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We investigate spin- and valley-symmetry-broken fractional quantum Hall phases within a formalism that
naturally extends the paradigm of quantum Hall ferromagnetism from integer to fractional quantum Hall states,
allowing us to construct detailed phase diagrams for a large class of multicomponent states. Motivated by recent
experiments on graphene aligned with a boron nitride substrate, we predict a sequence of transitions realized
by increasing the magnetic field, starting from a sublattice polarized state to a valley coherent Kekulé charge
density wave state and further to an antiferromagnetic phase. Moreover, for filling fractions such as ν = ± 1

3 , we
predict that the system undergoes a transition at low fields, that not only differ by the spin-valley orientation of
the fractionally filled flavors, but also by their intrinsic fractional quantum Hall nature. This transition is from a
Laughlin-type state to a two-component Halperin-type state both with a charge density wave order. Moreover, for
ν = ± 1

3 , ± 2
3 , we predict a “canted Kekulé density phase” where the spinors of integer and fractionally occupied

components have different orientations in the valley Bloch sphere, in contrast to the Kekulé state for the integer
quantum Hall state at neutrality where both occupied components have the same orientation in the valley Bloch
sphere.

DOI: 10.1103/PhysRevB.105.195417

I. INTRODUCTION

The quantum Hall regime in graphene offers a fantastic
arena to investigate the interplay of broken symmetry, topol-
ogy, and fractionalization [1–30], that continues to flourish
thanks to a combination of high-quality samples, enlarged
degeneracy from its valley degree of freedom, and its ex-
posed nature that allows new ways to measure and control the
states of interest. For example, recent experiments have devel-
oped remarkable techniques to generate and detect long-range
transmission of collective excitations in broken-symmetry in-
teger and fractional quantum Hall states [7,22,23,29,31–35],
and recent theoretical and scanning tunneling microscopy
studies have provided detailed evidence of valence-bond
quantum Hall Kekulé-type states [36–39].

Moreover, the possibility to align graphene with substrates,
such as hexagonal boron nitride (hBN), can lead to a substan-
tially enriched space of states. This is in fact one of the key
purposes of this work, where we will demonstrate that a del-
icate competition of a variety of broken-symmetry fractional
quantum Hall states in the zeroth Landau level of graphene
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arise as a consequence of the interplay of the hBN-induced
sublattice symmetry breaking and the tendency of the intrinsic
interactions in graphene to stabilize antiferromagnetic states
at high fields, as summarized in Fig. 1.

Another key purpose of our work is to elaborate on a frame-
work introduced by MacDonald and one of us in Ref. [10],
which generalizes the Hartree-Fock theory of integer quantum
Hall ferromagnets to a vast class of experimentally relevant
multicomponent fractional quantum Hall states [40]. This
framework allows to make detailed quantitative predictions of
broken-symmetry phase diagrams and quasiparticle excitation
gaps and, in particular, it can be applied to determine the com-
peting phases arising in the model Hamiltonian introduced by
Kharitonov [6], which has proved to be a valuable tool for
understanding the broken-symmetry phases of the zeroth Lan-
dau level of graphene [6,10,11,16,41–48]. This model can be
viewed as descending from the model introduced by Aleiner,
Kharzeev, and Tsvelik [49] upon projection onto the zeroth
Landau level of graphene [6].

While we will develop analytical formulas for a class of
fractional quantum states with arbitrary fillings, we will focus
especially on states realized at fillings ν = ± 1

3 ,± 2
3 which

are often the most robust in experiments. At ν = ± 1
3 , in

particular, we will describe a competition between a class of
Laughlin-type states and singlet Halperin-type states that not
only differ by the spin-valley orientation of the fractionally
filled flavors but also by their intrinsic fractional quantum Hall
nature, and are analogous to spin-polarized and spin-singlet
states realized at total filling 2

3 in GaAs [3,50–56]. This makes
graphene an attractive platform to study these states, their
edge modes, and the interface between them, which due to its
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FIG. 1. Sequence of transitions within and between the valley-ordered phases and spin-ordered phases estimated using the variation theory
for SU(4) symmetry-breaking interaction in multicomponent fractional quantum Hall states of graphene for a total filling ν = 2

3 measured
relative to charge neutrality.

nonchiral nature is a candidate to realize parafermion modes
by coupling it to superconductors, which is an interesting
platform for topological quantum computation [57–64].

Our paper is organized as follows: Section II discusses the
framework that generalizes the theory of broken-symmetry
quantum Hall ferromagnetism to multicomponent fractional
quantum Hall (FQH) states. The discussion here is kept gen-
eral so as to apply to multicomponent quantum Hall systems
beyond graphene. Section III then reviews how to apply this
formalism to the Kharitonov model of symmetry-breaking
interactions in the n = 0 Landau level of graphene, where
n = 0 corresponds to the orbital Landau level located at the
Dirac point. Section IV then applies the formalism to com-
pute the phase diagram of the broken-symmetry states of the
integer quantum Hall states at ν = 0 paying special attention
to the modifications brought in by the hBN-induced sublattice
potential. Section V generalizes these considerations to the
phase diagrams of a large class of general fractional quantum
Hall states. Section VI presents our prediction of a series of
transitions between valley- and spin-broken order in fractional
quantum Hall states realized within the regime of experimen-
tal parameters. In Sec. VII, we comment on the distinction in
the universal topological order between the Laughlin-type and
Halperin-type states. Finally, Sec. VIII presents conclusions
and discussions.

II. MULTICOMPONENT FQH STATES AND VARIATIONAL
THEORY OF ISOSPIN SYMMETRY-BREAKING

SHORT-RANGE INTERACTIONS

A. Constructing correlated states on quantum Hall ferromagnet
vacua

We consider a multicomponent quantum Hall system with
N internal flavors and imagine that the Hamiltonian can be

separated into a dominant part that is SU(N ) invariant plus
smaller symmetry-breaking perturbations. It is then natural
to first understand many-body ground states of the SU(N )
invariant part, which appear in degenerate sets forming irre-
ducible representations. Irreducible representations of SU(N )
arising from a system Ne electrons can be labeled by a set of
N integers satisfying

n1 � n2 · · · � nN � 0,
∑

i

ni = Ne. (1)

These integers count the number of boxes in each row of
a Young tableau depiction of the representation [65], and,
more intuitively, they simply count the invariant number of
particles occupying each of the internal flavors [66]. This
leads to a generalization of the notion of filling factor into
an N-component filling vector which specifies the SU(N )
invariant occupations of each of the flavors and is defined as

(ν1, ν2, . . . , νN ), νi ≡ ni

Nφ

,
∑

i

νi = ν, (2)

where Nφ is the number of flux quanta. When the fillings νi are
integers, the state corresponds to an integer quantum Hall fer-
romagnet (IQHFM) which are well known to be exact ground
states of a large class of repulsive SU(N ) invariant Hamiltoni-
ans projected into a Landau level. Moreover, IQHM states also
serve as “perfect vacua” on which one can construct correlated
FQH states. Namely, if we have an eigenstate of the Hamilto-
nian with with K (� N ) fractionally filled components and
N − K empty components, labeled by (ν1, . . . , νK , 0, . . . , 0),
then we can “glue” this state with any IQHFM with L (� N −
K ) integer filled components, to obtain a new eigenstate of the
form (1, . . . , 1, ν1, . . . , νK , 0, . . . , 0). The SU(N ) invariant

195417-2



THEORY OF COMPETING CHARGE DENSITY WAVE, … PHYSICAL REVIEW B 105, 195417 (2022)

interaction energy, denoted by V , of this new state can be
obtained from that of the other states, and is given by [67]

V [�L+K ] = V [�K ] + V [�L] + νK LNφVH , (3)

VH = 1

2π l2

∫
d2r v(r), (4)

where �K denotes the K-component FQH state with filling
νK = ∑K

i=1 νi, �L denotes the L-component IQHFM state,
and �K+L denotes the glued state of these two. v(r) is simply
the Hartree potential between the electrons in the fractionally
and integer occupied components, and would be absent if a
neutralizing background was present, as it is the case with
Coulomb interactions. l is the magnetic length.

The construction described above is based on adding cor-
related particles to the IQHFM. It is also possible to construct
a different set of states by adding correlated holes. Namely,
for any eigenstate with fillings (ν1, . . . , νK , 0, . . . , 0) one can
obtain other correlated states in which these particles are
removed from an IQHFM with L (� K ) integer filled com-
ponents, leading to a new state with L − K integer filled
components and the remaining fractionally filled as follows
(1, . . . 1, 1 − νK , . . . , 1 − ν1, 0, . . . , 0). The energy of these
states can be shown to be related as follows [67]:

V [�L−K ] = V [�K ]

+ Nφ (L − ν)

(
LVH −

∫
d2q

(2π )2
v(q)|F (q)|2

)
, (5)

where |F (q)|2 = exp(−q2l2/2) is the squared density form
factor of the lowest Landau level and v(q) is the Fourier
transform of the Hartree potential v(r).

B. Hard-core states and variational theory of short-range SU(N)
breaking interactions

The above two rules allow to construct a large set of new
FQHE states and determine their energy from knowledge of
FQHE states constructed on vacuum. An important set of
FQHE states in vacuum are those we will refer to as “hard-
core” states. A hard-core state is one in which the wave
function vanishes when any two particles approach each other
regardless of whether they have the same SU(N ) pseudospin
flavor. Clearly, this property endows these hard-core states
with energetically desirable correlations for repulsive interac-
tions, and this set includes many celebrated wave functions
like the Laughlin states, many of the Halperin multicompo-
nent states, the Jain states, the Moore-Read states, and others.

An important property of the set of any hard-core states
is that they necessarily have total filling factors restricted
to ν � 1 [10,67]. This can be seen easily by noting that
any wave function which vanishes whenever two particles
approach each other must necessarily be proportional to the
Laughlin-Jastrow–type function

∏
i< j (zi − z j ) with the in-

dices i, j running over all the particles times another analytic
polynomial of the coordinates. But, the wave function associ-
ated with the Laughlin-Jastrow–type factor has filling factor
1, and since multiplication by an analytic polynomial always
reduces the density of the wave function, it follows that their
fillings are restricted to ν � 1.

Another immediate property of hard-core states is that they
are zero eigenstates of any generic delta-function interaction
even if it breaks the SU(N ) symmetry. To illustrate this, let
us consider the following SU(N ) symmetry-breaking Hamil-
tonian:

Ha =
∑

i< j,αβ

gαβT i
αT

j
β δ(2)(ri − r j ) −

∑
iα

hαT i
α , (6)

where Tα are generators of SU(N ) and gαβ is a symmetric
matrix, and hα denote the strength of uniform single-particle
symmetry-breaking terms. It is easy to show that the hard-core
states are exact ground states of the above Hamiltonian, sim-
ply because they have zero probability for any two particles to
coincide at the same point in space regardless of their SU(N )
flavor, and therefore they are annihilated by the delta function
in Eq. (6). Moreover, the SU(N ) flavors of the occupied states
can be chosen to diagonalize the single-particle matrix hαTα ,
so that they are eigenstates of the full Hamiltonian in Eq. (6).

Now the states with ν > 1 that follow from the two pre-
viously discussed rules are not necessarily exact eigenstates
of this Hamiltonian. Let us imagine, however, that the SU(N )
invariant part of the Hamiltonian is much stronger than the
symmetry-breaking terms in Eq. (6), and therefore that the
orbital two-particle correlation functions of these states are
sufficiently rigid so as to remain well approximated by the
ideal SU(N ) invariant states, and that the role of the terms
in Eq. (6) is to select the ground state within the SU(N )
degenerate manifold. This assumption allows to construct a
variational mean field theory of these states somewhat analo-
gous to Hartree-Fock theory, albeit extended to states that are
far from being approximated as Slater determinants, namely,
the FQH states generated by the two previously discussed
rules. Specifically, consider an IQHFM vacuum occupying L
flavors, which can be parametrized by a projector of the form

Pi =
L∑

k=1

|χk〉 〈χk| , (7)

and consider a hard-core FQH state of K flavors, and to which
we associate a density matrix of fractional fillings associated
as follows:

Pf =
K∑

k=1

νk |χL+k〉 〈χL+k| . (8)

In writing Pi and Pf we are assuming that all the spinors
|χk〉 , |χL+k〉 are orthogonal and normalized. Now, it can be
shown [10,67] that the expectation value of the symmetry-
breaking Hamiltonian in Eq. (6) for the “glued” state of the
above IQHFM and FQH states can be written as

〈Ha〉
Nφ

= 1

2
Tr

(
PiH

HF
i

) + Tr
(
Pf HHF

i

)
−

∑
α

hαTr[(Pi + Pf )Tα], (9)

where HHF
i is the mean field Hartree-Fock Hamiltonian aris-

ing from interactions with the particles occupying integer
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filled components of the IQHFM, and it is given by

HHF
i =

∑
α,β

uαβ [Tr(PiTα )Tβ − TαPiTβ], (10)

where uα,β = gα,β

2π l2 . Notice that when the fractionally filled
components are empty (i.e., Pf = 0), the energy in Eq. (9)
reduces to the Hartree-Fock energy of the integer quantum
Hall ferromagnetic states [compare, e.g., with Eqs. (44)–(48)
of Ref. [6]]. Thus, we see that our description is a natural
extension of the theory of integer quantum Hall ferromagnets
to the case of multicomponent fractional quantum Hall states.

Therefore, the task is reduced to minimizing the energy
from Eq. (9) as a function of the spinors |χk〉 parametrizing
the IQHFM from Eqs. (7) and (8). The above equations are
obtained from the assumption of hard-core repulsion and the
following property of completely filled spinors:

ρ̂m(r) |�〉 = 1

2π�2
|�〉 , (11)

where ρ̂m(r) = PLLL
∑

i[δ(r − ri ) |χm〉ii 〈χm|]PLLL is the den-
sity projected to the mth completely filled spinor. We would
like to also mention in passing that, while the above frame-
work captures a large variety of multicomponent states, other
multicomponent states that deviate from this picture to this
date have not been understood theoretically have been found
in numerical studies [12,68].

III. WEAKLY BROKEN SU(4) FQH STATES IN GRAPHENE
ON hBN

In this section we apply the formalism of Sec. II to the
specific case of SU(4) symmetry-breaking interactions known
to occur in FQHEs of graphene. The integer and fractional
quantum Hall states of graphene under high magnetic fields
have been considered in detail in various works [6,8,10] and in
particular recent experiments have developed ingenious ways
to probe the pseudospin order in these systems by exploiting
the coupling of their order parameters to nonlocal transport
phenomena [21–23,32,35].

We focus on the zero Landau level of graphene, which has
N = 4 flavors arising from two valleys and two spins. The
long-range part of the Coulomb interactions projected into
these Landau levels is viewed as the dominant SU(4) invariant
part of the Hamiltonian. In addition, there are short-distance
lattice scale corrections to the Coulomb interactions [6,49]
that can be modeled as sublattice and valley dependence
contact interactions [69]. Including these terms is crucial be-
cause they play the role of the leading symmetry-breaking
terms in the Landau level, and therefore determine the specific
broken-symmetry ground states. We also imagine that the
alignment of graphene with an hBN substrate gives rise to a
single-particle valley splitting with strength �, as relevant for
experiments in Ref. [22]. Together with the ordinary Zeeman
term and short-distance interactions considered in previous
studies [6,10,67] the Hamiltonian in Eq. (6) can be written as

Ha =
∑
i< j,α

[g⊥(τ i
xτ

j
x + τ i

yτ
j

y ) + gzτ
i
zτ

j
z ]δ(2)(ri − r j )

−
∑

i

(
hσ i

z + �τ i
z

)
, (12)

where τi and σi are Pauli matrices for the valley isospin
and intrinsic spin, respectively, g⊥,z are the strengths of the
delta-function interactions, h is the spin-Zeeman term, and �

is the valley-Zeeman term. The valley-Zeeman term comes
from sublattices A and B having different energies, originating
from the alignment of graphene with an hBN substrate, as
seen in penetration capacitance measurements [22]. These
terms break the SU(4) weakly in the sense that g⊥, gz < e2/ε�

and h,� < e2/ε�. The values of g⊥, gz are dependant on the
magnetic field component perpendicular to the graphene plane
B⊥ (g⊥,z ∝ B⊥), whereas the Zeeman term h is determined
by the total magnetic field. From the above short-range
interaction terms one can define two energy scales:

uz,⊥ = gz,⊥
2π l2

. (13)

Now, let us obtain the contribution of these anisotropy
energies in order to determine the different phases realized
in the parameter space, following the formalism described
in Sec. II B. The many-body states we consider are the ones
which are constructed from the hard-core states which have
a filling of the form (1, 1, ν3, ν4) [70]. The variational co-
herent states associated with the completely filled flavors are
denoted by {|χ1〉 , |χ2〉}. The ones of the partially filled fla-
vors will be denoted by {|χ3〉 , |χ4〉}. The weighed projectors
onto these states are denoted by Pi = |χ1〉 〈χ1| + |χ2〉 〈χ2| and
Pf = ν3 |χ3〉 〈χ3| + ν4 |χ4〉 〈χ4|. The expectation value of the
anisotropy energy per flux quantum is given by [10,67]

〈Ha〉
Nφ

= 1

2
Tr

(
PiH

HF
i

) + Tr
(
Pf HHF

i

)

−h

2
Tr(Piσz ) − �

2
Tr(Piτz ),

HHF
i =

∑
α

uα[Tr(Piτα )τα − ταPiτα] − hσz − �τz. (14)

In the subsequent sections we will minimize the above vari-
ational energy with respect to the SU(4) orientation of the
spinors {|χ1〉 , |χ2〉 , |χ3〉 , |χ4〉}, for various cases.

IV. PHASE DIAGRAM FOR IQH STATES AT NEUTRALITY
WITH VALLEY-ZEEMAN TERM

In this section we will consider the symmetry-broken
phases and phase diagram of the integer quantum Hall effect
of graphene at neutrality. We sometimes will denote the total
filling by ν̃, such that ν̃ ∈ [0, 4]. Neutrality corresponds to
ν̃ = 2, and this relates to the other frequently used notation
of filling ν ∈ (−2, 2) as follows: ν̃ = 2 + ν.

The phase diagram of ν̃ = 2 (ν = 0) quantum Hall
state in graphene at neutrality has been studied extensively
[6,8,11,22]. Here we will review relevant aspects of it in
order to set up the notation and to include the valley-Zeeman
term induced by the hBN substrate in the same manner as in
Ref. [22]. This state also serves as the vacuum for creating
fractionally filled phases that we discuss in the next section.
Charge neutrality corresponds to occupation of two compo-
nents (ν1, ν2, ν3, ν4) = (1, 1, 0, 0).
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Within the theory described in Sec. III, the possible ground
states are parametrized by the projector: Pi = |χ1〉 〈χ1| +
|χ2〉 〈χ2|. We will also further restrict to states in which the
occupied spinors do not have valley-spin entanglement [6,10],
namely, states for which the SU(4) spinors can be taken as a
tensor product of the state in the valley space times one in the
spin space [71]. Restriction to this subset is parametrized by
the projector Pi:

Pi = Pn1 ⊗ Ps1 + Pn2 ⊗ Ps2 , (15)

where 	n1, 	n2 are the unit vectors in the Bloch sphere of the
valley isospin and 	s1, 	s2 are the unit vectors in the spin space.
Pnj is the valley-spin density matrix given by

Pn j = |	n j〉 〈	n j | = 1

2
(1 + 	n j · 	τ ) (16)

and of similar structure for the spins 	s1, 	s2. In addition, one
needs to enforce that the two projectors in the right-hand
side of Eq. (15) are orthogonal. This is achieved by either
making the spin vectors antiparallel while leaving their valley
orientations arbitrary, and we refer to these states as “valley
ordered” or by the converse choice in which the valley vectors
are antialigned and the spin vectors are arbitrary, and we refer
to the latter as “spin-ordered” states. The valley-ordered states
can be written as

χ1 = |	n1〉 ⊗ |	s〉 , χ2 = |	n2〉 ⊗ |−	s〉 ,

Pn = Pn1 ⊗ Ps + Pn2 ⊗ P−s. (17)

These contain states that correspond to charge density wave
(CDW) and Kekulé-distortion (KD) phases. The spin-ordered
states are

χa = |	n〉 ⊗ |	s1〉 , χb = |−	n〉 ⊗ |	s2〉 ,

Ps = Pn ⊗ Ps1 + P−n ⊗ Ps2 . (18)

These contain states such as ferromagnetic (FM) phase and
various antiferromagnetic (AFM) phases. From Eq. (14) the
anisotropy energy of the valley-ordered states parametrized in
Eq. (17) can be found to be

Eva = u⊥(n1xn2x + n1yn2y) + uzn1zn2z − �(n1z + n2z ).

(19)

Similarly, the anisotropy energy of the spin-ordered states
parametrized in Eq. (18) is found to be

Esa = −u⊥(1 + 	s1.	s2) − uz − h(s1z + s2z ). (20)

Minimization of these energy functionals leads to four
phases listed in Table I and to the corresponding phase dia-
gram shown in Fig. 2.

V. PHASE DIAGRAM OF FQHE STATES IN GRAPHENE
WITH VALLEY-ZEEMAN TERM

In this section, we will obtain the phase diagram for a
class of fractional quantum Hall phases in the presence of
valley-Zeeman term. We will explicitly consider the states
with filling vector (1, 1, ν3, ν4). Now we need to specify
both the fully filled spinors {|χ1〉 , |χ2〉} and fractionally filled
spinors {|χ3〉 , |χ4〉}. Again, after taking the occupied spinors

TABLE I. Spin-valley orientations of integer quantum Hall ferro-
magnets at neutrality and energies with Zeeman and valley-Zeeman
coupling.

State Valley Spin Energy

CDW n1z = n2z = 1 	s1 = −	s2 uz − 2�

Kekulé n1z = n2z = �

u⊥−uz
	s1 = −	s2 u⊥ − �2

uz−u⊥

CaAFM 	n1 = −	n2 s1z = s2z = h
2u⊥

−uz − h2

2|u⊥|
FM 	n1 = −	n2 	s1 = 	s2 −2u⊥ − uz − 2h

to be in valley-spin tensor product states and enforcing their
orthogonality, the states that minimize the anisotropy energy
in Eq. (14) fall into two classes: spin-ordered and valley-
ordered states. The spin-ordered states have the form

|χ1〉 = |	n, 	s3〉 , |χ2〉 = |−	n, 	s4〉 ,

|χ3〉 = |	n,−	s3〉 , |χ4〉 = |−	n,−	s4〉 .

Their anisotropy energy can be obtained from Eq. (14) as

Eso = −u⊥(1 − ν)	s3 · 	s4 − uz − u⊥(1 + ν)

− h[(1 − ν3)s3z + (1 − ν4)s4z] − �(ν3 − ν4). (21)

The valley-ordered states have the spinors

|χ1〉 = |	n3, 	s〉 , |χ2〉 = |	n4,−	s〉 ,

|χ3〉 = |−	n3, 	s〉 , |χ4〉 = |−	n4,−	s〉 .

Their anisotropy energy is obtained from Eq. (14) as

Evo = u⊥(1 − ν)u⊥	n3⊥ · 	n4⊥ + (1 − ν)uzn3zn4z − 2νu⊥
− νuz − �[(1 − ν3)n3z + (1 − ν4)n4z] − h(ν3 − ν4),

(22)

where ν = ν3 + ν4 and 	n3⊥ · 	n4⊥ = n3xn4x + n3yn4y. Notice
that in the anisotropy energy of valley-ordered states with
fractionally filled components the occupied spinors have dif-
ferent couplings to the sublattice symmetry-breaking strength
(�), except in the special case when ν3 = ν4. This special case

FIG. 2. Phase diagram of (1,1,0,0) integer quantum Hall ferro-
magnetic state in graphene in the presence of valley-Zeeman term �

(sublattice staggered potential).
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TABLE II. Orientations of valley isospin and spin for different phases at fractional filling (1, 1, ν3, ν4) and the corresponding energies. For
the expressions of n3z, n4z see (B12). The expression for s3z, s4z is given in Ref. [10].

State Valley isospin Spin Energy

CDW n1z = −n3z = n2z = −n4z = 1 	s1 = −	s2 = 	s3 = −	s4 uz(1 − 2ν ) − 2νu⊥ − �(2 − ν ) − h(ν3 − ν4)

CantedKD 	n1 = −	n3, 	n2 = −	n4, 	s1 = −	s2 = 	s3 = −	s4 (1 − ν )u⊥

√
(1−ν )2 (u2

z −u2
⊥ )−(1−ν4 )2�2

(1−ν )2 (u2
z −u2

⊥ )−(1−ν3 )2�2 (1 − �2 (1−ν3 )2

(1−ν )2 (u2
z −u2

⊥ )
)

n3z 
= n4z − (1−ν3 )(1−ν4 )uz�
2

(1−ν )(u2
z −u2

⊥ )
− 2νu⊥ − νuz

CoAFM 	n1 = −	n2 = 	n3 = −	n4 s1z = −s2z = −s3z = s4z −uz − 2νu⊥ − h(ν3 − ν4) − �(ν3 − ν4)

CaAFM 	n1 = −	n2 = 	n3 = −	n4 	s1 = −	s3, 	s2 = −	s4 = 1, |u⊥|(1 + ν ) − |u⊥|(1−ν )
2 ( 1−ν4

1−ν3
+ 1−ν3

1−ν4
) − h2

2|u⊥|
(1−ν3 )(1−ν4 )

(1−ν )

s3z 
= s4z −uz − �(ν3 − ν4)
FM 	n1 = −	n2 = 	n3 = −	n4 s1z = s2z = s3z = s4z = 1 −uz − 2u⊥ − h(2 − ν ) − �(ν3 − ν4)

includes the integer quantum Hall ferromagnetic states at neu-
trality (ν3 = ν4 = 0). Therefore, generically we expect that
the fractional quantum Hall Kekulé states will have spinors
with different orientations in the valley Bloch sphere, and we
dub these states “canted Kekulé states.” For the specific case
of fractional fillings ν3 
= ν4, within the antiferromagnetic
order, there is a competition between a canted AFM (CaAFM)
(where the spinors have different orientation in spin Bloch
sphere) and a collinear AFM (CoAFM).

Minimization of the energy functionals led to five distinct
phases as shown in Table II and the phase diagrams for
different cases are given in Figs. 3–5. In Appendix A we
describe a mapping from states (1, ν, 0, 0) to (1, 1, ν3, ν4)
that allows to compute the energies and phase diagrams for
other states from the results presented here. Figure 3 shows
the difference between the phase boundaries in the two cases
ν3 = 2

3 , ν4 = 0, and ν3 = ν4 = 1
3 , in the absence of Zeeman

term h. The phase diagrams in the presence of Zeeman term
h are shown in Figs. 4 and 5. One can see the stark difference
between phase boundaries and phases realized for (1, 1, 2

3 , 0)
and (1, 1, 1

3 , 1
3 ). In the following section, we highlight the

differences in these phase diagrams and their relevance for
experiments.

FIG. 3. Phase diagrams in the presence of valley-Zeeman term �

(sublattice staggered potential). The phase boundaries of (1, 1, 2
3 , 0)

state are indicated by dark lines and phase boundaries of (1, 1, 1
3 , 1

3 )
indicated by dashed lines.

VI. ISOSPIN AND VALLEY- AND SPIN-ORDER
TRANSITIONS AND RELATION TO EXPERIMENTS

We will now describe the range of parameters and the
phase diagrams that are accessible in experiments by tuning
the magnetic field for the case of graphene aligned with an
hBN substrate. Recent experiments have reported the detec-
tion of such transitions using magnon transmission [22,35]. In
order to relate to these experiments, we need to express the
relation between the experimentally tunable parameters and
the parameters of the model.

The Zeeman term has a linear dependence on the total
applied magnetic field h = 2μBB, μB is the Bohr magneton,

B =
√

B2
‖ + B2

⊥ (we take the g factor g = 2). We parametrize

the coefficients of the anisotropic delta-function interac-
tions, u⊥,z, as follows: (u⊥, uz ) = g( cos(θ ), sin(θ )). Typical
values for these parameters, obtained from experiments in
Refs. [22,35], are listed in Table III.

The total energy of a state will contain, in addition to the
anisotropy energies listed in Table II, an SU(4) invariant long-
range part of the Coulomb interaction, and thus can be written
as

E

Nφ

= Eani + e2

ε�1T
C(ν)

√
B⊥(T ), (23)

Here, �1T is the magnetic length at 1 T and Eani is the cor-
responding anisotropy energy of the state in question that
can be read from Table II. In the above we imagine that
electrons interact via the ideal Coulomb interaction e2/εr (i.e.,
not screened by gates). The screening constant ε accounts
both for the screening from the dielectric substrate as well
as the self-screening of graphene, which when accounted at
the random phase approximation (RPA) level leads [72] to
ε = εhBN + π

2 α [with α = c/(137vF ) ≈ 2.2]. For fully hBN

TABLE III. List of experimental parameters.

Parameters Values in experiment at 1 T [22,35]

Valley-Zeeman � 3.7 meV
Zeeman h 0.115 meV
(uz, u⊥) = g(cos θ, sin θ ) g = 3.87 meV
θ 123◦

e2/(ε�1T ) 7.1 meV
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FIG. 4. Phase diagrams in the presence of both valley-Zeeman and spin-Zeeman terms. The Zeeman and valley-Zeeman field ratio h/� =
0.1. In the (1, 1, 2

3 , 0) state there is a small sliver of region of stability of the CaAFM state. In the (1, 1, 1
3 , 1

3 ) state, the boundary of the CaAFM
state with the CoAFM state is pushed to infinity.

encapsulated samples we take εhBN = 4.4. C in Eq. (23) is a
dimensionless constant measuring the ideal Coulomb energy
per flux quantum of the FQHE state in consideration, and
which we extract from previous exact diagonalization studies
[53,73–75].

While the Coulomb energy will not affect the SU(4) spinor
orientation of a FQH state, it can play a crucial role determin-
ing the competition among different FQH states with different
fillings of the flavors. To illustrate this, we discuss in detail
the competition of the Laughlin-type state and a singlet state
at ν = 2

3 , which has lower Coulomb energy. Their competition
has been widely studied especially in two-component systems
in the past [51,76–79]. The full four-component filling vectors
of the states in question are

Laughlin-type:

(
1, 1,

2

3
, 0

)

vs

Singletlike:

(
1, 1,

1

3
,

1

3

)
.

FIG. 5. Phase diagram of (1, 1, 2
3 , 0) state with Zeeman and

valley-Zeeman field ratio h/� = 1
3 . As the Zeeman field increases

the region of stability of CaAFM phase enlargens, but still occupies
a narrow strip in the phase diagram.

Their Coulomb energy difference per flux quantum obtained
from exact diagonalization studies [53,73–75]:

δECoul
2/3

N�

≈ 0.006
e2

ε�1T

√
B⊥(T ). (24)

We estimate from the experiments in Refs. [22,35] that by
tuning the perpendicular field the system follows the line in
the (uz, u⊥) space shown in Fig. 6. Below we describe our key
results and predictions.

A. Halperin CDW to Laughlin-type CDW isospin transition

At low fields, the system is in a CDW state favored by the
hBN-induced valley-Zeeman term � (sublattice staggered po-
tential). However, there is a competition between two distinct
CDW states with different fractional occupations. Namely,
one CDW state of Laughlin-type character, with filling vector
(1, 1, 2

3 , 0), and the singletlike CDW with fillings (1, 1, 1
3 , 1

3 ).
These CDW states have the same valley and sublattice polar-
ization but different spin polarization (their anisotropy energy
difference depends only on the Zeeman term). The singletlike
CDW is spin unpolarized and is the ground state at low fields
where the Coulomb energy is dominant, while the Laughlin-
type CDW becomes the ground state for fields above ∼1.6 T
(see Figs. 1 and 6). This transition is analogous of those in
GaAs [3,50–56] and it features an interesting interplay of
symmetry-enriched fractionalization as we further discuss in
Sec. VII.

We emphasize that while this transition should be present
in the system, it has so far not been reported in experiments
[21,35]. A possible reason for this might be that it is realized
at small fields where disorder effects can be more important.
We hope that future studies can focus on this field range to
shed more light on this transition.

B. Intermediate CaKD phase and transition to CoAFM

One of the key predictions from our analysis is the occur-
rence of an intermediate CaKD phase between the CDW and
AFM phases, as seen in Fig. 6. Notice that unlike the CaKD
state realized for the integer quantum Hall ferromagnet at
neutrality (Sec. IV), in the fractionally filled case the spinors
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FIG. 6. (Top) Schematics for different phases and the transitions at total filling ν = 2
3 (see also Fig. 1). (Left) Phase diagram as a function

of experimental parameters, the valley-Zeeman term � (hBN potential), and the perpendicular magnetic field B⊥. The horizontal dotted line
indicates a typical value realized in the experiments of Ref. [35]. (Right) The phase diagram schematic indicating the locus of the system in the
(uz, u⊥) phase diagram under experimental tuning of magnetic field as shown by dotted line (red). The phase diagram is in the limit of Zeeman
field h much smaller than �(h1 T ∼ 0.1 meV, � ∼ 3 meV). The region of CaAFM ( 2

3 , 0) has been scaled up for visibility.

have different orientations in the valley Bloch sphere. This
arises from the unequal coupling of the valley-Zeeman term
to the fully filled and fractionally filled spinors, leading to
unequal canting angles of the spinors in the valley Bloch
sphere. This is why we have termed this state a “CaKD”
(canted Kekulé distortion) to emphasize this difference from
the KD state at neutrality where the two occupied spinors have
a common orientation in the valley Bloch sphere and thus
a valley ferromagnet-like character. Recent tunneling exper-
iments have demonstrated clear and tantalizing evidence for
the presence of these states [36,37].

We estimate the transition from CDW to CaKD phase
to occur around B ∼ 6 T. This transition should be “dark”
within magnon transmission experiments since there is no
change of the spin order, explaining why it was not reported in
Refs. [22,35]. However, more recently, remarkably beautiful
scanning tunneling spectroscopy (STS) experiments have in
fact detected a transition from the CDW states to a KD state
at neutrality [36,37], and therefore these experiments have a
great potential to detect the corresponding transition in the
fractionally filled case that we predict here. We note in passing
that the interesting STS study of Ref. [38] also reported the
observation of the Kekulé state at neutrality in samples of
multilayer graphene without the hBN substrate. Here, the top
layer was viewed as decoupled from the rest, but there was no
independent control of the magnetic field and the density of
this layer.

As the applied field is further increased, the CaKD
Laughlin-type (1, 1, 2

3 , 0) state eventually transitions into a
CoAFM phase. We estimate the field of the transition to be
B ∼ 8 T. We interpret this as the transition from a valley-
ordered phase to an antiferromagnetic that has been detected
through magnon transmission experiments [35].

There is one additional phase, the CaAFM (canted AFM),
which in the case of the Laughlin-type filling (1, 1, 2

3 , 0) oc-
cupies a very small region in the parameter space, as in seen
in Fig. 4 (cf. also Fig. 5). Its region of stability is given by [10]

(1 − ν3)(1 − ν4)

(1 − ν)(ν3 − ν4)
� u⊥

h
� (1 − ν3)(1 − ν4)

(1 − ν)(2 − ν)
. (25)

Because of the smallness of this region, we believe that the
experimentally accessible line of parameters for the filling
ν̃ = 2 + 2

3 does not cross this phase (see Fig. 6).

VII. ON THE UNIVERSAL TOPOLOGICAL DISTINCTION
BETWEEN THE LAUGHLIN-TYPE AND SINGLETLIKE

STATES

All the transitions occurring among the states with filling
vector (1, 1, 2

3 , 0) that were discussed previously (see Figs. 1
and 6 for a summary) can be understood as a reorientation
of the valley-spin degrees of freedom of the state. However
the transition between the (1, 1, 1

3 , 1
3 ) and (1, 1, 2

3 , 0) occur-
ring around B⊥ ∼ 1.6 T is of a fundamentally different kind
where a change of the more intrinsic nature of the correlations
occurs. The nature of this transition has been the subject of
dedicated study of FQH researchers for decades especially in
the context of two-component FQH systems [51,76–79]. In
this section we would like to briefly review the theoretical un-
derpinnings on why this transition is special. We believe that
graphene is an unprecedented physical platform that could
open new windows to investigate this amazing physics. For
simplicity, only in this section we will concentrate on these
states viewed as two-component states, namely, as ( 2

3 , 0) and
( 1

3 , 1
3 ).
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Both the Laughlin-type state ( 2
3 , 0) and the singletlike

state ( 1
3 , 1

3 ) possess anyon excitations with same fractional
Abelian statistics, namely, under exchange of two of them
the many-body wave function acquires phases quantized in
units of π/3. In fact, as detailed in Appendix C, these two
states have the same “topological order” [80]. This means
that if all the symmetries of the problem are ignored, then
it is possible to find an adiabatic path smoothly deforming a
Hamiltonian with ground state ( 2

3 , 0) into a Hamiltonian with
ground state ( 1

3 , 1
3 ) without encountering a phase transition.

As we will see, however, such path does not exist if certain
symmetries are enforced, and therefore these states possess
distinct “symmetry-enriched topological order.”

But which symmetries need to be enforced to distinguish
these states as distinct phases of matter? These states have
anyons with charged quantized in units of e/3 and charge
conservation is not enough to distinguish these two states from
a universal point of view. It turns out, however, that these two
states have different topological “spin vectors” [76–78,81]
(see Appendix C for details). Therefore, interestingly, space
isotropy and its associated rotational symmetry should be
enough to distinguish these as topologically distinct states,
even if the separate conservation of particle number of the two
components is broken (e.g., layer-number conservation or spin
conservation depending on the context).

Moreover, these Laughlin-type and singletlike states can
be also be distinguished by the properties of their edges. The
unpolarized state displays spin-charge separation at the edge
in having counterpropagating spin and charge edge modes
[79]. Interestingly the presence of separate particle and spin
conservation symmetries in the two components leads to the
appearance of neutral upstream modes at the interface of
Laughlin-type and singletlike phases [1,82–86]. There are
proposals for using these modes as building elements for topo-
logical quantum computation applications [61]. These neutral
modes have been extensively probed in experiments as well
[57–60,62–64]. We hope that our study can help guide future
efforts to further investigate the fascinating physics of these
states in graphene.

VIII. SUMMARY AND DISCUSSION

We have elaborated on a theory that generalizes the the-
ory of integer quantum Hall ferromagnets to the fractionally
filled states and allows to quantitatively predict the patterns
of symmetry breaking in multicomponent fractional quantum
Hall systems, such as graphene. We have in particular ex-
ploited this framework to investigate the role of the staggered
sublattice potential that results from the alignment with a
boron nitride substrate on the fractional quantum Hall states in
graphene. As a case study, we have made specific predictions
for the states realized at a total filling of ν = 2

3 above charge
neutrality. Within the typical parameter regimes accessed in
the experiments, we predict a rich sequence of phase transi-
tions as a function of perpendicular magnetic field, starting
from a singletlike CDW state, then to a Laughlin-type CDW
state, then to a canted Kekulé (CaKD) Laughlin-type state,
and finally to a collinear antiferromagnet (CoAFM) Laughlin-
type state.

One of our key predictions is the presence of a canted
Kekulé (CaKD) Laughlin-type state, in which the occupied
spinors point in different directions in the valley Bloch sphere,
in contrast to the Kekulé state (KD) realized at the integer
filling corresponding to neutrality, where the spinors point
into a common direction in the Bloch sphere (this state has
been detected in very recent experiments [36,37]). Another
important prediction is the existence of a transition around
B ∼ 1.6 T from a singletlike CDW phase to a Laughlin-type
CDW state. This transition is hitherto unobserved in graphene,
which could offer a new platform to investigate the interest-
ing physics [76–78,87,88] of the competing singletlike and
Laughlin-type states at 2

3 .
We would like to also comment on some of the challenges

in relating theory and experiment, which arise partly because
some of the orders described here are hard to detect. Recently,
an ingenious set of experimental methods has detected the
spin-ordering transitions through nonlocal magnon excitation
and transmission devices [23,32,35,89], but these experiments
make it hard to detect when the transition involves primarily
some change of the valley ordering. However, it has been
proposed [90] that in graphene aligned with hBN, the interface
of the ν = 1 and −1 could be used as a tunable valley-wave
source. This could open up avenues to probe various low-
energy excitations in the broken valley- and spin-order phases
on FQHEs of graphene.

Another interesting avenue for experimentally probing
these phases, that has been developed very recently, is the
use of scanning tunneling spectroscopy (STS) to detect and
distinguish valley-symmetry-broken phases and their transi-
tions [36,37]. It is possible that in the future these probes
could allow to pinpoint the presence of the canted Kekulé
state that we have found. They are also very powerful for
imaging in detail the defects, quasiparticles, domain walls,
and other interesting textures that could appear in the different
competing phases [91–94].
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APPENDIX A: PHASE DIAGRAM WITH FILLING
(1, ν, 0, 0)

We want to obtain the phase diagram with fractional mul-
ticomponent fillings such as (1, ν, 0, 0) and in the presence
of valley-Zeeman term. Here we consider only states that are
valley ordered. The treatment of spin-active states are not
altered in the presence of the valley-Zeeman term and is the
same as given in previous works [6,10].

The weighed projection operators (density matrices) for the
fully filled and partially filled spinors are given by

Pi = |χ1〉 〈χ1| , (A1)

Pf = ν |χ f 〉 〈χ f | . (A2)
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For the fillings we consider here (1, ν), the first component
χ1 is fully filled and the second spinor is partially filled at the
fraction ν.

We make the following choices for the spinors:

|χ1〉 = |n1〉 ⊗ |↑〉 , (A3)

P1 = Pn1 ⊗ Ps, (A4)

|χ f 〉 = |n2〉 ⊗ |↓〉 , (A5)

Pf = νPn2 ⊗ P−s = νP2. (A6)

Using these we obtain

Ea = νu⊥(n1xn2x + n1yn2y) + νuzn1zn2z − �(n1z + νn2z ).
(A7)

Now let us consider the value of Ea in different phases. In the
CDW phase,

n1z = n2z; εCDW = νuz − �(1 + ν). (A8)

Away from the CDW phase, valley-symmetry-breaking term
tends to cant the valley isospins by different angles, which
would destabilize the KD phase.

Determination of the minimal energy valley-ordered state
through the method of Lagrange multipliers. We need to obtain
the minimum of the energy given in Eq. (A7) for the valley-
ordered state under the constraint for the valley spinor n2

⊥ +
n2

z = 1, let us consider the Lagrangian function

L = νu⊥n1xn2x + νuzn1zn2z − �(n1z + νn2z) (A9)

−λ1

2
(n2

1x + n2
1z − 1) − λ2

2
(n2

2x + n2
2z − 1), (A10)

where λ1, λ2 are the Lagrangian multipliers.
The optimum is obtained from

∂L
∂n1x

= νu⊥n2x − λ1n1x = 0, (A11)

∂L
∂n2x

= νu⊥n1x − λ2n2x = 0, (A12)

∂L
∂n1z

= νuzn2z − λ1n1z − � = 0, (A13)

∂L
∂n2z

= νuzn1z − λ2n2z − �ν = 0. (A14)

The equations for x components give a constraint for the
Lagrangian multipliers as

n1x

n2x
= νu⊥

λ1

n1x

n2x
= λ2

νu⊥
(A15)

⇒ λ1λ2 = ν2u2
⊥. (A16)

Also multiplying the first and the third equations by n1x and
n1z, respectively, and adding them, we get

νu⊥n1xn2x + νuzn1zn2z − �n1z − λ1
(
n2

1x + n2
1z

) = 0. (A17)

Using the constraint n2
1x + n2

1z = 1, we get

λ1 = νu⊥n1xn2x + νuzn1zn2z − �n1z. (A18)

Similarly, using the second and the fourth equations for the
optimum conditions, we obtain the expression for λ2:

λ2 = νu⊥n1xn2x + νuzn1zn2z − �νn2z. (A19)

The z components of the spinors can be obtained by solving
the following equations:

λ1n1z − νuzn2z = −�, (A20)

νuzn1z − λ2n2z = ν�, (A21)

n1z = λ2� + ν2uz�

ν2(u2
z − u2

⊥)
, n2z = λ1ν� + νuz�

ν2(u2
z − u2

⊥)
. (A22)

The Lagrangian multipliers can be determined from the
above equations for nix, niz, λ1λ2 = ν2u2

⊥, and the constraints
n2

ix + n2
iz = 1:

n2
1x + n2

1z = 1,

n1x =νu⊥
λ1

n2x, n2
2x = 1 − n2

2z,(
νu⊥
λ1

n2x

)2

+
(

λ2� + ν2uz�

ν2(u2
z − u2

⊥)

)2

= 1,

ν2u2
⊥

λ2
1

[
1−

(
λ1ν� + νuz�

ν2(u2
z − u2

⊥)

)2]
+

(
λ2� + ν2uz�

ν2(u2
z − u2

⊥)

)2

= 1.

After some algebra, we obtain

λ2 = ±ν2u⊥

√
u2

z − u2
⊥ − �2

ν2(u2
z − u2

⊥) − �2
. (A23)

Given this one can determine the energy minimum. The
energy function is given by

Ea = νup(n1xn2x + n1yn2y) + νuzn1zn2z − �(n1z + νn2z ).
(A24)

From Eqs. (A18) and (A19), we get

Ea = λ1 − ν�n2z = λ2 − �n1z. (A25)

Using the above expression for λ2, we get

E∗
a = −ν2u⊥

√
u2

z − u2
⊥ − �2

ν2(u2
z − u2

⊥) − �2

(
1 − �2

ν2(u2
z − u2

⊥)

)

− uz�
2

u2
z − u2

⊥
, (A26)

one can check that for ν = 1, this equation reduces to the
minimum energy expression at neutrality.

Phase boundary between CDW and FM phases. In the
CDW phase, the valley spinor is ordered such that n1z = n2z =
1. Therefore, the equations obtained from the optimization
reduce to

λ1n1z − νuzn2z = −� ⇒ λ1 = νuz − �, (A27)

νuz − λ2n2z = ν� ⇒ λ2 = νuz − ν�, (A28)

n1z = 1 ⇒ λ2� + ν2uz�

ν2
(
u2

z − u2
⊥
) = 1, (A29)
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FIG. 7. The hyperbola of instability of CDW phase and the phase
boundary obtained by comparing the CDW and FM energies.

n2z = 1 ⇒ λ1ν� + νuz�

ν2(u2
z − u2

⊥)
= 1. (A30)

Solving these equations, one obtains the hyperbola (Fig. 7)(
uz − �(1 + ν)

2ν

)2

− u2
⊥ =

(
�(1 − ν)

2ν

)2

. (A31)

The intercept of the lower branch of the hyperbola with the uz

axis is given by

uz0 = �. (A32)

Also, comparing the energy of the CDW state with the FM
state

ECDW = νuz − �(1 + ν), (A33)

EFM = −ν(2u⊥ + uz ) − �(1 − ν). (A34)

Comparing these two the phase boundary is given by (Fig. 7)

uz = −u⊥ + �. (A35)

Phase boundary between caKD and AFM. The phase
boundary can be obtained by comparing the above expres-
sion for E∗

a in Eq. (A26) with the energy for AFM εAFM =
νu⊥ − �(1 − ν). Analytically, this does not give any simple
expression for the phase boundary. Nevertheless, one can see
that the expression for λ2 is real only for ν2(u2

z − u2
⊥) > �2

and also u2
z − u2

⊥ > �2, beyond which it becomes complex.
Therefore, the minimal energy obtained is valid only below
the (upper branch of) hyperbola

u2
z − u2

⊥ = �2 (A36)

and also above the hyperbola u2
z − u2

⊥ = �2

ν2 . λ2 will again be
real for ν2(u2

⊥ − u2
z ) > �2 and u2

⊥ − u2
z > �2. Here we have

considered only states that are valley ordered. The energies
of spin-ordered states are not affected by the valley-Zeeman
term.

a. Mapping from (1, 1, ν3, ν4) to (1, ν, 0, 0)

The energy of the valley-ordered states for (1, 1, ν3, ν4)
can be mapped to the energy of the valley-ordered states of

(1, ν, 0, 0). The energy for the latter is given by

Ea = νu⊥n1xn2x + νuzn1zn2z − �(n1z + νn2z ). (A37)

Up to constants, the energy for the (1, 1, ν3, ν4) state is

Ea = u⊥(1 − ν)n3xn4x + uz(1 − ν)n3zn4z − 2νu⊥ − νuz

−�[(1 − ν3)n3z + (1 − ν4)n4z].

Now, let us define the following scaled quantities:

ν̄ = 1 − ν4

1 − ν3
; ū⊥ = 1 − ν

1 − ν4
u⊥; ūz = 1 − ν

1 − ν4
uz; (A38)

ε̄a = Ea

1 − ν3
(A39)

Upon this rescaling, the energy for (1, 1, ν3, ν4) is now

ε̄a = ν̄ū⊥n1xn2x + ν̄ūzn1zn2z − �(n1z + ν̄n2z ). (A40)

This exactly matches the expression for (1, ν, 0, 0) but with
scaled quantities.

For the case of ν3 = ν4, ν̄ = 1. Therefore, the phase di-
agram of (1, 1, ν3, ν3) is identical to the one for fully filled
state and for ν4 = 0, the phase diagram resembles the one for
(1, ν, 0, 0) state.

APPENDIX B: PHASE DIAGRAM WITH FILLING
(1, 1, ν3, ν4)

Here we will consider the valley-ordered states of type
(1, 1, ν3, ν4) in the presence of the valley-Zeeman term to
obtain the anisotropy energies and phase boundaries. The
anisotropy energy for the (1, 1, ν3, ν4) valley-ordered state is

Ea = (1 − ν)u⊥n3xn4x + (1 − ν)uzn3zn4z − 2νu⊥ − νuz

−�[(1 − ν3)n3z + (1 − ν4)n4z],

where ν = ν3 + ν4 and we have set n3y = n4y = 0 for simplic-
ity. The CDW phase is characterized by n3z = n4z = 1. The
energy corresponding to that phase is

Ea = (1 − 2ν)uz − 2νu⊥ − �(2 − ν). (B1)

The formation of KD phase is obstructed by the valley-
Zeeman term. One needs to find out the valley-spinor
configuration that minimizes the anisotropy energy. We shall
follow the method of Lagrangian multipliers.

Lagrangian multipliers for finding the valley-optimal states.
The Lagrangian function is given by

L = u⊥(1 − ν)n3xn4x + uz(1 − ν)n3zn4z

− 2νu⊥ − νuz − �[(1 − ν3)n3z + (1 − ν4)n4z]

− λ1

2

(
n2

3x + n2
3z − 1

) − λ2

2

(
n2

4x + n2
4z − 1

)
.

The optimum is obtained from

∂L
∂n3x

= (1 − ν)u⊥n4x − λ1n3x = 0, (B2)

∂L
∂n4x

= (1 − ν)u⊥n3x − λ2n4x = 0, (B3)

∂L
∂n3z

= (1 − ν)uzn4z − λ1n3z − �(1 − ν3) = 0, (B4)
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∂L
∂n4z

= (1 − ν)uzn3z − λ2n4z − �(1 − ν4) = 0. (B5)

The equations for x components give a constraint for the
Lagrangian multipliers as

n3x

n4x
= (1 − ν)u⊥

λ1

n3x

n4x
= λ2

(1 − ν)u⊥
(B6)

⇒ λ1λ2 = (1 − ν)2u2
⊥. (B7)

Multiplying the first and the third equations by n3x and n3z,
respectively, and adding them, we get

(1 − ν)u⊥n3xn4x + (1 − ν)uzn3zn4z − �(1 − ν3)n3z

−λ1(n2
3x + n2

3z ) = 0.

Using the constraint n2
3x + n2

3z = 1, we get

λ1 = (1 − ν)u⊥n3xn4x + (1 − ν)uzn3zn4z − �(1 − ν3)n3z.

(B8)
Similarly using the second and the fourth equations for the

optimum conditions, we obtain the expression for λ2:

λ2 = (1 − ν)u⊥n3xn4x + (1 − ν)uzn3zn4z − �(1 − ν4)n4z.

(B9)
The z components of the spinors can be obtained by solving
the following equations:

−λ1n3z + (1 − ν)uzn4z = �(1 − ν3), (B10)

(1 − ν)uzn3z − λ2n4z = �(1 − ν4), (B11)

n3z = λ2�(1 − ν3) + (1 − ν)(1 − ν4)uz�

(1 − ν)2(u2
z − u2

⊥)
,

n4z = λ1(1 − ν4)� + (1 − ν)(1 − ν3)uz�

(1 − ν)2(u2
z − u2

⊥)
. (B12)

The Lagrangian multiplier λ2 is obtained to be

λ2 = ±(1 − ν)u⊥

√
(1 − ν)2(u2

z − u2
⊥) − (1 − ν4)2�2

(1 − ν)2(u2
z − u2

⊥) − (1 − ν3)2�2
.

(B13)
This is real for (1 − ν)2(u2

z − u2
⊥) > (1 − ν3)2�2 and the

phase boundary is given by

u2
z − u2

⊥ = (1 − ν3)2

(1 − ν)2
�2. (B14)

There is another boundary beyond which λ2 is a complex
number:

u2
z − u2

⊥ = (1 − ν4)2

(1 − ν)2
�2. (B15)

For ν3 = ν4, the boundaries are the same and are separated for
the case of ν3 > ν4.

a. Boundary of stability of CDW phase

n3z = λ2�(1 − ν3) + (1 − ν)(1 − ν4)uz�

(1 − ν)2(u2
z − u2

⊥)
, (B16)

n4z = λ1(1 − ν4)� + (1 − ν)(1 − ν3)uz�

(1 − ν)2(u2
z − u2

⊥)
. (B17)

In the CDW phase, n3z = n4z = 1:

n3z = λ2�(1 − ν3) + (1 − ν)(1 − ν4)uz�

(1 − ν)2(u2
z − u2

⊥)
= 1. (B18)

The Lagrangian multiplier λ2 is given by

λ2 = (1 − ν)uz − �(1 − ν4). (B19)

Plugging these in to the equation for n3z = 1 and simplifying,
one gets

uz =
√

u2
⊥ + �2(ν2 − 4ν3ν4)

4(1 − ν)2
+ �

2

2 − ν

1 − ν
. (B20)

b. Boundary between FM and CDW phases

The energy of the FM phase is given by

εFM = −uz − 2u⊥ − �(ν3 − ν4). (B21)

The energy of the CDW phase is

εCDW = (1 − 2ν)uz − 2νu⊥ − �(2 − ν). (B22)

The boundary between the phase is obtained by equating the
above two expressions:

uz = −u⊥ + �
(1 − ν3)

(1 − ν)
. (B23)

The transition to FM phase from CDW phase appears before
the boundary of stability of CDW phase.

APPENDIX C: TOPOLOGICAL ORDERS
OF MULTICOMPONENT STATES

On considering the Chern-Simons description of the
Laughlin-type and singlet multicomponent states at 2

3 filling,
there is a subtle distinction in the intrinsic nature of the states.
This distinction is seen particularly when the states are on
a manifold with intrinsic curvature such as a sphere. The
Chern-Simons theory for the multicomponent FQHEs on a
curved manifold is given by [97,98]

L = − 1

4π
KIJεμνλaμ

I ∂νaλ
J − e

2π
AμtIεμνλ∂

νaλ
I (C1)

+sIω
iεiνλ∂νaλ

I . (C2)

Here, tI is the charge vector and sI is the spin vector in-
dicating the charge and spin in each flavor and component,
respectively. KIJ is a 2 × 2 symmetric matrix (considering
two-component states only here.)

A given FQH state is completely characterized by the
triplet (K, 	t, 	s) in the presence of a compact curved manifold.
Otherwise, it suffices to specify only (KIJ , 	t ). The (K, 	t , 	s) are
unique up to SL(2, Z ) transformations:

K → W KW T ; 	t → W 	t ; 	s → W 	s. (C3)

The K matrix for the Laughlin-type state is given by [97]

K =
(

1 2
2 1

)
; tT = (1, 1); sT = (1/2,−1/2). (C4)

The state corresponding to this description is known to be
obtained from Jain construction [97]. This is equivalent to
a state obtained from a ν = − 1

3 state of holes on a ν = 1
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quantum Hall state of electrons, for which the K matrix is
given by

K =
(

1 0
0 −3

)
; tT = (1,−1); sT = (1/2,−3/2). (C5)

The above two states are related by the transformation

W =
(

1 0
−2 1

)
. (C6)

On the other hand, the singlet state is described by

K =
(

1 2
2 1

)
; tT = (1, 1); sT = (1/2, 1/2). (C7)

This is not equivalent to the Laughlin-type state by any
SL(2, Z ) transformation because of their different topological
spins.
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