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We examine the full static nonlinear optical response of uniaxially strained transition metal dichalcogenide
monolayers doped with a finite carrier density in the conduction band, in the presence of disorder. We find that
the customary shift current is suppressed, yet we identify a strong, valley-dependent nonreciprocal response,
which we term a unidirectional valley-contrasting photocurrent (UVCP). This DC current originates from the
combined effect of strain and Kramers symmetry breaking by trigonal warping, while the contributions due to
individual valleys can be separated by introducing an energy offset between them by means of a magnetization.
This latter fact enables one to monitor intervalley transitions. The UVCP is proportional to the mobility and
is enhanced by the excitonic Coulomb interaction and intervalley scattering, as well as by a top gate bias. We

discuss detection strategies in state-of-the-art experiments.
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I. INTRODUCTION

The study of nonlinear electromagnetic responses [1,2] in
solids has witnessed a strong resurgence recently thanks to
the rise of topological materials [3—7]. Nonlinear responses
typically require broken inversion symmetry, a condition most
topological materials satisfy. In addition to spurring basic
discoveries such as nonreciprocal currents [8—12] and Hall
effects [13—17] in time-reversal invariant systems, nonlinear
responses probe phenomena that are inaccessible in linear re-
sponse, such as crystallographic and orientation information,
and details of the band structure and grain boundaries [18,19].
Impressive experimental developments include generation of
terahertz harmonics up to the seventh order in graphene at
room temperature [20-24].

The second-order response to an AC electric field contains
a static, DC part responsible for rectification, shift and injec-
tion currents, and the resonant photovoltaic effect [2,8,25-54].
Such DC phenomena are intimately connected to topology
and underlie photovoltaic devices [55-57]. For example, one
mechanism is associated with a shift in the electron wave
packet center of mass during light-induced transitions, which
is determined by the derivative of the momentum-space phase
of the transition matrix element and by the Berry connection.
On the other hand, the injection mechanism comes from the
fact that electron and hole have different velocities and that
the coherent k and —k excitations are unbalanced, resulting
in a k and —k asymmetry in the steady-state population and
a net current. Recently a large longitudinal photocurrent peak
originating from topological band crossings was identified by
terahertz emission spectroscopy with tunable photon energy in
the chiral topological semimetal CoSi [58]. This is believed to
indicate a strong injection current [59,60] in materials with-
out inversion symmetry. Moreover, a magnetic shift current
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[61,62] can be finite in a magnetic parity-violating system,
and diminishes when the system is nonmagnetic [63]. Re-
cent studies of such second-order magneto-optical effects [61]
have identified magnetic shift and injection currents as part of
the rectification current.

Yet the simple picture of nonlinear DC response above
has considerable limitations. Firstly, it focuses on intrinsic
contributions while ignoring the kinetic processes of relax-
ation of photoexcited electrons [64]. Secondly, the study of
nonlinear DC phenomena has focused on intrinsic effects
in single-valley topological materials, leaving vital questions
unanswered: what is the dominant response of multivalley
materials, how is it affected by disorder, and what information
can it yield on intervalley processes? Since valleys are time-
reversed partners multivalley systems support interactions
absent for single valleys, where they would break Kramers
degeneracy. Strong warping [65—-68] also breaks particle-hole
symmetry, such that terms dominant in, e.g., topological insu-
lators are suppressed, while novel contributions may arise.

To address these questions, in this work we provide a full
theory of the static nonlinear optical response of monolayer
strained TMDs with broken inversion symmetry, whose devel-
opment has leapfrogged in recent years [68—75]. We take as a
prototype strained MoS, [76-79], known for strong second-
harmonic generation [80,81], though the findings apply to all
TMDs. Monolayer MoS; has two valley minima at K and K’
and the symmetry point group at the K point is C3,. In order to
activate the DC nonlinear optical response one needs to apply
strain, breaking the threefold symmetry [79]. We demonstrate
that the static nonlinear response of the strained material
to circularly polarized light is dominated by a nonrecipro-
cal, unidirectional current due to the interplay of topological
properties—the Berry connection and valence band topology
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FIG. 1. (a) Illustration of a device consisting of gated monolayer
MoS, on top of a magnetic substrate. (b) The lattice structure of
monolayer MoS, as a representative of TMDCs monolayers. There
are three atomic layers, and each atomic layer has a trigonal lattice.
The top and bottom layers are Sulfur (chalcogen) atoms and the inner
layer comprises Molybdenum (metal) atoms. (c) 1BZ structure of
MoS,; in momentum-space.

influenced by trigonal warping—and scattering processes, and
is enhanced by intervalley scattering. We refer to this response
as a unidirectional valley-contrasting photocurrent (UVCP).
The theory incorporates the interband and intervalley optical
transitions in the presence of short-range impurity scattering,
which also couples the valleys. The results show a large
nonlinear response with nontrivial features at optical light
frequencies.

The UVCP is driven by scattering processes between the
two valleys. Two additional factors enhance the effect and its
utility, as shown in Fig. 1. Firstly a bias voltage is employed
to break mirror symmetry and increase the nonlinear DC re-
sponse. Secondly the doped MoS, is placed on a magnetic
substrate, which breaks the valley degeneracy, and this en-
ables one to resolve the contributions of the two individual
valleys. Consequently the effect could provide a method of
monitoring intervalley transitions in transition metal dichalco-
genides.

In connection to the above, as part of this calculation we
examine the intrinsic shift current for MoS, following the
theory reported in Ref. [42]. The extremely small optical
current does not indicate any feature in terms of optical light
frequency (see Appendix, Fig 9). This is not surprising: for
almost nonpolar materials such as transition metal dichalco-
genides (TMDs), phosphorus, and gapped graphene, the shift
is expected to be small. The delocalized states with more mo-
bile charge carriers give a high shift current response whereas
states with less mobile carriers yield a low shift current.
Transition metal dichalcogenide monolayers are nonpolar and
the conduction and valence bands are made effectively by d
orbitals. We stress, however, that our formalism is completely
general and we calculate the fotal second-order DC response
to the applied electric field. Terms leading to the shift current
and any present asymmetries in the Fermi surface are built into
our formalism from the start. Having completed the evaluation
of the full nonlinear DC response, we identify the UVCP term
as the main physical process.

This paper is organized as follows. First we discuss the
low-energy model Hamiltonian describing strained MoS;
monolayer system in Sec. II. The quantum kinetic theory and
density matrix approach generalized for two valleys system
and excitons physics for the MoS, with Keldysh potential
and solving the Bethe-Salpeter equations for density matrix
elements are discussed in Sec. II as well. Our main results are

given in Sec. III and finally we wrap up our discussions in
Sec. IV.

II. MODEL AND THEORY

A low-energy k - p continuum model Hamiltonian around
the K and K’ points, which describes a two-dimensional
strained TMD system is provided by the terms Ho = H; +
H. [79], where
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and trigonal warping H,, contribution is given by
Ho = tiag((k + b1A) - 0 )ou((k + b1A) - 0F),  (2)

where the Pauli matrices o;, = (7,0, 0y) acts on the two com-
ponent wave functions, b,, = %tnm with n; = 0.002, n, =
—5.655, and n3 = 1.633, Ag = —0.11 eV, A = —80 meV,
th=234¢eV,t1 =—-0.14 eV, o« = —-0.01, B =—1.54, D is
a diagonal matrix with elements a;|A|*> and a,|A|?, where
a; = 15.95, a; = —2.2 eV. The pseudovector field for uniax-
ial strain is given by A = (1 — v, 0)e and the elastic potential
Vo = (1 4+ v)el with Poisson ratio v = —0.125 and strain ¢.
Here 7, = =+ is the valley index, s = =+ is the spin index and
the modified band gap is A,,. For the sake of simplicity, the
spin-orbit effect in the conduction band is neglected. We con-
sider a system on top of a ferromagnetic substrate with a finite
perpendicular magnetization. Notice that in the presence of
the magnetization, the interacting Hamiltonian is smo, where
s = % indicates the spin and m is the magnetization. In the
top valence band in valleys, spins are different, therefore, we
have t,mo,. Subsequently, a magnetization is induced by a
proper substrate to break valley degeneracy and the band gap
is modified as A, = A — t,m with A = 1.82 eV. The detail
of the strain and bias voltage on the low-energy Hamiltonian
are provided in Appendix A.

Trigonal warping causes the valence band dispersion to be
strongly anisotropic, unlike that in the conduction band. The
effective-mass approximation restricts our theory to a small
energy range in the vicinity of the band edge, though the large
effective masses ensure its applicability to high excitations.

It is known that uniaxial and shear strain induces a shift
of the band edges from the K points [79], similar to the
strained graphene. Both conduction and valence band edges
shift in phase towards the I" point for compressive ¢ < 0
strain, whereas they move in the opposite direction for tensile
strain. The position of the conduction band minimum and
the valence band maximum are given by —AEPIEYm gpq

a+p+y
—A—“”ngi}y"‘ , respectively, where y = 4mgv?/(A,, — sA).

A. Quantum Kkinetic theory

The quantum kinetic theory based on the density ma-
trix [82-84] successfully describes interband transitions
in the presence of scattering terms. For a system with

195418-2



UNIDIRECTIONAL VALLEY-CONTRASTING ...

PHYSICAL REVIEW B 105, 195418 (2022)

H = Ho + Hg, the single particle density matrix p obeys the
quantum Liouville equation:
d(p)
or + =
where the scattering term J is expressed in the Born ap-
proximation [83] and we assume the correlation function
(UmU)) = nUgs(r —r') with n; is the impurity den-
sity disorder and U is a disorder potential. The interaction
with the time dependent external field is represented by
Hg =eE(t) - r. The scattering term is given by J({p)) =
[ar'lu, [U(t), (p)]] where U(t') = e~"T/"U "/ with time-
evolution operator T = fj(Ho + Hg(t'))dt' including the
electric field term. Usually, Hg(¢") does not contribute to the
scattering term J({p)) if Hy is a single-component Hamilto-
nian and U represents scalar scattering, however, the electric
field contribution is important for spin and pseudospin-
dependent scattering.
To account for the two valleys, we divide the Brillouin zone
into 3 sectors: ) K— A <Kk <K+ A,2)K' —A <k <

<[Ho pl) +J((p >)=—%<[HE,p1>, 3)

J

Ji({ok,)) =

ki esector 1

+ ) AUkigUigr () (pw) +

k) esector 2

Thereis ),

| Esector 12

(kYU (8 )i, U,

K’ + A and 3) intervalley or intermediate region. The density
matrix is accordingly divided into three sectors: (o1), (02)
around K and K’ point and an intermediate, unoccupied region
of large wave vectors which is outside our interest. Here, {p;),
i =1, 2are 2 x 2 matrices in the conduction and valence band
representation, and we are selecting two sectors in k space. All
the dynamics between these sectors, i.e., all the intervalley
dynamics, are contained in the scattering term. intervalley
scattering is quantified by AUj, where we set A = 0.7 and
U02 = ‘L'2 / n;.

We can also divide the scattering term into two parts for
Ji({p)) and J>({p)) such that

O (Mo, pr1) + 50D = — ([ 1),
a |
o) (o, pal) () =~ (He pa]). ()

We can also write J; ({p)) (similarly for J,({p))) [83] as

1 / /
o) / dt' Z Uk Ui, () (o, ) + (oxy ) Uk, (Ui, — Ui, (0 ) Uk, (1) — Ui, (8) (o VUi,

— Uik, (0w )U (1 g, — Uk (/) (o ) Ui, - )

which is the usual both scattering term for one valley, and Zk; esector2 Which represents intervalley scattering.

There is an equivalent term for J>({pk)) with proper momentum dependence. Now both pg, and pg, are 2 x 2 matrices and J;

and J, allow all relevant interband transitions.

Here, two scattering terms will have contributions from Hg, so

J=Jo+JE, (6)

where J is the bare scattering term with e~/#0//i{j ¢/*0'/% in the time integral. The matrix element of J, is then given by

R () =

di'1 Y (iR

kiel

,kl (t )(pk] >ﬂ1”n+(pkl>mm UWI m” (t )Uliﬂkill_ mm <pk >mm U[Zl 'n (t ) ﬂ;l;{n/l, (t/)<pk/] >m’m// l’:/ll/l,(rll

+ Y U ) o)™ "+ o )™ Ul (U =T (oag)™™ U (Yt = Ut () one)" ™ Ul 1,

K,ell

where sum over inner index m’ and m” are taken. In Eq. (7), /
and /1 refer to the sectors 1 and 2, respectively.

To work out Jg, we define g = p — (p) and express the
quantum Liouville equation as

i i

7 (U8l = _E[U’ (p)].
®

In the Born approximation, we can ignore the last two terms

on the left hand side of above equation and what remains

is a leading order in time inhomogeneous linear differential

equation for g which can be integrated yield

d i i
=+ 2[Ho+He. g1+ 21U, 8] -

Jt

o [e.¢]
80 = —% / dt'e” MU, ()l (9)
0

@)

(

which gives the scattering term Jy({p0)) and next term is given
by [82]

B 4 o, 851 = —+1Hr. g0l (10)
Therefore the solution of gg is given by
i [ 2y g
g =g [ e, gl

and the scattering term due to gg is given by

i / / /
(m, KIJE (o)), k) =+ > UG o', K Ige|n, K)

m' K’

— (m, K|ge|m', KYUZ}.  (12)
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Notice that optical intervalley transition in the theory goes be-
yond the Fermi golden rule transition since the Fermi golden
rule does not possess the matrix element for two different
states [85] and its matrix is diagonal, however, in our theory,
off-diagonal elements of the scattering terms defined in Jg, are
nonzero.

The density matrix can be expanded in the powers of the
electric field [84], and thus the quantum kinetic equation at K
point for diagonal f} = (o},) and off-diagonal f,, = (o} ;)
terms can be simplified as

T+ —"” IR = 2 {[He 57]) ~ TiCto),

0

5? 5 20+ 5+ gty
(\['HE» v 1’]|)—Jé/((p>), (13)

where relaxation times are given by Eqs. (A21) and (A22)
and Jy = Jo({p)) — f} /71 [see Eq. (A16)], and equally Jj =
Jo({p)) — f7,/t2, Eq. (A19). The time 7, describes the re-
laxation of an arbitrary initial distribution function to a
nonequilibrium Fermi function, and 1/7, is the damping of
the oscillation of the transition amplitude and hence of the
macroscopic polarization function. In general, 7i—; » could be
a function of the frequency and external fields. The frequency
dependence might affect the nonlinear optics in low-frequency
or intraband process [23]. Since we are interested in the
optical transition, for the sake of simplicity, we assume a
constant T = 7, = 77 and hence the theory is valid when
Er — A, /2 > nh/t where Ef. is the electron-doped Fermi en-
ergy.

In the system studied here the recombination rate is smaller
than the excitation rate. The reasons lie in the fact that first in
noncentrosymmetric crystals the principle of detailed balanc-
ing is broken for nonequilibrium photoexcited carriers [30].
Second, the electron mobility is greater than the hole mobility
implying different band masses. Finally, a separation between
the center of the electron wave-packet and hole packet in real
space occurs, which becomes larger when trigonal warping is
included.

Solving Eq. (13), the DC part of the optical current (sum-

ming over valleys) is j = —e f pd 4% Ty [vfy ] where the velocity
tensor iv = Dgl{(“ = ‘mo — i[R, Hy], and D/DK is the covari-

ant derivative. The Berry connection Rm’” (Y| Vie |1ﬂk/ )
for each valley and Rﬁ““ = R*{("m in which m(m’) = +1
refers to the conduction or valence band. Explicitly, v =

(Vkek — i[R, Hol)/h where g is the energy, and

om e dk -
J Z_E/47T2{ kskfk 5mm

Rmm[ m 8]111’] l;nm’}

(14)
and thus the interplay between the Berry connection and band
topology plays essential role in the UVCP.

It is important to note that a naive application of the re-
duced two-valley model will result in an unphysical nonzero
DC current to second order in the electric field despite the
system possessing Cs;, symmetry. This is because the model is
restricted to two valleys, whereas the system has six valleys,
which all contribute to the second-order current. When con-

FIG. 2. The interband transition in the same valley and interval-
ley transition between various valleys are demonstrated. Because
inversion symmetry is broken in MoS,, the coupling is allowed
between real spin and valley pseudospin and gives rise to valley-
dependent optical selection rules. J.,) refers to the total angular
momentum of the bands c(v).

sidering the contribution of all six valleys it is evident that the
second-order DC current will vanish, as is expected for Cjs;
symmetry. However, the addition of uniaxial strain causes the
contribution of the two valleys parallel to the strain direction
to be different from that of the remaining valleys. Hence a
nonlinear DC signal survives. In order to obtain the correct op-
tical current, we calculate 0@ = [J(¢) — J(e = 0)]/I, where
Iy represents the intensity of the incident light and ¢ is the
strain. It should be noted that due to the deformation of the
crystal lattice, there is a possibility that a small difference re-
mains between separate pairs of valleys when strain is applied.
However, this difference between pairs should be tiny since
the strain and Poisson’s ratio are small and so we ignore these
contributions.

B. Excitons and the Bethe-Salpeter equation

Since an absorbed photon results in the creation of an
electron-hole pair a coupled electron-hole state emerges ow-
ing to the Coulomb interaction, which can be viewed as a
noncharged exciton. This new state leads to additional absorp-
tion peaks shifted from the fundamental absorption edge by
the coupling energies [86]. MoS, possesses relatively large
effective band masses and its charge carriers are confined to
a single atomic layer. Accordingly the electron-hole interac-
tions are much stronger than in conventional semiconductors
[87,88]. Moreover, finite momentum excitons are optically
inactive but can play an important role in valley dynamics.
Exciton states can be obtained by solving a two-body prob-
lem with attractive interactions between one conduction band
electron and one valence band hole. We use an interaction
potential of the Keldysh form [89]

2
Te
Vi = Z—[HO(R/ro) — Yo(R/ro)] (15)
€rp
to account for the finite width of the system and the spatial
inhomogeneity of the dielectric screening environment. The
Bessel function of the second kind is defined by

_ J.(x)cos(nx) — J_,(x)
Tn(x) = sin(nx) ’ (16)
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FIG. 3. Second-order DC photocurrent at the K-point as a function of energy %w for circularly polarized light, with a relaxation time
T =2ps, U, = —0.02 eV, ¢ = 0.005, and magnetization m = 0.02 eV, showing the (a) spin-up (1) and (b) spin-down ({) components with
and without Coulomb potential for excitons. The interband transition in the same valley (I) and intervalley transition (II) are shown. The solid
(dashed-dotted) lines represent UVCP with [90] (without) the Coulomb interaction. Notice that the band gap is controlled by U,;,, m and strain.

where J,,(x) is the Bessel function of the first kind. The Struve
function, H,(x) solves the inhomogeneous Bessel equation.
Here ro = 33.87A/6, the averaged environment dielectric
constant is € and the Fourier transform of the bare potential

is givenby V, = 2:;2 F(g), where F(g) = m We are inter-
ested in the response of the system near the absorption edge
when |hw — A, | < A,, with the effective optical band gap
A, for an electron doped system. In the Hartree-Fock ap-
proximation, the first-order interactive approximation yields

(see detailed discussions in Appendix B)
e [1—0(eg — sk](sf( — SK)E - R(K)
w (5 — &) — hiw — iliT)

e

E - K(k),
+w(e§—s,ﬁ—hw—mr) *)

i (K) =

a7
where K(k) is given by

K(k) = / K'dk'[(1 + cos 6 )(1 + cos i )g(0)

+ 2 sin 6 sin O g(s) + (1 — cos G;)(1 — cos Oy )g(2s)]
[1 —0(ep — e (K")] (e (k") — " (K" ))R (k')
(e¢(k’) — ev(k') — hw — ihiT)

(18)
and

1 2w ,
g(m) = 200y /0 doV (lk —K'|) cos(me) (19
here cosf, = A/e;, and cos¢ =k -k'/(|k||k|). Having
calculated first-order density matrix, the second-order off-
diagonal density matrix element can be obtained.

The spectral function and the optical linear susceptibility
are given by the real-space Green’s function for which we
define the Sommerfeld factor [90]. In addition, fO(;) (k) can
be obtained from the k-space Green’s function. The Som-
merfeld factor implies a peak around the optical transition in
the density of states, hence we expect a jump in the current
near the optical transition, which indicates the large density of
states i.e. the existence of the Sommerfeld factor. The latter is

given by [l (r = 0)> ~ ﬂﬁ*z where the effective Bohr radius
B

aly = h*e/m*e? with m* ~ 0.25m,. This expression increases

as m*/e and the energy is i’k?/2m*. The peak in optical
absorption near the band edge originates from the Sommerfeld
factor [91] and its amplitude depends on material parameters.

III. NUMERICAL RESULTS AND DISCUSSION

MoS, exhibits circular dichroism [92-95]. Carriers in dif-
ferent valleys are associated with different angular momenta
suggesting the possibility of controlling and pumping dif-
ferent valleys by controlling the circular polarization of the
incident light. This means that the orbital angular momentum
in the conduction band is /., = —t,. The spin and valley (K
and K') degrees of freedom are locked. As shown in Fig. 2,
the band gap is A;, = A — t,m, where A is the MoS, optical
band gap, m is the magnetization and 1, = = refers to valleys.
Bands are labeled by 1, 2, 3, and 4. For spin up, the direct band
gap between 1 and 2 is 1.72 eV, however, the indirect band
gap between 4 and 1 is (1.92 +1.72)/2 = 1.82 eV at given
m=0.02 eV and U,, = —0.02 eV as illustrated in Fig. 2
for small strain values. Notice that those values change for
spin down since the band gap changes. This will be seen in
the second UVCP peak in Fig. 4. We focus on all possible
transitions to the conduction band at K. Notice that optical
transitions between the conduction bands in the two valleys
can occur at situation when the photon energy is smaller
than the Fermi energy, iw < &g, thus there is a finite current
associated with this scattering term at low energies. To satisfy
momentum conservation, the short-range scattering potential
due to defects or impurity is needed. Since we are interested
in energies exceeding the band gap, we do not consider this
term.

The central result of our work is presented in Fig. 3. The
nonlinear DC current bumps emerge at the interband absorp-
tion threshold in the same valley and at a transition point
between the valence and conduction bands of different valleys
in the electron doped system. The conventional intrinsic shift
current is negligible, and the resonant photovoltaic effect [84]
is also negligible owing to a strong particle-hole asymmetry.
To capture the nonreciprocal current the electric field needs
to be incorporated into the time evolution operator leading
to the scattering term. In addition to intrinsic and extrinsic
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FIG. 4. (Top) (a) Second-order optical response (in units of pA m/W) as a function of 7w (in units of eV) for circularly polarized light,
0, = m /4. The relaxation time T = 2 ps, Uy, = —0.02 eV, & = 0.005, and m = 0.02 eV for spin-up and down and without Coulomb interaction.
The first UVCP bump appears at 1.7234 eV due to the off-diagonal density matrix contribution. A jump at around 1.823 eV stems from the Jg
contribution. (b) Contour plot of the energy dispersion of the valence and conduction bands in the presence of strain & = 0.005 around K point
for spin-up component. Different effective masses cause a discrepancy between the valence and conduction band dispersions. The energy step
of the isoenergy is 0.05 eV. (Bottom) Same as a (a) for varying 7 in ps (c) and electron density, n (d). We consider spin-up in this example. The
magnitude of the bump is insensitive to the electron density, although the self energy is renormalized by electron-electron interactions, while
the band-gap experiences a large, nonlinear renormalization upon adding free carriers to the conduction band. Therefore the position of the

peak jump is renormalized by quantum many-body effects.

contributions, our theory accounts for exciton effects such
as the electron-hole interaction, band gap renormalization
and the Sommerfeld factor [90,91]. To emphasize this Fig. 3
shows the UVCP found using two different methods, namely
the quantum kinetic theory and a related method incorpo-
rating the Bethe-Salpeter equation for excitons. Once again,
the first-order of density matrix can be evaluated by using
the Bethe-Salpeter equation incorporating the electron-hole
Coulomb interaction in the level of Hartree-Fock approxima-
tion and then the second-order of density matrix components
incorporates the scattering terms can be evaluated by using the
kinetic theory. Although it is known that the optical edge will
be shifted by electron-hole interactions [96] as obtained by
Eq. (B6), for the sake of comparison, we ignore the position
of the shift to show the strength of the optical peak due to
the many-body interaction. Our numerical results, reported
in Fig. 3, illustrate the current is greater in this approach
with respect to those results obtained without the attractive
Coulomb interaction. The location of the optical band edges
vary by imposing external electric and mechanical fields.
Accordingly, the optical band edges are shifted and there is
a noticeable bumps in J(¢) — J(¢ = 0) at the band edges.
Two bumps are associated with optical transitions from the
interband and intervalley transitions, respectively, while the
current is visibly enhanced by many-body effects [97]. Such
interplay between nonlinear optics and intervalley scattering

enables monitoring of nonequilibrium intervalley dynamics
and probing their strength, opening new directions in nonlin-
ear light-matter engineering [98].

The second-order steady-state current as a function of
photon energy is shown in Fig. 4(a). The UVCP shows
w0 (hw — € + €) in the vicinity of the band edge as similar
to the optical absorption coefficient. For spin up, the first
peak is associated with the transition between the valence and
the conduction band at the K point, while the second peak
originates from the intervalley transition between the valence
band at K’ to the conduction band at K. However, for spin-
down, the intervalley transition between the valence band at
K’ and the conduction band at K takes place first and then the
interband transition occurs. By increasing the light frequency,
electrons deeper in valence band, with stronger warping, are
excited to the conduction band, and finite value of the UVCP
is observed. Moreover, intervalley scattering processes are
proportional to A%

The UVCP is the result of two factors of the electric
field E. The first comes from the nonequilibrium distribution
function f(f(}), the off-diagonal density matrix element of (o).
Essentially this is the distribution of excited electrons in the
conduction band. The second factor of E comes when we
consider eVkE in second order. This represents the accel-
eration of excited carriers k = —eE(¢)/h under the action
of the time-dependent electric field E. The nonequilibrium

195418-6



UNIDIRECTIONAL VALLEY-CONTRASTING ...

PHYSICAL REVIEW B 105, 195418 (2022)

distribution to second order in E has some time dependence,
and part of this time dependence is in phase with E, so that
their product has a nonzero time average, resulting in a DC
term. Even though the acceleration oscillates in time, the dis-
tribution of excited carriers also oscillates in time so that the
time average of the total acceleration is nonzero. This nonzero
time average represents a net, constant acceleration. Thanks to
the anisotropy of the excitation, which comes from warping,
the angular average of this acceleration is nonzero as well. So
there is a net acceleration of excited carriers, and this needs to
be halted by scattering process, represented here generically
by the relaxation time, . The presence of 7 can also be viewed
as a reflection of Kramers symmetry breaking by the warping
term, which causes the excited carrier distribution to be asym-
metric on the two sides of the conduction band. This argument
applies for intervalley excitation as well, since the warping is
the same in the two valleys. Thus the UVCP is a result of (i)
topological effects through the Berry connections; (ii) band
mass discrepancy between the electron and hole, which leads
to a change in the electron wave packet with respect to the hole
wave packet; (iii) trigonal warping in the valence band, which
makes the wave packet wider than in the conduction band; and
(iv) the band off-set due to strain at the optical band edges.
Based on our formalism, the intraband transition primarily
originates from an expression given by Eq. (A57), although
the terms in Eq. (A62) dominates for the intravalley transition
and the term R*(f! — f*)/(hw — &%, + & — ihn), including
the Pauli blocking factor, is principally responsible for the
intervalley transition, where f i is the Fermi-Dirac distribution
function and R* represents the Berry connection.

As we discussed earlier, the contribution of the shift current
in our formalism is negligible. Our results show that injection
current [63], which is proportional to (i - Rli’"f CRM — -
Rll{’"? . Rl":l)(Vsl’:‘ - Vsll() with m = 1 and 4, contributes to
the nonlinear DC optical response in the system, but it is not
a dominant contributor as we discussed previously.

We explore the effect of varying the relaxation time, T and
the electron density n. The current changes significantly by
changing the relaxation time and when t is large the UVCP
can be large, which is advantageous for photovoltaic solar cell
applications. Terms of the form (f! — f/) are always present
in 0(5), where fo(j) is the off-diagonal element of the density
matrix. However, the denominator contains expressions of
the form (—/w + (e — &%) + ih/r)z, which tend to a smaller
value as 7 increases, and thus the peak becomes stronger
although its width does not change due to the (f* — f/) term.
Therefore, integrating over k, a larger current emerges owing
to the stronger peak. Interestingly, the current does not change
with the Fermi energy, apart from the optical transition point
owing to A, .

IV. CONCLUSION

To summarize we have studied the static nonlinear optical
response of monolayer strained MoS, with broken inversion
symmetry. The theory incorporates the interband and interval-
ley optical transitions in the presence of short-range impurity
scattering, which also couples the valleys. In addition to in-
trinsic and extrinsic contributions, our theory includes exciton
effects such as the electron-hole interaction and the Sommer-

feld factor. The results show a large nonlinear response with
meaningful features at optical light frequencies and identified
a new, unidirectional response termed nonreciprocal valley
photocurrent, with no equivalent in single-valley systems. Its
direction is set by trigonal warping and strain, and it increases
with the mobility and trigonal warping coefficient. Two bumps
were associated with optical transitions from the interband
and intervalley transitions, respectively, while the current is
visibly enhanced by many-body effects. We have shown that
the optical current changes significantly by changing the re-
laxation time and the UVCP can be large when the relaxation
time is large, which is advantageous for photovoltaic solar cell
applications.

With the intrinsic shift current suppressed, our approach
predicts a large UVCP, which is accessible in experiment and
can monitor intervalley transitions.
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APPENDIX A: MODEL HAMILTONIAN AND THEORY

To begin with, we start of considering a generic low-energy
k - p continuum model Hamiltonian around K and K’ points
which describes pristine two-dimensional TMD system [77],
such as Mo, or WS,

Ag + ApST A + AST
H, = y 0 09 Ly + Ty UGZ
2 2
272
+ tvaok - o, + —— (o + Boy) (A1)
4I’l1()
and trigonal warping H,, contribution is given by
Hoy = 1@}k -0 )or(k - o)

+ hayty (k) — 3kk7) (@ + Bloz),  (A2)

where the Pauli matrices o;, = (1,0x, 0,) acts on the two
component wave functions. The spin-orbit couplings in the
valence and conduction bands are considered and the sample
degrees of freedom is accounted by the degeneracy factor
y = +. Here 7, = &+ is a valley index, S = % refers to a
spin index, Notice that k = k(cos 6, sinf). All terms in the
Hamiltonian are related to broken spatial inversion symmetry
in monolayer TMD. In general, we could consider a system
which is on top of a Ferromagnetic substrate with a finite
perpendicular magnetization. A magnetization is induced by
a proper substrate in order to break valley degeneracy and
thus A;, = A — t,m, where m is the magnetization. The con-
tribution to the band dispersion owing to trigonal warping
has the character form Z. cos3¢ where zL =t (o’ + B') +
4ty /[2A;, — (Ao — A)st] and =+ refers to the conduction and
valence bands, respectively. Note that the conduction band is
nearly isotropic while the valence band is strongly warped due
to the trigonal warping term.

In the case of monolayer MoS,, all parameters are: ay =
a/v/3,a=3.16 A, Ag = —0.11 eV, A = 1.82 eV, 1y = 69
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meV, A = —80meV, 1ty =2.34eV,t; = —0.14eV, 1, = 1 eV,
a=-0.01,8=—-154,a’ =044, and 8 = —0.53.
The Hamiltonian can be written as

hiy + hy his
= , A3
" < hia hy — h) (A3)
where
Ao+ AoST  R*K?
hyy = 5t aet hayt, (k; — 3kk;)ol
A+ ASt,  RK?
he = — z + P + hagty (k) — 3kk2) B,
hiz = toao(Toky — iky) + t1a5(Toky + iky)?, (A4)

where k7 — 3k.k? = k3 cos 30. The dispersion relations are
given by |[H — ¢| = 0 and thus

e'(K) = hiy + s/ h? + |h2]?,

where s = *+ denotes the conduction and valence bands, re-
spectively. The eigenvector of the system, H|¢*) = e*(K)|¢*)
can be easily obtained as

) = (“") - ;(}’;2), (AS)
V2 VD24 hp P\ D

where D* = h, —s,/h? + |hi2|*>. In order to calculate the
Berry connection, we do need to calculate the Vi|¢*). To do
so, we make use of cylindrical coordinate and

i’k
ohy = 2 +3t2a01:,, o'k cos 30,
my
th 3 17,2
okh, = — B + 3tayt, B k" cos 30,
2my
oxh1a = toag(t, cos@ —isinf) + 2t1a3k(rv cosd + isin)>,
and

dohi1 = —3tagT,a'k’ sin 36,
dh, = —3najt,p'k’ sin 30,
Ogh1» = toapk(—T1, sin6 — icos )

+ 2t1a3k*(it, cos 20 — sin 26),

finally, it leads to

~ o1 A
Vil¥*) = oclvr)k + Eagh/f“)@ (A6)

_ f° ) <—h12> n 1
(D2 + |hpp |32\ D? VD% + |hpp |

—hi2\; , L, (—hi2)\;
e n

where we define f*(k) = Vk(sz + |h2)? /2. Notice that k =
cos 81 +sinf] and § = —sin 67 +cosf).

We can generalize the formalism by considering inter val-
ley process. To do so, we should consider ) = [¢*7=T) ®
[¢**="). Therefore, by making use of all derivatives, the

(A7)

Berry connection part for different band indices combination
is

Rie™ =iy [Vie[wi™) (A8)

fvr (k/) , -

R h*‘rh‘r + D.Y‘L'D.YT
(DY2+|h12| >‘/2(DY’2+|h2|2)3/2[ 2 ]

1
(Ds2 + [ 2D + [hal D)

x [(h;*; whi,+D "D T )k+E(h’f§ dphi,+D°T 9 D* " )9},
(A9)

it tells that each quantity might be evaluated in its own valley.
We also consider the disorder as U (r) = Up ) _; 8(r — r;) and
define matrix elements of U}, as

U™
] B3 ()hTy (k) 4+ D" Dy ™™
(D2 + i (O12) (D + 1hia (k)2

=

172"

(A10)

1. External gate potential

It is also important to investigate the effect of a perpendic-
ular external electric field on the optical response. The vertical
bias breaks the mirror symmetry, o, and thus modifies the
on-site energies of atoms in three sublayers of TMDs. We
assume a single-gate device in which the induced potentials
take the values U® = 0 and U = 2U,,, for layers. Using sim-
ple electronic arguments, the induced potentials for an applied
vertical bias V can be estimated as U,, = e%%V where ¢,
d, €', and L denote the dielectric constants and thickness of
ML-MDS and the substrate, respectively. Based on Ref. [77],
we do have

8A = —0.140.2(U,;e+0.5), 8ty = 0.055 — 0.1(U1,+0.55),
a = —0.15U,1./eV, 88 = —1.95U,./eV.

The effect of the applied vertical voltage has been discussed
in Ref. [77].

2. The effect of strained MoS,

More often, there is a crystal lattice mismatch between
substrate and the system and hence strain is inevitably exist
and it leads to change hopping terms and also breaks threefold
symmetry. Having approximated the strained trigonal warp-
ing, ignoring the triangle trigonal warping term ¢, and using 7,
for modified ¢, term, the strain-dependent Hamiltonian around
K point [79], up to second order in strain and momentum can
be written as

_(hu+h, hia allAl? 0
Ho = ( hia hyy — hz) * < 0 ailAP?

a2 Velastic 0
+ < 0 —ap Velastic) ’
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where where a; = 15.95, a = —2.2 eV and n; =0.002, n, =
—5.655, and n3 = 1.633. The pseudovector filed for uniaxial

Ao+ 20ST  12(k + mr,A)? strain is given by A = (1 — v, 0)e and the elastic potential

hii=vy o, Velastic = (1 4+ v)e with Poisson ration v = —0.125 and strain

2 amo ¢. The effect of the voltage and strain appear in the eigenvalue

A+ ASt, Bk + mp31,A)? and eigenvector of strained system and thus the Berry con-

hy = 2 T 4my B. nection and matrix elements of impurity might be calculated

By = too(Ty (ke + M ToAL) — iks + MiToAY ) accordingly. Figure 5 shows the dispersion relation of the

conduction and valence bands for various vertical voltage and
+t1a(2)(tv(kx + M TAy) + ik, + mrvAy))z, strain.

J

3. Photovoltaic current

Based on the DM equation, the density matrix is given by p = [)(¥|. The dynamic of the density matrix obeys quantum
Liouville equation:

- .
57+—HM0LHUP] —QHLM, (A1)

where J[p] is the scattering term which takes the form with in the Born approximation and we assume the correlation function
(UmU@")) = n,~U028 (r — r’) with n; the impurity density. The scattering term, in general form, is given by

1
JW»=;/WWﬂm%mn (A12)

where U(t') = e /"U¢A/" with time-evolution operator A = fot (Ho + He(t"))dt' including the electric field term. Usually
‘He(t") does not contribute to the scattering term J({p)) if H, is the single component Hamiltonian and U represents scaler
scattering, however, this is important for spin, pseudospin-dependent scattering.

Two scattering terms will have contributions from Hg, so

J=Jo+Jg, (A13)

where Jj is the bare scattering term is given by

LRI (o)) = Z R (ow, )" n (pi, )™ e —_
0.k, kK YKk —8;?,1,4-8{:”-{-1.77 —Eﬁ,—FS]}?/l”‘i‘in Kk YKk

m'm'k\ €l
' '
_prmm’ <’0k,1) m'n __ prmm’ <'Ok,1) m'n
kiki _ m” n . ki k; kiki — _m m . Kk
8k,l + &y, +1n k., +ek,l +1n

m'n mm’
mm'’ m’m” <10k1) (Iokl) m'm’" yrm’n
+ E k’ 'k ; — + 7 — Uk K, YKk
k; 1 m m m m 1 2 K1
e +eg +in £, + e Tin

m'm"K,ell
()" ()"
U U — (Ald)
kik, gm/’ Let 4 K.k, kK, —em 4 gm’ T+i K,k
K, Kk n " Kk, T U
so that
"1 m’
§ : (o))" (Px,) P
_thO kl(< )) = U U /kl m +l m’ + . + m' +] ' + . Ul’(n]?;l ]?’llkll
m'm'K, el —E T &, T £, + e +in
m'm"’ !
L’ L m'l _ prim L m'l
k’lkl —om” 1 . k’lk] klk’] 1 P " K k
Sk/l + 8k| +1in Ekl + 8k’] +in

'l It
+ m m"’ <:Ok1> + <,0k1> UmrmuUmnl
k]k/ k’ k; . ' ' ; klk k’zkl
Sk' + 8 " +in —& + £y, +in

m'm"K,ell
m/m// m/m//
1m' <pk,2> m’l _ prlm (’Ok§> Um”l (AIS)
Kk, _m” 1 . Kk, kK, 1 m' . Kk |
& T &, +1in &, T &0 TN
2 1 ! 2
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FIG. 5. The energy dispersion of the system for (a) ¢ = 0 and different vertical voltage in units of eV and (b) U,;, = —0.02 eV and varies

strain for given m = 0.02 eV.

We are at this stage to define relaxation-time of the system where we have

(o) !
1hJ0 kl(( Y) = ih——— (A16)
71
21 12 T
i U U <pk1 ) <pk1 ) 2m' prm'l
/k‘ —el + el +in  —el +e +z kil Pk
mk, el k| ki n ki n _
B 11 11 7]
4 Z T {PK;) 1 g {Px;) 11
k’lkl _ 1 1 . kik] klkll _ 1 1 . k’lkl
kel L e, T, T & T ex, T J
B 12 12 7
(oK) (oK)
+ gyl i 21 grll i 11
§ : Kki_ 2 . .1 1 . YKk Kk, 1 1 YKk
kjel L bk, T, T fr T bk, T |
B 21 21 7]
i Z 12 {PK;) 1 g2 {Px;) 21
k’lkl _ 1 1 . k/lkl klkll _ 1 2 . k/lkl
kel L e, T, T &, T ek, T J
11 12
+ <)Ok]) 1m’ Um’l + <lokl> 2m' Um’l
¥ e +l ik, Yok T T e e 1 iy kK UKk
m'=3,4k,ell kl n ki g THI
m'm” m'm”
(pk/z) m'1 ' (pk/2> m'1 Al7
+ Uk, T 1ol o ke T Yk T o Yl |- (A7)
m'm"Kyell K, k T ki T, T
Furthermore, the off-diagonal component of Jj is given by
"2 1
_ m'm” (pkl>m (pkl) " m'm" yrm’2
_lhjo ki {p)) = Uklk’ kiki o +em 4 —em e kik; ~“kik;
m'm"k\ €l ki Kk n ki kj n
1m’ <'Ok/1) m'2 _ prlm’ <'Okl> Um’2
k’lkl _om” 2 . k’lkl k]k/l | m' . k/lk]
sk,l + £k, +in &, +8k’1 +1in
m'2 Im
+ 2 : |: mm’ <Iokl> </ok1> m'm" yrm”2
k/kl m' m'” . m m’ . kK, K Kk,
—& & 1 —& o 1 22
m'm"kyell k| + k) +m k; + K, +in
1m’' <’0k2> m'2 _ yprim <pk > m'2 (A18)
k’zk] m’ 2 . k’zk] klkz k/2k1
—sk,z +eg, +in Sk + &y +tn
or equivalently
(,Okl)
—iJ3, () = —if (A19)
T2
22 11
+ 2 : |:Ulm’ Um’Z <pkl) <pkl) 1m' yrm'2
k[k’l k/lk] o 2 . _ ol m . k]k/l k’lkl
m'k| el bk Tk, &, T K T
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n Z[ Ul Pk1>12 2 ()" 12
o ki _g2 w g +in Kk TRk _gl 8]1(,1 +ip Mk
1 11
I Z _yl (i) 2 i {Px;) 12
= ik —ey + &g, +in il Tk _gl 4 £yt in kiki
2 2
+ Z / <pk’] ) 2/2 2 , (pk'l ) 2,2
= N A i
{ox,)"! I’ yym'2 (o) " 2m' /2_
+ 1 | om kr:ld Ul:r’lk R B kr?(’ I?’Zk
m’=3,§l:(’zell |:_‘9]1(1 +81’(”,2 +in MKk _Eﬁ] +8Ir§2 +in Kk Tk
(o)™ R 78 K " |
+ klr'f( —w Uk ~ Ui, = o Kk, | (A20)
mm”zk’ell|: ] 81’32 +8k1+”7 a l 2_8k1+8;?2+ln ’ l_
where relaxation-times are defined as
—ih 1 1 —
= Ul U : _ ——yulmum! (A21)
T m%;l|: ki k‘ sl’?,l +e, Hin —gy +eg +in ki, klk‘_
1 1 IR
+ kk’ kk ; , v ki, Uik
—ih 1 1 —_—
= > Ui = > —Ugl 11"1(2,]
12} el |: 8]’?,1 +e, +in gy —1—81’;’1 +in 1K
+ Z |:U1 1 1 2m’ m’21| (A22)
kik) ’k1 ' 1 ; g2 m g kik Tk |
m'k,ell ek e T &g T e, T T
Let us consider the generic formula for the external field as
R it —iwt R eia)f _ e—iwt
E@) = E(i cos GPT + jsin QPT) (A23)
and thus
eE cosf, [ o - g s A o o oy "
g = — th P / dt/// dl/(ela)t + e*la)t )efl’Hot /h[l -, e*l’Hot /h[U, <p>]el7-Lot /Flefnt ]617'[0[ /ﬁefi’)t (A24)
0 0
M [0¢] o0
_ ek S.Hlep / dt// / dt/(eiwt” _ e—iwl”)e—l‘}[ot”/ﬁ[j .T, e—iHot’/h[U’ (IO)]ei'Hot’/ﬁe—nt/]eiH()t”/he—nt”’ (AZS)
2ih 0
let us calculate the matrix element of gz, which gives us
eE cos 6 Ll (R — et et
(m. K|gg|n. k') = 2 Uikt - xild (e = St { —— +— (A26)
o iy —eg)/h—n  lio—i(ef —ep)/hi—n  —io—i(ef —e)/h—n
eE cos 6, Z Ui e, (f — f]:”){ et N et }
o = i(ey — )/ h—n lio—i(ef — ) /i—n  —iw—i(ef —ep)/li—n
L CEsing, 3 Ui g - e (f — fin) { el et }
27 A= iep —ep)/hi—n lio—i(ef —ep)/i—n  —iw—i(ef —ep)/h—n
eE sin 6 G — el e it
_ - P U’ R Kk km(fk k) { : . — } (A27)
2 A= (e —e)/hi—n lio—i(ef —ef)/h — N —iw—i(s —el)/hi—n
We now calculate the matrix elements of the position operator
(mKk|r|nk') = iy, = [iVidn + RE" ]S (K — k), (A28)
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therefore,
(m. K|gg|n, k')
_ B 08Oy 5~ U [V + R T — R (i = i) { . }
20 A i(ep, —em)/h—n io—i(ef —el)/i—n  —io—i(ef —el)/li—n
eE cos 6, Ul:'l'(’,’,'/? . [in wn + Ry ”]S(k” — k’)(flgj,’ — flT) oot s
Y n%: i(ef —em)/hi—n {iw—i(sl’zl—sﬁ,)/h—n+—iw—i(s{f—sﬁ,)/ﬁ—n}
eE sin 0, Z U]:” [le(Smm ’Rf’"/]b‘ -k’ )( i - fl:",,’) { oot it }
2in* i(ef, —em)/h— io—i(ef —el)/i—n —iw—i(e —el)/h—n
_ ¢Esinb, 3 up' i [iVieSun + ngn]a(k” K)o — fim) { et B emiet }
2R A= i(eg, — &) /h— io—i(el —el)/i—n —iw—i(el —¢&l)/h—n

with more simplification, we have

(A29)

_eEcosf "R (= ) el et
Kk k/ p kk { }
. Klge|n. Z sk, — 8{?) + ihn how — (8{:’ - sl’é,) + ihn + —hw — (sl’f — sﬁ,) + ihn
eE cos Qp Z Upn'd - R (fa — fim) et N e it
~ (sk —e)+ifn | ho— (e — &) +ihn  —ho — (s — &) + ifin
_ eEsing, Z kk Ry (fi ) e B e it
2i (ep — &) + lhn hio — (e — &) +ihn  —ho — (& — &) + ihin
n eE sin 9,, Z upm iR (i — fm) el - oot
(e, — &) + ilin iw— (e — &) +ilin  —lo — (g — &},) + ilin
R VS = S
= (ep. — &) + ihn ihw—i(ef —ep)—n  —iliw—i(ef —&l) —n
eE Ccos Qp Z Ul?l?/l (fk’ fk ) S(k// _ k/) { elot + e—zwt }
(ep, — &) + ifin ihw — (el — &) — —ilio — (el — &) —
fk”)J : Vk8(k -

N eE sin 9,, Z U, (fi —

(e, — &) + ihn
eEsm@,,ZU”l‘(’,’,(fk, M- Vied (K —

k//) { oot
ihw — (el —

&) -

e*l([)t
N —iho — (el —ep) — n}

e*la)[

(o — eg) +

Since 7 is an infinitesimal number, I expect terms contain

(e —&x )+iln

T

iwt

k/) { oot
ihw — (e — &) —

N —ifio—i(s) — &) —n }
(A30)

— f)8(e}, — &*) can be ignored.

(m, Klgg|n, K')

_eEcos 9p Z Uﬁl{nl Rmm’( ) { e N oot }
&) + ihn o — (et — &) +ihn  —ho — (& — &ll,) + ihin
eE cos Gp Z U”f(’f’z Rm”( £ et N emiot
(ep —e)-i—zhn ho — (e —ef) +ihn  —ho — (e — &f) + ilin
K~ €k k &K k &K

ka(k// _

eE cos 0, < Ui (fit = fib)i -
+— 2y

= (ep, — &) + ihn
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_ ¢E cos e,, Z upn (fo, — fr)i - Vies(k” — k') { e emiet }
(e, — &) + ilin ihw —i(e' —ep) —n  —ifhw —i(el — &) —n
E cos 6 E sin6 A A
+<e Czos P, S;‘ ?and G = Hand (... +...) — (...—...)). (A31)
Furthermore the matrix element of g is
. Kigoln, ) =~ K~ JE)_ (A32)
ey — & — ihn
With that, we can solve the equation of {p) as
ap) i i
—— + z[Ho+He, (p)] = —=([U, go + g1, (A33)
ot h h
where
fi = fe =R
K|[U, Kk ,U — kK ymymn KTk A34
(m, K|[U, goln, k) = Kk o —Eln(—ih kk' YKk g — iy ( )
and finally the Jg is
i , ,
(m, K|Je((p)In, k) = 7 Z (U (', K |ge|n, k) — (m, k|ge|m', KU (A35)

m' K’
We look at the matrix elements of J¢ in explicit form:

i ,
(LKIECDITK) = 2 > (U (1 K18z 11, k) — (1 Kige 1K) Ug} + {Ud (2. K g 11, K) — (1, Klge |2, K) Ugi}

kel

i
+7 > {0 G Kgell k) = (1 Klge I3, KU + {Ug (4. K gzl k) — (1 kg4, K) UL,
k'ell

i / !
(L KE(DI2K) = = > {UgAT Kgel2, k) — (1 KIge |1 KU} + {Ug (2. Kge 12, k) — (1, Klge[2, K)UR ]
k/

+{U (3. K Ige12, k) — (1, KIge |3, KU } + {Ude (4. K |ge 12, k) — (1, K|ge |4, K Ux ).

/ / l ! / ’ !
(LK (DI K) = 2 3 {U (1 Klgel3, K — (1 Kgel 1 k) Ugd b+ {02, klge 13, K) = (1, K Ige[2, KU

{Un 3. kIge13.K) — (1 K|ge 13, K)US } + {Uk 4. kige 13, k') — (1, K |ge |4, K) Ui |

! l ! !
B KDL K) = = 3 AU Klgel LK) — (3, Klgel 1 k)Ugd } + {UR (2. klgel 1K) — (3. K [g£12. K) U
m' kK

(UGB Klge 1K) — 3. K'[ge|3. k) Upp } + {Upy (4. klge 1K) — (3, K |ge |4, K)U |- (A36)

If we look at closely to (1, K'|Je({p))|1,K’) and (1, K'|Jg({0))|3, k'), we should perceive which intervalley effects add, and
which ones cancel out between bands 1 and 3.

Thus, to calculate Jg, we do need to evaluate gp first. All terms of gr which contains regular expres-
sion in denominator can be ignored. We also need to evaluate UM (1,K’|ge|l,K), Uli (1, Klgr|2,K'), together with
(1,Kklge |2, K)UZL, (1, klge|3, K"\ US\. (1, Klge |4, K") U, . Therefore

Z Ui m”, K \gi In, K)

¢E cos 0, ~— Umm Ust - RE™ (2 — £ { eiot ot }
= Z / . " . + 1" .
e (e — &) + ifin fiw — (e —ep) +ihn  —ho — (e —ef) + ihn
eE cos 9,, Z U,:']’(’?“ U];’,’ 'm'] Rig" ( fk flﬁ") { oot . o—iot }
— (ep — &) +ihn ho — (e — &) +ihn  —ho — (e — &) + ihn
N eE cos 0, Z umm g (fo — f)i - Vl/(g (K" — K/ { | e":‘” . it }
2w (e — &) + inn iho —i(epy —ep) —n  —iho—i(ey —ef) —n
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_ e costy 5 v U (£, — f )i - Vs (K7 — k) { ot ) e }
2 L (ep — ) + ihn ihw—i(ef —el) —n  —ihw —i(efl —&l) —n
eEcosf, Esing, A
(T S and (> and (o) > () (A37)

and

=3 . Klge In KU

k/
_ eEcosf, 3 o R (fn — £ et N et
N 2 (ep. — &) + ihin hiw — (s — &) +ihn  —ho — (& —&ll,) + ihin
k' K’ k k K’ k K’
EE cos ep Umm Unrl}z 7. Ri’(n’n(fl:i,i/ _ f]:n) et e—iot
Z _ om o _ m __ an o + _ — m __ on 7
sk sk) + ihn hw (sk sk,) + ihn hw (sk sk/) + ihn
_ ¢Ecos¥, Z Upm U (fe — fo)i - Vied (k7 — k) { e N e~iet }
2 (ep, — &) +ihn i —i(ef —ep) —n  —iho —i(e — &) —n
| ¢E cos6, 3 U U (fe — fir)i - Vied (K" — k') { ¢t . ot }
2 & (ep —&m) + lﬁT] ihw —i(ef — ) —n  —iliwo—i(el — &) —n
_<6E €osOp , ES0y ind G Jand (.. 4..) = (oo m )) (A38)
) 2 J et e— ) ).

We can simplify the above expression by making use of some assumptions for which R!* = R!'* = 0. Furthermore, terms
contain x8(x) = 0. Therefore the diagonal part of Jg is given by

(L KIE((0))I1, k)
_i (_ ¢E cos 6, )3 ULLUZTT R () - lg,l’){ gt pmion }
ho — ( K

f 2 S (ee—e) i ep —en) +ihn | —ho — (e — o) + i
eE cos 6, Z UL UL - RE(f — £)) { it ot }
+
2 (ex — k) + ifin o — (e, — &) +ihn  —ho — (e, —&l) + ilin
+eE cos 6, Z UL UL 'k(fk )i ) S(k” k/) { £t . .efliw; | }
2 &= (ep — &l) + ifin ihw—i(el, —el) —n  —ilio—i(e}, —el) —n
eE cos 6, Udb Ut (fl — 1)1 - Vid (K" — k) ot ot
sy R |
2 & (e — ek,) + ihn ihw—i(ef, —el) —n —ilw—i(el, —el) —n
eE cos 91, Z U2l Uli(l RE(fe — 1) { olot N e—iot }
(el — &2) + ifin ho — (e — ) +iin  —ho — (e —el) + ilin
_ eE cos 6,, Z ULz Ulii( SRE(E - A { glot . oot }
(ef — &) +ifin o — (ef —el) +ihn — —ho — (e — &) + ifin
_eEcosf, Z Ui Udk (e = )i ) - Vi (K" — k) { oot it }
2 L (ef —&l) +ihn iho —i(ef —eh) —n  —ifio—i(ef —el) —n
+eE cos 6, Z UMLUM (Y = f)i - Vied (K7 — K) { it oiot }
2 L (ep, — &) +ihn ihw—i(ef —eb) —n  —ilio—i(ef —el) —
_eEcos 9,, Z UL Ul:”kl Rzm ( K- ’”) { et N oot }
(e — &) + ifin ho — (e} — &) +ihn  —ho — (e} — &l) + ilin
eE cos 6, 3 URUZT-REVRY — 12) { el .\ ot }
— (ef —&2) + ilin o — (e}, — &) +ihn  —ho — (e} —&l) + ilin
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el(l)f

+eE cos 6, Z Vg UL (f = fk,,) Vis(k" — k) { | | L .e_"‘” }
+ zhn ihw—i(el —el)—n  —ihw—i(e} —&l) —n

2 (ex — £icr)
Kk Ekr
_ eE c0s 6, ~— Une Ui (fir = fi2)1 - Vid (K" — k) et —iwt
Z 2 : (2 _ ol T 2 1
2 o (el —&k) + ifin ihw —i(e} —el) —n  —iliw—i(e} —el) —n
eE cos GP UR2UZT-RIN(F2 — D) { it oot }
+
Z (6% — &x) +ifin ho — (e —&}) +ilin  —ho — (e} — &) + ihn
¢E cos 6, U U - Ry (fe = Y eiot ot
- Z 2 _ _ 1 _ + — _ 1 _
2 LS (’Sk’ ey) + ifin ho — () — &) + ilin liw — (ef — &} + ihn
_eEcosb, Z UAUD(FE — L)1 Vs (K" — k) { et + e it }
2 = (2 — b)) + ihn ihw —i(e} — &) — —iliw — (e} — &)
+eE cos 6, Z U U (12 — /)i Vied (k" —K') { et N et }
2 & (e —&l) + ifin ihw—i(ef —el) —n  —iliw—i(el —el) —n
_ eE cos b, 3 Ul umli - R¥(FL - ) { it . it }
2 (ex — &) + ifin ho — (g8, —el) +ihn ~ —ho — (), — &}) + ifin
+eE cos 6, Z UBuni. Rl’g/l(fl?/ - 1) { elot N oot }
(eh — &) + ifin ho — (e — &) +ifn  —ho — (e — &) + iln
ek cosb, Ukllf Ulf’”k ( fk fk ) /3(](“ k’) { el oot }
+ +
2 § (ef —&i)) + ilin iho —i(e), —el) —n  —iliw—i(e), —el) —n
€E cos 9,, Z Ukllz UEL (fk ) v (k// _ ) { el N —iwt }
2 o (ef — &) +inn ihw—i(s), —el) —n  —ilio—i(e) —el) —n
eE cos0), 3 UZR U RE(F - £2) { oot . ot }
2 " (68 — &}) +ifn o — (ef — &) +ihn  —ho — (e} — &) + ifin
_ eEcos b, Z U US T RSP (fr — £ { et et }
rary® (eh — k) + ifin ho — () — &) + lhn —hw — (sf — &) + ihn
_eEcos b, Z Ui Uk (8 — )i ) - Vid (k" — k) { oot . it }
2 (s — &) +ihn iho—i(ef —&)) —n  —ilio—i(ef — &) —n
+eE cos b, Z Ukllz U]?L(fk fk) - Vi S(k” k’) { it N e—iot }
2 L (e — &) +inn ihw—i(ef —eb) —n  —ilio—i(el — &) —n
B —
(ef — &) + ifin ho — (e, —&l) +ilin  —ho — () — &l) + ifin
eE cos 6, Z U Ut R l( " — fi) { el N et }
— (ef — &) + ilin o — (ef, —&l) +ihn  —ho — (e, —&l) + ilin
| ¢E cos 0, 3 URUSL (L = £2)i- vis (k" — K) { it ot }
2 L (ef — &) + ifin iho —i(e), —el) —n  —iliwo—i(e), —el) —n
_ ¢E cos, Z Ut U (f& — )1 - i (K" — k) { ot . ot }
2 & (ef — &) + ifin ihw —i(ef, —el) —n  —ilio—i(e}, —el) —n
| ¢Ecosby 3 U Ui d - R (f — £) { it . ot }
m=1,2K (e — &) +ifin o — (ef — b)) +ifn  —ho — (e} — &) + ilin
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_¢eEcos, Z Umu'i - R 4( - ) { el N oiot }
2 ik (sk, ek) +ihn hw — (81}1 — sé,) +ihnp  —ho — (‘91}1 — aﬁ,) + ihn
_ eE cos B x— Ugho Ui (fid — )i Vis (K" — k) { et et }
> ——— +———
2 & (el —ek,) + ihn ihw—i(ef — &) —n  —ihw—i(ef —&l) —n
+eE cos b, Z UL, Ulf{((fk fk) (k” _ k’) { gt . oot }
2 L (s —eb) + lhn ihw—i(ef —&l)—n  —ihw—i(el —&l) —n
. E cos 6, Esinf,
+other 32 terms by making use of > — T ? and (1 — j)and (.. R I ) ). (A39)
In the same manner, we can calculate the off-diagonal part
(1, ke ((0))12, k)
i ( ¢E cos ep v UL UmZi - R (12 — ) { el et }
=z , — + ;
7 o (e — &) + ifin ho — (e, —&}) +ilin ~ —ho — (e}, — &}) + ilin
eE cos 0, 3 UL UG- R (i — £L) { piot N oot }
2 (62 — &) +ilin iw — (ef, — el) +ihn  —ho — (e}, — &2) + ifin
eE c0s 6, ~—~ UmULA (12— fl)i- Vis(K' — K') et et
Z 2 : (ol 2 T (o1 2
2 o (62 — &) + thn ihw—i(el, —el) —n  —ilio—i(el, —&l) —n
_¢E cos 8, x— U Ui (i — f): )i Vid(k” — k) { et e—iot }
> ——— +
2 L (e — k) + ifin ihw —i(e}, —e) —n  —iliw—i(e), — &) —n
eE cos Gp Uy 1U1 le (fk o ) { gt eiot }
2 — 4 ,
(ak, — &) + ilin iw — (el —ek) +ihn — —ho — (ef —el) + ifin
_¢E cos 9,, 3 Upl Ul%(z RE(fL = £ { it .\ ot }
= (ef —&b) +ifin iw — (b —ek) +ihn — —ho — (e —el) + ifin

it —iwt

_eEcosf, Z Ui Udk (F — fk )i Vid (k" — k) { e e }
el, —el,) +ilin ihw —i(e, — &, —thw—zs
2w K~ fl k ~ fl) ~
eE cos 6 Uao UG (f3 fk) - Vied (K" — K') et e—iot
r Z +
— g2, —el) + ihn ihw —i(e, — &) —n  —iho —i(g — ¢
2w W K K~ i C ~ Ei) —

Ukk Umkzl Rz (fk2

eE cos 9,, Z

_ fl:{l’) { it et }

(2 — &) + ifin ho — (e — &}) + iln * —hw — (s3, — €}) + ilin
¢E cos 0, 3 U Ut - R (fr — f2) { e N e }
2 (62 — &}) + ifin ho — (e}, — &}) +iin  —ho — (e} — &}) + ilin
| ¢Ecosty Z URZUZ (12— 12)i- Vis(K' — k) { e N et }
2 (e2 — &k) + ifin ihw—i(el —e}) —n —ilw—i(e} —&l) —n
_eEcosd, Z Ut UZ ( fk, - ,) Vid (K" — k) { el N el }
2 (et + ifin ihw—i(el —el) —n  —ihw—i(e} —&}) —n

eE cos 9,, Z

Ui R

— &) +iln

fk ) { et eiwt }

liw — (&) —8k)—|—zhn+—ha)—(8 —&}) + ilin

_ ¢E cosb, Z U,:,TUlf,',';z R (f —
(2 — k) + ilin

m'=1k’

fkl) { el N et }
o — (e —e2) +iln  —ho — (e — &) + ilin
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_ ¢E cosb, 3 UAUS(fE = L)1 Vs (K" — k) { et N e~iot }
2 & (62 — &b +ihn ihw —i(ef —e}) —n  —ilio—i(ef — &) —n
+eE cos 6, Z U UG (fe — 1)i- Vied (K" —K') { et N e~iet }
2 & (2 — k) + ifin ihw —i(ef —e}) —n  —ilio—i(ef — &) —n
_eE cos ep Z Ukllg m2" R3m (fk fl:"l/) { eiwt N e—iwt }
2 & (812( &) + ihn iw— (g8, — e}) +ihn ~ —ho — (&), — &) + ifin
eE cos 91, Z UL U3ﬁ iRy Z(fk flf) { it . oiot }
(62 — &) + ifin ho — (e —&l) +iin  —ho — (&), — &}) + ilin
+eE cos 6, Z Ukllz Ulzzk (fk fk ) AV (k// — k/) { it e—iot }
2 L= (e — &) + lhn ihw—i(e) —el) —n —ilw—i(e) —el) —n
_ ¢E cos b, 3 UBUR(f2 — £2)i - Vs (k" — k) { et et
2 o (e — &) +inn ihw—i(e), —e}) —n  —ilio—i(e) — ) —n
+eE cos 6, Z URAUSZT - R (3 — ") { e N e it }
ik (68 — &) +ihn ho — (e — &) +ilin  —ho — (e — &) + ifin
_ ¢Ecosb, v UuZi - RS (fr — £ { el N e it }
i (68 —&l) +ifin o — (ef — &) +iin  —ho — (e — &) + ilin
_eEcosb, Z Ui U (3 — )i - Vid (K" — k) { et N e ' }
2 & (68 — b)) +ihn ihw —i(ef —e)) —n  —ilio—i(ef —&)) —n
+eE cos 0, Z UL us ( 5 fk) Vi S(k” k’) { ot . o—iot }
2 & (8 — k) + ifin ihw—i(ef —e)) —n  —ilio—i(ef —&)) —n
_ ¢E cosb, Z U OB - R (12— £ { et N et }
2 _ o . (4 2 : _ o em 2 :
2 (62 — &) + ifin liw — (&), — el) + ihin iw — (e — &}) + ilin
| ¢Ecos ep 3 Uy U,jﬁ“ RE2(fr' — £3) { et .\ ot }
o (e — &) +inn o — (&), — el) +ihn ~ —hw — (e, — e2) + ifin
+eE cos 6, Z URUZ (2 = 1)1 Vis (K" —K) { et N emiot }
2 (e — &) +ifin ihw—i(e), —el) —n  —ilio—i(ey, — ) —n
_ ¢E cos b, Z UNUS (f2 — )T Vs (K7 — k) { et N emiot }
2 L (e — &) +ihn ihw—i(e), —el) —n  —ilio—i(ey, — ) —n
+eE cos 6, Z URPUSRT - R (fd — M) { et N emiot }
ik (e — &) +ihn ho — (ef — &) +iin  —ho — (e —&}) + ifin
et o WSS SR) e e
i (e, — k) + ifin o — (e — &) +ihn  —ho — (e — &) + ilin
_ ¢E cos 9,, Z UL U ( b= L) s (k7 — k) { et emiot }
(ef —&k) +ihn ihw—i(ef —ef) —n  —ilio—i(ef —&t) —n
+6E cos 6, Z Ulgl? Ulﬁ( (fk fk) v 5(]{” k/) { elot et }
2 = (sk — sk) + ihn ihw — i(z?l}1 — aﬁ,) —n  —ikw— i(sli — 8;1,) -7
. Ecos6, Esing, A
+other 32 terms) by making use of > — % and (i1 — j)and (... +...) > (...—...) ). (A40)
i
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The density matrix for two valleys are written as

) .
(;t” + 2o+ He, ()] = (o)) — (),

TSI
o) g 2o+ M, (p2)] = (o) — T (). (Adl)

Let us begin with considering one valley with all in- and out-scattering processes to that valley. The density matrix can be
expanded in the powers of the electric field, and thus the quantum kinetic equation can be simplified as

a n n
%_i__d_k‘]g(f("’l)) ——([HE f(n 1)])_-](/)((,0>),
d
gtod (|[7—l0, ]|> fad +Jod(f(n Dy = (|[’}-[E, (n= 1)]|)—J6/((,0))» (A42)

where relaxation-times are given by Eq. (A21) and JO = Jo({p)) — f} /71 [see Eq. (A16)] and equally Jj = Jo({p)) — fl/T1,
Eq. (A19). Meanwhile we can also use the covariant derivative where
eEDf"=D  ¢E

—%<[HE,f("—”1>=7 o = o (VD iR ). (A43)

Note that f, © = fO(g)and fég) = 0. In this stage we follow the perturbation recipe to calculate first-order density matrices,
Jod, M () and f;lﬁ(t) They are given by

) = / dt e—’r{ E(') - Vief(e' (k) — Jﬁ(fo(e(k))—lé(t/)} (A44)

—0Q

and

! y o=l e n) € . ie" —t
o) = / di' e T e W { SE@) - [IR o () — foe" (k)] = Je () — J(f(t’)}e SR (A45)
—00
where fy(e°(k)) is an equilibrium Fermi-Dirac distribution function. Note that we first solve the kinetic equation for first order
in E;
f(l) e f(l)
d kl - °E. Vklfl?]’ dil, k2

e
; = _E Vi, f, (A46)

h

where k; and k; refer to valleys I and II, respectively. This solution of f; 'lz (¢) appears in J{/(¢') in Eq. (A46). To do so, we start
by looking at more dominate terms in J'(¢") and Jg ( fk) and use them selectively.

(1) (1)
d k 12 7722 1 d k 12
Jé/k((p))=2|:—U U — Uy ————————U,; :|
B N 2 _ . UKk YKk k.1 2 _ . “kik
kel &k —|—8k,l i ek,l + & —1n
(1) (1)
d,k 32 d .k
+ —U U, + —U U
Z —ep &), — ok T gl +od, —
k2€II 2 2
(1) (1)
d k 13 dll k) 32
+> [—1 : Upe, Ui — U, ————— Uk,k]
_ 3 _ 2 — 2
Koelt &t €, — 1 &t €, — 1N
and we also have
(1) (1)
dk 13 7132 13 dilK, 32
TN =Y [—U Uk — Ui, — U3 }
, 1 3 Yk YKk KK, 1 3 YKk
e &t 8k,2 n &t sk,z in

In the case of J¢, we have

h eE cos6 URUAT- R (2 — £ ot ot
Bt () = + <080 5o Ui Ui R (i k){ L. o }
i 2 - (2 — b) + ilin ho — (sh —e2) +ilin  —ho — (el — &) + ifin

_eE cos 9p Z Uk']?,Ulf,l ‘R (e — fie) { plot N oot }
= (s—ew) +imy ho — () —el) +ilin  —ho — (), — &l) + ifin
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¢E cos ), U U R (K = f2) et e~iot
- > . — + .
= (ek —ep) +ily o — (g, —el) +ihn ~ —ho — (&), — k) + ifin
eE cos 0, Ut Ukl - Rt (e — fid) e el
- > . — + .
= (ef — &) +ihn iw — (g, —el) +ihn ~ —ho — (&), — k) + ifin

E cos 6, E sinf
—

+ likewise terms by making use of < 5 > Pand G — j)and (... +..)— (... — )) (A47)
i

and for J¢, we will have
eE cos 6, Z U URT-RE(f2 = 1) {
2 1 . 1 2 . + 1 2 .
= (sf—ey) il ho — (e, —&}) +iin  —ho — (e}, — &}) + ilin
¢E cos ), 3 URUSRT-RE(fS — ) { N }
2 B (s —e)+im ho — (ef — &) +ilin  —ho — (e — &) + il

elwl e —lwt

h
;Jgilk(<P>) =

} (A48)

el(l)[ 87 iwt

eE cos ), URUST- R (K- 1) et el
)y . — ,
= (e —ey) +iln ho — (e — &) +ilin  —ho — (e} — &) + ifin
eE cos ), U Uil - R (he — ) et et
- > . — + .
= () — &) +ifin o — (sh —ep) +ihn  —ho — () — &) + ifin

E cos0, N Esin6),
2 2i

+likewise terms by making use of ( and (0 — jand (... +..)— (.. —.. .)). (A49)

Therefore all terms can be given by

) = / di'e™ ™ { ZE() - Vif(6(0) — T (e k)) - Jé(r’)},

—00

Faak®) = / di'e™ e e { SE()- [iR.?[fo(a%k)) - fo(e”(k))} — (R ~ Jé’(r’)}e“ﬁ“—f’w,

—0Q

Fiihe®) = / e { ZE() - Vief (e (k) — I (£(e ) - Jé”(r’)},
frm = /_ dt,e_,;[%Ea/) Vi) = TV @) —Jé(t’)},

! ! . ’ - ’
an(D) = / di'e” et W[%E(r’) : {ka(f;?m — i IR — Rizl} /A J&(z/)}wﬁ“-’ o,
—0o0

' e ,
Firl(®) = f di'e” [EE(I)'kaj}},k(t’)—Jg”(fé”(t ))—Jg”a’)].

—0Q

By substituting all quantities in integrands, we would calculate the f (i) (t) and f 0(;?( ).

= 0k + faih i + OGsing,), (A50)

where

¢E cosf et el ), ¢E cos R
0, = p{ + },.ka():—P{Fo(w)+F0(—w)}l-ka0,

2 i+ —io+1 2h
(a1 _ ieEcoso, 3 U Uik - Rie! (f —fﬁ){ Fy(w) N Fo( — o) }
WkTTop e (L ey ihn e — (sf — ) + i —ho — (g5, — 1) + ifin

| ek cost, 3 URURLE-RE(f - £2) { Fo(o) . Fol - o) }
2n S (e —ew) + i iw — (g, —el) +ihn ~ —ho — (&), — k) + ifin

o]

" ieE cos 6, Z U UST Rﬁ‘,‘(fl: - f]f,) { Fo(a)) Fo( - a)) }
2h (ex — &) + ifin ho — (s — el) +ihn  —ho — (¢, —&l) +ifin ]’

k'ell
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3 0
) etE cos 9,, [ 1-Vif° 53 1 i- Vi f 0 }
_ U2 gl e g e )+ Ry~ AS51
3d.k kXe;I el T ey, — i ki Vgl T Uk T &, —in 'k |[Fo(@) + Fo(—w) (ASI)
where we define Fy(w) = ' /(iw + ig(e} — e2))/h + 1/7).
o(;)k = 1(010)1 kT 2(0131 kT fs(i; x +0(sin6,), (A52)

D= E (0 (ed) = 1)) Fi@) + ol R,

ay _ _leEcost, ) U Ui - Rig (& — ) { F(w) Fi(~w) }
2od k 2n £ (e — &) +ilin iw — (ef, — el) +ihn ~ —ho — (e}, — &2) + ifin

ay _ leEcos 9,, Z UQEUS%( ‘R (fk, fk') { F(w) Fi(—w) }
220d.k et (e3, — &l) + ifin ho — (ef —&)) +ilin ~ —ho — (e — &) + ifin

g 0
) etEcosep 1+ Vifo 12 1 i-Vif 2
= ——U, U — Uy Uk | + Fi(—
3od k kXE:I “ent el —in Kk lk_gll(/] Yol ik |[F1(@) + Fi(-w)]
etE cosb, i Vif 13 7132 Vi f° 4
— > Uy —U U F F AS53
2 g,l:_gllc""gi i Vi Ui + = P 4/ = Ve k [[Fi(@) + Fi(-w)]. (AS53)
2

Therefore the time-independent contributions of second-order density matrix would be given by

l !
i = fiah + Frox + figx — / dr'e” I RN () + T )], (A54)
—00
where
e*TE? cos? 0 . . e?TE? cos 0, sin 0 A .
1(5,)1( = Tth{FO/(a)) + Fy(—)} (i - Vi) - Vi f) + T 21,22 PAFy () — Fy (=)} - Vi)(J - Vief*)
e21E? cos 0,sin6, , , n o 0 e2TE? sin 0, sin 6, , , o N 0
T i {—=Fy(@)+Fy(—o)}(j - Vi) - Vi )+ S i {—Fy(@) — Fy(=o)}(j - Vi)(J - Vi f),

(AS5)

where we define Fg’(a)) =1/(>iw+ ig(sll{ - eﬁ))/h + 1/7). Meanwhile, to calculate f(z) and f(z) we have to operate Vi on all
quantities and also include terms contain sin 6, cos 8,,. All details are carefully considered in numerics although I drop some
terms in the note for simplicity.

@ _ ie*TE? cos® ie’TE? cos’ 6, Z (Ukl,f,U]f,}j R (R - f,j,)) { Fj(w) Fj(—w) }
(kT oo (ef — &) + ifin o — (e —&l) + i —ho — (e —&l) + ilin

kK'ell

ie’TE? cos* 0, 3 UBUST-RE (R — £3)(0 - Vkel) { Fj () Fj(—) }
2x 20 A (el — &) + ifin (o — (&) — &) +imn)>  [—hw — (s, — &) + ifin]?
T sy 5 (Ué&UéLi RE(R - fé)) { —F®) —Fj(-w) }
20 x 2iR? o= (ef — &) +inn ho — (s —&l) +iin  —ho — (&), — &l) + ifin
_ietEsin’ 6, 3 U Uined - R (he = ) U - Vi) { —Fy (@) —Fy(—w) }
2i x 2iR° L= (ef — &) + ifin [hw — (), — ek) +iin)*  [—ho — (&) — &l) + ifin]?
| 1@TE? cos 3. <U,g¢,u,g,;i R (fid — fli)) { Fj (@) Fj(—w) }
2x 20 = (el — &) +ihn iw— (g, —el) +ihn ~ —ho — (&), — &}) + ifin
_ie’TE? cos’ 6, 3 U URT-RE(FL — £23)1 - Viel { Fj(®) Fj(—w) }
2x 20 (ef —&d) + ifin [hw — (sf, — &) +ifn]?  [—ho — (&), — e}) + ifn]?
T sty 5 (Ulzsu.a;j RE(R - fs)) { R@ Ko }
C2ix 2R’ (ex — &) +ilin ho — (e — &) +ihn  —ho — (g, — &}) + ifin
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_ie’tE?sin’ 6, Z UNUST - RE(K = 1£2)] - Vier { —Fj(w) —Fj(—w) }
2 x 2l A= (ek — &) + ilin [iw — (&), — &) +ifn)?  [—ho — (&), — ek) + iAn]?
ie*TE? cos? 6, T vk<Ul},§,U,§1 RE(R - f;&)){ Fj(w) Fyj(—w) }
2 x 21? = (ef — &) +ifin iw— (g, —el) +ihn ~ —ho — (&), — &k) + ifin
3 ie’TE? cos® 0, UL, U]?,Ll REHAL = £2)i - Vked ) { Fj(w) F(—w) }
2x 20 = (eh — &) +ifin [hw — (g, — eb) + i [—ho — (&), — &}) + ifin]?
L feTE sin’ 6, 35 (U.l.i‘/UéLJ‘ Ry (fi —fé)) { —Fy(w) —Fj(-w) }
2i x 2i% A= (el — &) + ifin ho — (s, —&l) +ilin ~ —ho — (g, — &l) + ifin
_ie’TE?sin’ 6, Z URUS T - RE(A = 12T vks}() { —Fj(w) —Fj(—w) }
2i x 2% L= (ef — &) + ifin [ — (e, — eb) +iin)*  [—ho — (e}, — e}) + iin]?
~+other terms. (A56)

Now we would like to mention that there are some terms which are more dominate term when Vi operates on the expressions.
Two terms play important role Vi fi. and Vi F/( — w) and expression in denominators, like

@ _ i€TE>cos’6, 3 UB Ui Ri‘,‘(fk 1) (- Viey) Fj(w) N Fj(—w)
2k 2 x 28 (er —&p) + ik [ho — (&, — eb) +iinl* ~ [—ho — (&) — &}) + ilin]?
K'ell k K n kT %k n i~ &k n
ie’TE?sin 0, Z UBUST - REK = 1) - Vker) { —Fj(») —Fj(—w) }
2i x 2% A=, (a}( — &) + ihn [hw — (e, — &) + i [—hw — (¢, — &}) + ifin]?
ie’TE? cos® 6, Ukk,Uf,}(l RE (AL — £2)i - Vkek { Fj(w) Fj(—w) }
2 x 2K = (ef — &) +inn [hw — (g, — eb) + > [—ho — (&, — &}) + ifin]?
ie*TE*sin? 0, Z UNUST - REK = £2)] - Vier { —Fj(w) N —Fj(—w) }
2i x 2% L=, (sh — &) + ilin liw — (ef — ek) + iin)>  [—ho — (e, — &}) + ihn]?
ie*TE? cos’ 0, Z UNUST-RE(F = )i Ve, { Fj(w) Fj(—w) }
2 x 2h% o= (811( - ak,) + ihn [Aw — Sk, — Sk) +iin)?  [~ho — (Sﬁ, — 8]1() + ilin)?
_ie’TE?sin’ 6, r 3 U UST R (AL — £E)] - Vksk) { —Fj(w) —Fj(—w) }
2i x 2il? o= (ef — &) +ihn [w — (ef —ef) +ifinl*  [~ho — (¢}, — &) + ifin]?
+other terms (A57)
and
ie’t2E? cos* 0, , 1-Vif© i+ Vig f ,
k= A | o U VR Ui U (IR @) + B0l
X K,ell [ek &, T in] [ex — fig + in]
ie*t2E%sin’ 0, . 7 Vi fo J Vi f° ,
+#th Vkek Z %UI(IE’ZUS’Zk - Uﬁﬁ;ﬁljszk [—Fo/(a)) — Fy(-w)]
LX K,ell [ek &, T in] [ex — fig + in]
~+other terms. (A58)
On the other hand,

! = el / € / / 1oy | g2 (t—t'
fi® = f dr'e™ RO B - Vi f i) = i D[R = RET} = I (V@) = Jy @) |50, (A59)

—00

t ;o , . ,
o(j)k — 1(2 k f2(12 . + f%(i; . / dt/e—%e—wll((t—t )/ ki [Jgd (fél)(f/)) + J(/)/(t/)]ew‘z‘(t_z )/h. (A60)

—00
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We define 1/y = i(g) — 812{) /h + 1/t and calculate the off-diagonal parts. Therefore we then find

e2E?cos? 0, ., / , .
i fradk = g Vel ) = SN F (@) + Bl (—o))i - R
P22 2
— fXC;; % (fo (511() —f° (812()))/1(2 - Vi (811( - Sﬁ){F{Z(a)) + F{z(—a))}? . R|1(2
252 2
e’E 00529p (f0(<91]<) _ f0(8|2())Vk{F1/(w) +F(—o)i - Vi - RD
2 x2h
. 2E2 20 R A
—= 5 XC;)}; . (fo (811() —f° (Sﬁ))Vk{F{(a)) + F/(—o))i- (R{' — RiHi - R2
2E?sin% 0 A ) / R
20 % Zzth Vi (£ (ex) — f2(e8)) ned—F| (@) — F{(—w)}j - R
2E?sin% 0 , / . .
e 2ih2p (7 (ex) — £2(e8)) Wl —F/ (@) — F{(=0)}] - Viij - Ry

252 oin2
_ie"E”sin” 6, (f°(ex) = £2(e8)) 0 - Vic(eg — e{—F* (@) — F2(—)}j - Ry

2i x 2l
e’ sin” R R
S () ~ P E)RIF @) - Kol - (R = RE) - Ry
i x 2ih
ie’E f:osepsln&n (fo(gll() _ fo(glz())yk{Fllz(w) _ F]’Z(—a))}[?~ Vk(S _ gk) Rll(z]
2i x 2h
2E cos 0, sin 0 \
CE 080 1oty e8| — )+ T Siled - T REL a6
=i 2(3311(
_ el s UURTREGE ) oo R F(-o)
2% 2R (82 — g ) T [T (eh —&l) +iln?  [~ho — (e}, — e2) + ifin]?
kel K % K’ k % k
2 x 21? e (sﬁ - ek,) + ihn O ho — (g, — &) +ifin] T —hw — (2 — e2) + ifin
- COS ep Z Ul?lE’Ul?%(l Rll(/l (fk/ fkl) 2 v/ (81 _ 82){ F]/Z(CU) F]/Z(_(l)) }
2 x 21* —&}) +ifin T o — (el — &)+ ihn | —ho — (e — &) + ifin
E 0052 0, < UL U,g,%(z Rii (fe = fe) " { f’{(w)z | Fl;(—a))2 | }1 (Rl — R2)
2 x 2k e (e — &) +ilin o — (eh, — &2) +ihn  —hw — (e}, — &2) + ifin
> cos 0, Z Ul?li’Ul?/z Ry (e — ) Vk{ Fi(w) F(-o) }; (RL — R2).
2520 L= (e — o) + il ho — (e) — &) +ihn  —ho — (g) —&)) +ihn koK
2 __ieerzcoszép(_A_ v 1) Z 1-Vif° B2 1-Vif° Ul U42 (F/(@) + F! (—)]
i = =g W) 2 | o e e g g ik A @)+ R o

e’tE? cos’ 0, - Vif° - Vif©
- U U + ————UR U [wlF (@) + R (-o)li - (Ry! — RY?
2 % 252 Z el in Kk, 811(—8k,+ in Kk} el 1( ) 1( )] ( Kk k)

ie*’TE*sin® 0, , 7 Vif? 7 Vi fO
(=] Vs, —U13,U3,2+—U ) Fl(w Fl(—w
=l SRR o] ey, P DUk G p U =i (@) = o]
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2 E2 gin2 H 0
e“TE”sin“ 0, J-Vif 13 4232
TR [el — e, +ig et
kperr Lk T B T

+ other terms.

4. Numerical scaling

In order to carry our the numerical calculation of J, we
perform some standard scaling, k = kag, hiw = ey®, g =
B2 /Zmea(z) and kg = /mn where n is the average electron
density ~10'? cm~2. Thus

Sap JEE = eSap j%
heg hey €0C
(A63)

when J is in units of pA/m and I is intensity of light in
units of W/m?. We make use of €yc = ﬁ with o = 1/137.
Therefore J? /I, would be in units of pA m/W. Notice that the
vector current is defined by vector Ry therefore by assuming
the electric field along the x direction, we do have J* and
Jy(z) components. Note that we also use 7~! = n;UZ, then the
results would depend on A. Actually the intervalley scattering
process is proportional to A2, Figure 6 shows the second-order
DC photocurrent at the the K-point as a function of energy
for circularly polarized light for various strain values. Further-
more, Fig. 7 shows the optical response for various trigonal

warping.

APPENDIX B: BETHE-SALPETER EQUATION AND
EXCITON
BAND STRUCTURE

Since in an absorption photon a pari of the electron and
hole are created thus a new state is emerged owing to Coulomb
interaction. This coupled electron-phonon state can be viewed
as a noncharged exiton excitation. This new state leads to

400  —— &=0.01 15
| === e=0.005 ok
g —— £=0.002 At
2300 AsL
g ‘4t
_ .,
< Il o
' 68 1.7 1.72 1.74 1.76 1.7
S200r '
I | |
P .
(‘\\l/ 1 I‘
b 100 F i
' : '%
0O M [ S T
165 17 175 18 185 19 195 2
ho (eV)

FIG. 6. 0 = (J,(¢) — J.(¢ = 0))/I, (in units of pA m/W) as a
function of 7w (in units of eV) for a circularly polarized light, and
m = 0.02 eV for different value of strain ¢ for given U,;, = —0.02
eV,n=5x 102 cm™2, and T = 2 ps.

7 Vif?

_ g ;
X €k,2+li7

A

Ui, U4,22k:| wl—F/(0) — F'(~o)1j - (R — RY)

(A62)

(

additional absorption peaks shifted from the fundamental ab-
sorption edge by the coupling energies.

It is common believed that the exciton physics of 2D-TMD
is controlled by mirror, threefold rotational and time-reversal
symmetries. Finite-momentum excitons are optically inactive.
Low-energy exciton states appear both near the Brillouin-zone
center and near the Brillouin zone center excitons. Here we are
just interested in the BZ corner excitons close to (K, K’). The
interacting Hamiltonian is

1 / TooF
H=Ho+5 Y V(R —Rag,al, axvar.  (B1)
R,R’

where H) is the noninteracting part and the second part is the
Coulomb interaction. agu is the electron creation operator for
orbital v at Mo site R. The Coulomb interaction is given by
the Keldysh form to account for the finite width of the TMD
layer.

Exciton states with center of mass momentum Q can be
expanded in terms of electron-hole states as

|\IJ) = Z CQ(U, c, k)bLQ’Cbk,ull/fS),

v,c,k

(B2)

where b;k is quasiparticle operator for band n at momentum k.
In order to calculate the exciton, we do need to solve Bethe-
Salpeter equation where its solution determines the exciton
eigenvalue and wave functions. The Hamiltonian matrix is

<k|H|k,) = SU‘U’(SCC’(Skk/(ekJrQ,C - Ek,v)

k—k’ (U]L_Quk’wLQ Dec (Z/I]Z/uk D'

N
1
+ ﬁVQ<u.I+Quk)w(u;/ukfm)w, (B3)
A
300 - g T y=054eV
g I /| —— t=034ev
= =
g 00l t,=-0.14 eV
<
Q L
p—
>
~ 7100 -
Q
C %
0r o
1 " 1 " 1 " 1 " 1 n
1.65 1.7 1.75 1.8 1.85 1.9 1.95 2
ho (eV)

FIG. 7. The effect of the trigonal warping, through strain, on o
(in units of pA m/W). The relaxation time is v = 2 ps, m = 0.02
eV, Uge = —0.02 eV, the strain ¢ = 0.005 and n = 5 x 10" cm—2.
By considering t; = t, = 0, the J/I, from off diagonal part is totally
small.
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where Uy is the unitary matrix which diagonalizes the quasi-
particle Hamiltonian 7. Notice that in the case Q = 0, the
last term of RHS, (exchange term) vanishes due to the orthog-
onality property (Z/IIIL{k )ev = 0. To calculate the RHS of above
equation, we have

s 1#1 1 _h12
= = — X B4
A (‘/f2> VD? + |h12|2< g ) .
with D* = h, — s,/h? + |h2|. Therefore
. 1
(kIHIK') = (¢°(k) — &"(k))S k — aVk—k’{[hTz(k)hIZ(k/)

+ D*(K)D(K)]c[hiy (K )iz (k) + D* (k)D(K)1,},
(BS)

where A is area of 2D system. The Bethe-Salpeter equa-
tion now reads

1
;[(sc(k) — &' (k) — ﬁvk—k’{[h]kz(k)hlz(k/)

+ D*()D(k)]s=1 R, (K)o (k)
+ D*(K')D(k)ls=—1 1| Wi) = Ex|¥). (B6)

These eigenvalues and eigenvectors might be used to solve
Eq. (B6) to calculate the impact of the exciton effects on the
DC optical current. Figure 8 shows the renormalized band gap
exciton in terms of the dielectric constant, calculated from Eq.
(B6).

1. Exciton absorption in density matrix approach

The interband transitions excited by a homogenous electric
field are described by a single-particle operator of perturbation
Sdhexp(—iwt) where 6h = i(e/w)(E - v) in the basis where
eigenvalues and (v) = —iR[¢" — ¢¢] is the interband ve-
locity. From now on, the conduction and valence bands are
defined in exciton states. We are interested in the response
of the system near the absorption edge when |fiw — A| < A
with the effective bandgap A. Making use of the eigenstate
of noninteracting system, we can obtain the linearized kinetic
equation [90]

i i
—iwdpys + E(Sn — €5)80y5 + E‘Sh(fn —J5)

i
+_Fz Z D@y, [8yin8Fsyy3y + 8y2n8Fy 5737,
Yi-V4

- 6}’358FJ/I)’2’H/4 =39 458Fy|yzym] =0, (B7)

where @, = [ ¢} (X, (X)V (X — X )y, (X)¢,, (X') and
8Eyyaysys = Syﬂyz(szoymfyz + 81/4)/189}/;}/2](1/4 -4
8,110 Py4y, frs- Notice thatfd (k) = {p12(k)).

We consider an electron doped system where f, = 1 and
fe = 0(ep — €°) and after some straightforward algebra, the
density matrix describing the interband polarization is given
by

V4V28p)/3)/1 f}/z -

(€ — &" — hw — iht) £ (K) + [1 — O(er — e(k)]8h(K)

— 1 2 Vi U0 () + D ()DH)=y
k/

X [, (K Yo (k) + D* (K )D(k)s=—1}1 £ (k') = 0. (B8)

To solve this equation, we do first-order integrative approxi-
mation and hence
Fae) = & L= 0 — el d) — o (k)E - R ()
@ (e°(k) — &¥(k) — hiw — iliT)
e

T o0 e (0 — o —irry

(B9)
where

1
KK = 2 Y Vw0 ) + D' (0DE oy
k/

X[, (k)12 (k) + D* (K" )D(k)]s=—1}]
[1—0(er — (KD (K) — &"(K)R(K')
(e°(K') — e"(K') — hw — ihT) ’
(B10)

since we are considering the trigonal warping, the last term of
the RHS is a complex expression. If we perform another ap-
proximation and set ' = f = 8’ = o = «’ = 0 only in K(k)
and therefore, the trigonal warping carries out by the first
term. Within this simplification, we can have

K(Kk) = /k’dk’[(] + cos 6 )(1 + cos 6 )g(0)
42 sin 6 sin G g(s) + (1 — cos 6;)(1 — cos Oy )g(2s)]
o [1 —6(ep — (k) (k") — " (K"))R (k')
(e¢(k’) — eV(k') — how — ihT)

.(B11)

where
1 2 ,
g(m) = 200)? /0 deV (Ik — K'|) cos(m), (B12)

cos By = A/e, and cos ¢ = k - K'/(|k]||K']).

Again note that f (f;)(k) can be obtained by Green’s func-
tion in k space. The spectral function is given by the Green’s
function in real space for which we define the Sommerfeld
factor [90]. Sommerfeld factor implies a peak around the
optical transition in the spectral function or density of states.
Based on that we expect to possess a jump in the current near
the optical transition. Put differently, the jump at the optical
transition indicates the large density of states or the existence
of the Sommerfeld factor.

Let’s write down the exciton problem in the relative coor-
dinate with reduced mass m*:

Flz
{ —55Vr— v(r)}lﬁfz(r) = e (), (B13)
2m*
where the negative of the potential accounts the electron and
hole attraction and we use the bare Coulomb potential. In the
system we define the effective Bohr radius a} = fi*e/m*e?

where m* ~ 0.25m. The spectral function of the system is
defined as

n _ 2
W(e(w)) = sz Vi (r = O)

g(w)—e"+in

=7 ) [ = 0P8¢" —e@)),  (Bl4)

where e(w) = liw — (e —¢&") and |Yy/(r = 0)|? called the
Sommerfeld factor.
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The solution of Eq. (B13) for negative energy can be writ- hence the Sommerfeld factor is given by
ten as a MoS, wave function (plan wave times to the spinor) 13
and spherical waves. The normalized wave functions are [ (r = 0)> = Ama? (B16)
a
1, b
'r) = —e O(—n, 1;2kr), B15 . o
Vi) JA ¥ios, P( ) ®B15) This expression increases as m*? at a small energy value. Note

that the energy is h2k2 /2m*.

where A is the areal of the system, k = \/Tik/h and Tn order to calculate the optical current, we de need to
@ is the confluent hypergeometric function. ¥vos, Vyos, = 1. evaluate the following expression:
|
Vi [y (k)
_ ¢ 03, Heth éi}:)vfeglzii fk;w—) D gior 4 ot ROV (k)
A 9(§§(_k§(f)jv(i(;_(l;; ) or 1 gmionsi Rev ()
oty W) e
+= §Zf s G(SCF(IZ) 8_(2]((;;(5 )h;)g D o 1 i R )
. eEzsiiZ 6, 8(e(K) ;iiffi'iiﬁifk,i;) EE) (gor _ gion 5 e k)
+eE2sii:; 0,1 — e(i;(—ke;(f)s]zl;(;:(l;)w ; €10 or _ gion) 5 mev i
A D e
+ eEzsiicI: e 6((5(1«_) g_(l;)v]((li;(f )hc_a)s O qior _ o ) - Vk R (K)
-= EZS . [(ch(,;(()gc_a;)u(;; U—(l;z)a)»]z (e + 7D Kk = eEzsiicI: . [(efv(ll(«()gc—(lz)"(;)g v—(l;)a)»]Z (e — ™) K
¢E cosd, I ¢E sin0), o ioren
@ et —men ¢ ¢t et — a0 — ey ¢ VRGO BID

(

12 0.015 |
—
% 0.01 -
<
(o8
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FIG. 9. Nonlinear optical response (in units of pA m/W) as a
function of Ziw (in units of eV) for a circularly polarized light, n =
5x 102 cm2 and m = 0.02 eV, U, = —0.02 eV using Nagaosa’s
formalism.

FIG. 8. The renormalized bandgap exciton, A*, based on the
Bethe-Salpeter equation as a function of averaged environment di-
electric constant, €. The bare band gap is 1.82 eV.
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In this stage, we can pluck the above expressions in Eq. (13)
and calculate second order of the time-independent off-
diagonal density matrix component. Before that notice ¢/’
has no physical meaning in the expressions and we should
drop that term off.

APPENDIX C: INTRINSIC SHIFT-CURRENT

A theory called the shift-current was proposed which at-
tributed the charge separation arising from the asymmetry in
the electron and hole wave functions [42]. This is an intrinsic
effect of the shift current. A two-band model Hamiltonian
was considered to explore the interband optical transition.
The Floquet Hamiltonian is coupled by time-dependent

terms, (uc|% fH(k — A(1))e’ dt|u,). The nonlinear optical

response, J; = Zi:x,y X}iE[E[, is given by
i me dk 5(c5 — &l — hao) v! |2
= —— (e — &p — how)|v!.
X h2a)2 (27‘[)d k k ve

x (Vkgl, + R —R"Y), (C1)

where i and j are cartesian coordinates and ¢f_v = JIm(log vy)
maintains the gauge invariant. The interband velocity is also
defined as v, = i(e}, — &,)R". Figure 9 shows the shift cur-
rent response as a function of energy for a circularly polarized
light calculated from Eq. (C1).
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