
we refer the reader to some review articles [44–46]. This
approach was pioneered by Zwanzig [47] and Mori [48] who
built the memory function framework upon Kubo’s nonequi-
librium statistical physics. The starting point is to divide the
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FIG. 5. Real and imaginary part of the 3-moment Nevanlinna
dielectric function within the static approximation STA3. The real
part shows a plasmon dispersion different compared to RPA-based
methods and some damping is observed along the dispersion band
outside the Landau region.

variables’ space into two subspaces, that of slowly moving
ones, the so-called conservative quantities, that will affect
the macroscopic experimental signal, and that of fast-moving
ones (nonconservative), which are not expected to impact the
experimental signals. The memory function method includes
the effect of the fast variables into the dynamics of the slow
variables. In order to do this, we work with time-correlation
functions or response functions. The connection to the di-
electric function is made through the realization that (i) the
dynamical structure factor S(q, ω) is the time-Fourier trans-
form of the classical density autocorrelation function, and (ii)
the density-density response function χnn(q, ω) is related to
the dielectric function [see Eq. (20)].

The next step is to show that within this variable space
partitioning, autocorrelation functions satisfy an integro-
differential generalized Langevin equation (GLE)

dCA(t )

dt
= −

∫ t

0
KA(t − s)CA(s)ds with CA(0) = 1, (43)

where CA(t ) is the autocorrelation function of the variable A
of interest, and the unknown function KA(t ) is the so-called
memory function which keeps track of what happened to the
system before the present time t . The response function χAA(t )
is related to the autocorrelation function through

χAA(t ) = dCA(t )

dt
(A|A),

where (A, B) is the so-called Kubo scalar product.
The usual Langevin equation of Brownian motion corre-

sponds to the Markovian choice KA(t ) = 1/τ δ(t ) where at t ,
the dynamics of the system does not depend on the previous
states of the system. The integral term containing KA(t ) de-
scribes the influence of the fast-moving variables, presumably
out of reach to the experiment, on the (conservative) variable
A of interest.

It can be demonstrated that the memory function is also an
autocorrelation function, and as such it satisfies a hierarchy of
similar GLE

dKn(t )

dt
= −

∫ t

0
Kn+1(t − s)Kn(s)ds, (44)

where we use the notation CA(t ) = K0(t ) and KA(t ) = K1(t ).
The next step is to take the Laplace transform of the

integro-differential GLE in order to change it into an eas-
ily solvable equation. This leads to the continued fraction
expansion

C̄A(z) = K0(0)

z + K1(0)
z+ K2 (0)

z+ K3 (0)
. . .

(45)

Truncating to order 3 (i.e., expressing the result in terms of 3
moments) and going to the response function representation
gives

χ̄
(3)
A (z) = − �2

0�
2
1[z + K̄3(z)]

z3 + z2K̄3(z) + z
(
�2

1 + �2
2

) + �2
1K̄3(z)

, (46)

where the �n,which have the dimension of a frequency, are
functions of the moments 〈ω2n−1〉χ and Kn(0) = �2

n. Here,
K̄3(z) is the Laplace transform of the memory function K3(t ).

As the moments for n = 0, 1, 2 are well known (and to
some extent, making use of some approximations, n = 3), the
only unknown is the memory function K̄3(z). Then, we have,
taking A as the (constant) particle density n̄,

ε−1(q, ω) = 1 + ω2
p[ω + iK̄3(−iω)]

ω
[
ω2 − ω2

2

] + iK̄3(−iω)
[
ω2 − ω2

1

] . (47)

We note that under the exchange Q2(ω) � iK̄3(−iω), this
equation transforms into the Nevanlinna equation (40). The
difference is that we have now a physically motivated function
K3 for which many approximations exist and that is related to
the relaxation of the system, and hence in the various decay
mechanisms, which could, in principle, be studied experimen-
tally.

By definition, through the use of 〈ω1〉χ and 〈ω3〉χ , Eq. (47)
contains the conservation of the number of particles and a
proper treatment of pair correlation effects.

If we replace the autocorrelation function A in Eq. (45) by
a vector A containing the density, the momentum, and the
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FIG. 6. The Cole-Cole (COCO) memory function KCC(t ) in the
time domain, for α = 0.5 and τ = 0.5 fs.

energy, the GLE transforms into a matrix equation [49,50].
Applying the same approach, we can derive an expression
of the dielectric function that conserves the three previous
quantities. This makes the memory function/memory matrix
approach a very powerful and flexible tool to build up a
physically meaningful dielectric function. Moreover, in case
of need, two or more memory functions describing relaxations
on different timescales can be used within Götze’s mode-
coupling formalism [51–53]. This allows one to incorporate
different decay channels into the modeling of the dielectric
function.

Here we consider the Cole-Cole (COCO) type memory
function expression [54] for the complex dielectric function
describing the relaxation process occurring in the system. This
classic empirical model can be expressed as [54]

KCC(t ) = τ 2 1

�(α − 1)

(
t

τ

)α−2

(48)

with the power-law exponent α being 0 < α � 1. Here, � is
the Gamma function. In the following, we choose α = 0.5
and a relaxation time of τ = 0.5 fs, to be consistent with the
results of the Mermin dielectric function.

Figure 6 represents the behavior of the memory function in
the Cole-Cole approximation as a function of time. The cor-
responding dielectric function is represented in Fig. 7. Here,
we observe that the imaginary part of the dielectric function
also shows some damping of the plasmon outside the Landau
region.

VI. DISCUSSION

We have made explicit in the previous sections different
ways to analytically compute model dielectric functions, start-
ing from the simple plasmon pole and RPA, and ending up
with more involved approaches involving a reconstruction in
terms of the first moments. We recall that our aim in this work
is to find a simple (if possible) and flexible method that would
describe plasmon dispersion as accurately as possible. Indeed,
our ultimate goal being to calculate plasmon fluctuation po-
tentials in the most general possible case, we need for this to

FIG. 7. Real and imaginary part of the 3-moment memory func-
tion dielectric function within the Cole-Cole approximation (COCO)
for a value of τ = 0.5 fs. Damping is observed all along the disper-
sion band outside the Landau region.

follow Hedin’s definition (2),

V q(r) =
∣∣∣∣ VC (q)

∂ε(q,ω)
∂ω

∣∣
ω=ω(q)

∣∣∣∣
1/2

eiq·r.

For low values of q, the fluctuation potential will be
dominated by the Coulomb part. But when q increases (in
photoemission, for instance, we will have to integrate over q
as the plasmon momentum is not detected), the features of
the first derivative of the dielectric function, taken along the
plasmon dispersion, will become more and more important.
From this point of view, we see that two features of the
dielectric function could become important: (1) the shape of
the plasmon dispersion and (2) a correct description of the
plasmon damping. The former corresponds to the upper band
of the zeros of the real part of ε(q, ω) while the latter is
embedded into the imaginary part.
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FIG. 8. Comparison of the collective excitations dispersion
bands for different modeling of the dielectric function. The plasmon
dispersion corresponds to the upper band. RPA1, UTIC, and MER2
correspond respectively to RPA, RPA + Utsumi − Ichimaru LFC
corrections, and Mermin with τ = 0.5 fs. NEVA and MEMO cor-
respond to the Nevanlinna approach with the STA3 function, and the
memory function method with the KCC(t ) function with τ = 0.5 fs.

All the calculations were done for a value of the dimension-
less Wigner-Seitz radius rs/a0 = 2.079, which corresponds to
aluminum (rs = 1.01 Å).

From Fig. 2, we see that the plasmon pole does not exhibit
any damping and that the plasmon never decays. This means
that in principle, we should have to integrate q to infinity.
For RPA and correlation-augmented RPA, the integration over
q will be limited to a qmax above which the plasmon com-
pletely decays into an electron-hole pair. This qmax is very
close to the intersection of the plasmon dispersion with the
Landau region, which means that in practice no damping
will be taken into account as clear from the imaginary-part
plots.

The next types of dielectric functions we have consid-
ered are the number of electron-conserving Mermin and
Hu-O’Connell ones (Fig. 4). In the former, we used a realistic
value of the relaxation time τ = 0.5 fs. We note that this value
is about one order of magnitude larger that the approxima-
tion often made in the literature τ ≈ 1/ωp which gives here
τ ≈ 0.04 fs. This relaxation time approach involves the use
of a complex frequency ω̄ = ω + i/τ which automatically in-
troduces damping outside the Landau continuum. The related
diffusion coefficient method (Hu-O’Connell) also gives such
a damping. From this point of view, they are very appealing
methods. Unfortunately, being based on the RPA, they lack
a proper description of correlation effects. In the case of
Mermin’s approach (see Fig. 8), this could be remedied by
replacing in Eq. (28) the RPA ε0(q, ω + i/τ ) by a correlation-
augmented one such as RPA + UTI1.

The final approach we have documented is that based on
the 3-moment reconstruction of the dielectric function. This
method makes use of the moments 〈ω−1〉, 〈ω1〉, and 〈ω3〉

of the loss function. Here, 〈ω1〉 ensures the conservation of
the number of electrons while 〈ω3〉 incorporates a proper
treatment of pair correlations. As can be seen from Fig. 5 and
Fig. 7, the more exact treatment of the correlation changes
considerably the shape of the plasmon dispersion with re-
spect to the RPA one (dotted line) or even with respect to
RPA + UTI1 (Fig. 2). In addition, this type of approach does
give already some damping of the plasmon outside the Landau
regime. But it is noteworthy that both calculations have been
done without explicit damping, i.e., using a real frequency ω

in Eqs. (40) and (47), in contrast to the Mermin calculation
that was incorporating an explicit damping in the frequency.
Therefore, these two methods have even more flexibility than
we have used so far.

A quantity related to the dielectric function that can be
measured experimentally is the dynamical structure factor
S(q, ω). Lemell et al. [55] for instance present in their re-
sults for the dynamical structure factor derived from optical
data of Mg. There, we see clearly the plasmon, starting from
q = 0. In Fig. 9, we present the structure factors for alu-
minum computed from our dielectric function using the (a)
RPA, (b) Mermin, (c) Nevanlinna-STA3, and (d) memory
function–COCO approaches. These plots show that RPA and
RPA-based dielectric functions should be ruled out as they are
not able to describe properly the plasmon for low-q values,
while the other methods give a much better representation that
does look like the experimental results of Lemell et al. [55].

Now we come to the more general discussion of the choice
of a suitable dielectric function model. We have not explored
all the possibilities of the models, but we can already out-
line some important points and perspectives. The Mermin
approach is limited by being RPA based, although it could
be in principle expanded through the use of LFC. In addition,
following the scheme devised by Götze [56] for the computa-
tion of the susceptibility, it can be demonstrated that Mermin’s
dielectric function is a particular case of Götze’s scheme when
neglecting correlations and using the Markovian form for the
memory function K (ω) = 1/τ .

Nevanlinna functions are hard to find, but as mentioned
in the memory function subsection, they are mathematically
related to the memory functions through Q2(ω) � iK̄3(−iω).
Moreover, following Eq. (41), we see that Nevanlinna func-
tions and hence memory functions are strongly related to
dynamical LFCs.

In practice, these considerations mean that most, if not
all, the model dielectric functions can be viewed as particular
cases of the memory function approach. Another advantage of
this method is that it is highly flexible and customizable. We
have shown here only the basic features, limiting ourselves
to a simple memory function and to a scalar generalized
Langevin equation, using the constant density n̄ as the only
variable of interest. But, as mentioned previously, by using
a vector composed of (1) the number density nk(t ), (2) the
longitudinal current density j�k(t ), and (3) the energy density
ek(t ), we can build a matrix GLE containing a 3 × 3 memory
matrix [49,50]. Following the same scheme as presented here,
we can obtain the expression of a dielectric function that has
embedded (i) the conservation of the number of particles, (ii)
the conservation of the momentum, (iii) the conservation of
the energy, and (iv) pair correlations. Moreover, we believe

195424-11



ADITI MANDAL et al. PHYSICAL REVIEW B 105, 195424 (2022)

FIG. 9. Dynamic structure factors S(q, ω) of aluminum for (a) RPA, (b) Mermin, (c) Nevanlinna (STA3), and (d) memory function (COCO)
methods. We see clearly here that damping outside the Landau region is necessary to visualize the plasmon.

that the Atwal-Ashcroft approach [19] will be found to be a
particular case of the 3 × 3 memory matrix method, as the
Mermin method is a particular case of the memory function
method.

If need be, this method can be further augmented by build-
ing on 4 moments, as it is known that 〈ω5〉 incorporates
three-body correlations [21]. The exact value of this term is
very complicated, but reasonable approximations exist that
allow one to compute it. Work is in progress to incorporate
it into the MsSpec-DFM computer code.

The memory function approach we have used here relies
on a single memory function, which means that it includes
the relaxation of the system on a single timescale. In clas-
sical systems, such as the relaxation of a fluid, molecular
dynamics seems to favor two-relaxation-time laws [57]. The
memory matrix method we have outlined in the previous
paragraph makes use of several memory functions. But even
in the simpler method discussed here, we can accommodate
several relaxation processes operating on different timescales,
which in our case would describe different decay channels of
the plasmon. This is the so-called mode-coupling framework
[51–53] developed by Götze.

VII. CONCLUSION

In this work, we have tested different electron gas di-
electric functions in order to ultimately model fluctuation
potentials. These fluctuation potentials are the key quantity

in the multiple scattering description of plasmon features in
spectroscopies such as photoemission or EELS.

We have presented three families of dielectric func-
tions, RPA-based, damped RPA-based, and 3-moment recon-
structed. We have shown that the simple RPA-based ones
are not suited to our needs. Furthermore, as the damped
type of dielectric functions can be shown to be a particular
case of Götze’s memory function scheme, we have come
to the conclusion that the memory function approach, to
which the Nevanlinna one is strongly related, has all the
features needed for a precise and accurate modeling. In
addition, it can be improved by passing to the matrix ap-
proach and by incorporating the different plasmon decay
channels and their timescale through the mode-coupling
framework.

This approach is still based on the homogeneous elec-
tron gas model. Therefore, no band structure and no crystal
structure is involved. We are currently investigating the influ-
ence of the band structure by performing ab initio calculations
of ε(q, ω) with the Questaal code [17,18]. This will al-
low us to benchmark our code and assess its limits when
dealing with materials with complex band structures. Pre-
liminary results point toward a minor influence, at least in
the case of aluminum which has a simple band structure.
Another line of research which we are currently pursuing
in order to further improve our description is to couple this
electron dielectric function to a phonon dielectric function.
We are hopeful that all of these improvements will lead
to a fast, efficient, and flexible approach to the modeling
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of the dielectric function necessary to incorporate plas-
mon features into the multiple scattering description of
spectroscopies.

The MsSpec-DFM code, built during this work, will
be published soon as a separate module of the MsSpec
code [12,13]. In addition to 3D dielectric functions,
as exposed here, it will also contain the modeling of

other dimensionality, including graphene-type and multilayer
structures.
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