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Manipulating electron waves in graphene using carbon nanotube gating
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Graphene with its dispersion relation resembling that of photons offers ample opportunities for applications
in electron optics. The spacial variation of carrier density by external gates can be used to create electron
waveguides, in analogy to optical fiber, with additional confinement of the carriers in bipolar junctions leading to
the formation of few transverse guiding modes. We show that waveguides created by gating graphene with carbon
nanotubes (CNTs) allow obtaining sharp conductance plateaus, and propose applications in the Aharonov-Bohm
and two-path interferometers, and a pointlike source for injection of carriers in graphene. Other applications can
be extended to Bernal-stacked or twisted bilayer graphene or two-dimensional electron gas. Thanks to their
versatility, CNT-induced waveguides open various possibilities for electron manipulation in graphene-based
devices.
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I. INTRODUCTION

Graphene’s linear dispersion relation, resembling the one
of photons, inspired a plethora of applications of graphene
for electron optics. External gates can be used to locally tune
the Fermi energy, which, by analogy to optics, plays the role
of the refractive index. Moreover, graphene can be smoothly
modulated between electron and hole conduction, thus it is
possible to create junctions between regions of opposite po-
larity. Thanks to this flexible control of the carrier density,
electrostatically defined optical elements such as lenses [1–5],
collimators [6,7], Fabry-Pérot [8–10] and Mach-Zehnder in-
terferometers [11,12] or microcavities [13–17] are realizable
in graphene and have been widely explored both theoretically
and experimentally. Furthermore, unlike photons, carriers in
graphene are charged, which opens up opportunities for ap-
plications beyond the regular optics, including manipulation
with external magnetic field for transverse magnetic focusing
[18–20] or the Aharonov-Bohm effect [21–23].

The possibility of spatial variation of the potential pro-
file can be utilized to form electron waveguides, with three
regions of varying carrier density being counterparts of ma-
terials with different refractive indices in the optical fiber.
By analogy to the total internal reflection of light in the
waveguide core having the refractive index higher than the
surrounding cladding, in a channel induced electrostatically,
electrons incident below the critical angle are trapped and
propagate along the channel [24]. In addition to this optical
fiber guiding (OFG), when the polarity at the interface is
inverted, a bipolar p-n-p or n-p-n junction is formed which can
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impose additional carrier confinement, leading to formation of
few guiding modes.

FIG. 1. (a) Sketch of the considered electron system gated by
CNT. (b) Spatial profile of the electrostatically simulated electric po-
tential u(y, z) considering a grounded sample subject to a CNT gate
of radius rcnt = 1 nm applied with Vcnt = 1 V. (c) Capacitance profile
(solid line) corresponding to (b), where dielectric constant εhBN = 3
below the nanotube and εvac = 1 elsewhere are considered. The blue
(orange) dashed line shows the analytical result for uniform dielectric
constant εhBN = 3 (εvac = 1). (d) Top view of the device. The dashed
lines show the area considered in the transport calculation.
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Few-mode guiding in graphene has been widely discussed
in theory [25–31] and successfully realized in experiments
[32,33] which employed narrow electrostatic gates. However,
in waveguides induced by electrostatic gates the interface is
bound to be irregular. The possibility to circumvent these lim-
itations is by using a carbon nanotube (CNT) as a gate, which
can induce a sharp and regular interface. Moreover, the CNT
shape can be controlled to some extent [34,35] allowing for
flexible design of the waveguide geometry. Recent advance-
ment in the fabrication of nanostructures, and, in particular,
efficient transfer and manipulation of CNTs for the assembly
of nanodevices [36–40], opens up possibilities for precise
control over the CNT position and orientation. Using CNT
as a gate for graphene has been proposed in theoretical works
[41–43] as well as realized experimentally in the capacitive
measurement of graphene’s local density of states [44] and
Coulomb drag between graphene and CNT [45]. However, no
transport investigations of guiding by a CNT-induced channel
have been conducted so far.

In this work, we consider the quantum transport of
carriers in a system gated by charged CNT [Fig. 1(a)].
We demonstrate the versatility of CNT-induced guiding
channels in graphene, which can be utilized to form ex-
tremely narrow and sharp channels, electrostatically defined
quantum rings [33,46], pointlike sources [3], interferometers,
and other building blocks for nanodevices. Their applica-
tion is not limited to single-layer graphene (SLG), and, as
we show in the following, it can also be utilized in other
materials, including Bernal-stacked bilayer graphene (BLG),
decoupled twisted bilayer graphene (dtBLG), and semi-
conductor nanostructures hosting two-dimensional electron
gas (2DEG).

II. QUANTIZED ELECTRON WAVEGUIDE

A. Electrostatics

In the following, we study two-dimensional systems
(SLG, BLG, dtBLG and 2DEG) placed above a global back
gate at voltage Vbg and gated from the top by a CNT at
voltage Vcnt. Figure 1(a) shows the 3D design of the con-
sidered device. Although the experimental design differs
between graphene devices and 2DEG, here for the sake of
comparison we consider the same device geometry for each
system: a graphene system sandwiched between two hBN
layers [blue in Fig. 1(a)] and placed on a SiO2 substrate
[light gray in Fig. 1(a)], or 2DEG embedded in a medium
with equivalent dielectric constants as those in the graphene
device. The CNT is connected to electrodes marked in pink,
and graphene to metallic contacts marked in yellow. The CNT
is separated from graphene by an hBN sheet dt = 4 -nm
thick, with the dielectric constant εhBN = 3. The bottom hBN
layer is db = 20 -nm thick, and the SiO2 substrate dSiO2 =
285 -nm thick, and we adopt the dielectric constant for
SiO2 εSiO2 = 3.8. The back gate capacitance is obtained from
the parallel-plate capacitor model, Cbg/e = ε0/e(db/εhBN +
dSiO2/εSiO2 ) = 6.7676 × 1010 cm−2V−1, where ε0 is the vac-
uum permittivity, and −e is the electron charge.

For the electrostatic modeling of a straight CNT placed
along the x direction, instead of a full three-dimensional struc-

ture we assume the system is invariant in the x direction,
and model the potential profile in the transverse direction
only, performing 2D electrostatic simulation in the y-z co-
ordinates. The electric potential distribution u(y, z) induced
by the charged CNT for Vcnt = 1 V is shown in Fig. 1(b).
The numerically obtained Ccnt (y)/e is presented in Fig. 1(c)
[47]. For comparison, the orange (blue) dashed line shows
the analytical result for a uniform dielectric constant εr =
3 (εr = 1), given by Ccnt (y)/e = ε0εr4at/(y2 + a2

t )e log(κ ),
with at =

√
h2

t − r2
cnt, ht = dt + rcnt, κ = (ht + at )2/r2

cnt.
In the case of a curved CNT, considered in Sec. III, the

potential profile is calculated as described in Appendix A. The
potential profile induced by two crossed CNTs, mentioned in
Sec. III B, is adopted from 3D finite-element modeling with
the full x, y, and z dependence, which yields Ccnt (x, y)/e.

Given the gates capacitance, the carrier density is calcu-
lated from

n = (CbgVbg + CcntVcnt )/e (1)

for graphene free of intrinsic doping, where Ccnt is a func-
tion of coordinates, yielding a position-dependent n. We
assume graphene is described by the dispersion relation E =
±h̄vF k, where h̄ is the reduced Planck constant, vF ≈ 106 m/s
is the Fermi velocity of graphene, and we adopt h̄vF ≈
3
√

3/8 eVnm. The on-site energy which we input into the
Hamiltonian is calculated from

U = −sgn(n)h̄vF

√
π |n|. (2)

The 2DEG band structure differs from that of graphene:
E = h̄2k2/2m∗ in the effective mass approximation, where we
use the effective mass for GaAs m∗ = 0.067m0 with m0 being
the electron mass. The on-site energies are U = −π h̄2n/m∗,
with n given by Eq. (1). The BLG density and on-site energies
calculation follows Ref. [48], and for dtBLG we adopt the
self-consistent model for zero magnetic field described in
Ref. [49].

B. Transport calculation

Figure 1(d) shows the device top view. For the transport
calculation, to focus on the guiding effect of the CNT gate,
we consider an idealized four-terminal device marked by
the black dashed lines in Fig. 1(d). The contacts are sim-
ulated by semi-infinite leads, and the computational box is
limited to a rectangle of size L × W = 360 nm × 360 nm,
unless stated otherwise. Electrons are guided between the left
source lead and the right collector lead of width w = 34 nm.
The current leaking out of the guiding channel flows to the top
and bottom leads.

The calculations are based on the tight-binding
Hamiltonian

H = −
∑
〈i, j〉

(ti jc
†
i c j + H.c.) +

∑
j

U (r j )c
†
j c j, (3)

where the operator ci (c†
i ) annihilates (creates) an electron on

the ith site located at ri = (xi, yi ), and the second sum contains
onsite energies. In SLG and dtBLG, the hopping parameters
ti j describe the nearest-neighbor hopping with ti j = t0 = 3 eV,
whereas in BLG additionally the interlayer hoppings ti j =
0.39 eV between the dimer sites are included. For 2DEG
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ti j = h̄2/2m∗�x2 where �x = 1 nm is the grid spacing, and
the on-site energies contain an additional term 4h̄2/2m∗�x2.
To model the external magnetic field B = (0, 0, B), the hop-
ping parameter is modified to contain the Peierls phase ti j →
ti jeiφ , with φ = − e

h̄

∫ r j

ri
A · dr, where A is the vector poten-

tial such that ∇ × A = B, and the integration is from the
site at ri to the site at r j . To simulate real graphene de-
vices we adopt the scalable tight-binding model [30], with
the scaled hopping parameter t = t0/sF and lattice spacing
a = a0sF , where sF is the scaling factor, and we use a0 =
1/4

√
3 nm. The Hamiltonian (3) is applied for transport sim-

ulation within the real-space Green’s function method [50],
wave-function matching [51] or using the Kwant package [52]
for SLG/2DEG, dtBLG, and BLG, respectively. The transport
energy is chosen at E = 0. At zero temperature the conduc-
tance from lead i to lead j is calculated using the Landauer
formula Gji = 2e2Tji/h, where T = ∑

m T (m)
ji is summed over

the propagating modes.

C. Single-layer graphene

The on-site energy which we input into the SLG
Hamiltonian is given by Eq. (2). In single-layer graphene, it
also plays the role of the refractive index, and, in analogy
to optics, the refraction at the interface is described by the
Snell’s law Ein sin(θin ) = Eout sin(θout ), where Ein (Eout) is
the energy within (outside) the channel. The total internal
reflection occurs when the incidence angle satisfies θ > θc,
with θc = arcsin(Eout/Ein ). Thus the OFG in the channel is
possible when |Ein| > |Eout|. It is equivalent to the require-
ment |kin| > |kout| written in terms of the wave vector within
(outside) the channel kin (kout ). The confinement in the bipolar
junction, which appears to be stronger than in OFG, is real-
ized when EinEout < 0. In terms of the carrier densities nin

and nout, it is equivalent to ninnout < 0, which in our system
roughly corresponds to VbgVcnt < 0, as estimated by ninnout =
CbgVbg(CbgVbg + Ccnt (0)Vcnt ) ≈ CbgVbgCcnt (0)Vcnt since Cbg is
two orders of magnitude smaller than Ccnt at its peak.

Figure 2(a) shows the two-terminal conductance in SLG
between the narrow left and right terminals as a function of
the backgate and CNT voltage, calculated with sF = 2. For
VbgVcnt > 0 the junction induced by the CNT is unipolar, the
confinement within the channel is relatively weak since it
is only due to OFG, and the bulk states have a significant
contribution to conductance. In this case conductance quanti-
zation is hardly seen, one can also spot fine oscillations which
correspond to resonant states in the cavity between the vertical
edges of the flake. Figure 2(b) presents the spatially resolved
current density J (x, y) for the voltages marked with a cross
in Fig. 2(a). Here Vcnt = 0, hence the potential profile in the
device is uniform, and neither bipolar junction nor optical
guiding occurs. Thus, a small part of the injected current is
transmitted towards the right lead, however, a significant part
flows out of the channel and escapes through the top and
bottom leads.

In the quadrants VbgVcnt < 0, bipolar junctions are formed,
and the conductance shows clear plateaus as few-mode guid-
ing is realized in the channel. In this regime, the current
shows an entirely different behavior. A representative current
density with a single mode available in the channel is shown

FIG. 2. (a) Conductance between thin leads of SLG as a function
of Vcnt and Vbg, with Vbg = −13.16 V marked for the rest of the
panels. Spatial profile of the current density distribution (b) without
the guiding channel [Vcnt = 0 marked by × on panel (a)] and (c) with
the guiding channel at the lowest mode [Vcnt = 3 V marked by ◦ on
panel (a)]. (d) The line cut corresponding to the red line marked on
(a). (e) Current density cross section at x marked by the arrow in
(c) as a function of Vcnt and y, illustrating the formation of quantized
guiding modes. (f)–(h) Band structures and (i)–(k) current density
maps showing the range marked by the green box in (c) at gate
voltage points marked in (a) and (d). The yellow area in (f)–(h)
indicate the region where the states confined within the channel exist.

in Fig. 2(c), corresponding to the gate voltage marked with
a circle in Fig. 2(a), and demonstrating perfect guiding be-
tween the left and right lead. The conductance cross section in
Fig. 2(d) for a fixed Vbg = −18 V [red line in Fig. 2(a)] shows
nearly ideal conductance quantization at values 4e2

h M, where
M is an integer, and the spacing by four arises from the spin
and valley degeneracy. Figure 2(e) shows the current density
cross- section at x = 0, marked by an arrow in Fig. 2(c), as
a function of Vcnt. Between Vcnt ≈ 2 V and 4 V, the M = 1
modes contribute to current. At the transition from the plateau
M = 1 to M = 2 [Fig. 2(d)], the second branch of guiding
modes becomes available for transport. The M = 2 transverse
modes wave functions exhibit one node in the center. In the
corresponding current density in Fig. 2(e) two maximums
can be resolved, as the current propagates in both first and
second branch. Similarly, at the transition from M = 2 to
M = 3, the third branch opens, and three maximums of the
current density profile are resolved. In this current density
map, the current is carried nearly entirely within the guiding
channel, with only a small fraction flowing in the bulk when
the successive guiding modes open for transport (close to the
transition M − 1 → M).

Figures 2(f)–2(h) show band structures calculated for a
translationally invariant ribbon of width 300 nm, obtained for
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FIG. 3. (a)–(d) Two-terminal conductance in SLG, 2DEG, BLG,
dtBLG, respectively, as a function of Vcnt and Vbg, (e)–(h) its cross-
section at Vbg = −18 V, and (i)–(l) the dispersion relation at a point
marked by a star in (e)–(h). The nondispersive band in (l) corre-
sponds to the edge mode in the zigzag-terminated layer of dtBLG.

the CNT voltage values marked by the corresponding symbols
in Figs. 2(a) and 2(d). The band structure of graphene gated by
a CNT consists of Dirac cones typical for pure graphene, cor-
responding to the bulk graphene beyond the channel with an
almost flat potential profile, and additional discrete branches
arising from the confinement within the CNT-induced chan-
nel. The energies of the states bound within the channel are
within the area marked with yellow in Fig. 2(f)–2(h), delim-
ited by E = ±h̄vF |kx| + Vout and E = h̄vF |kx| + Vin [marked
by the dotted lines in Fig. 2(f)–2(h)] [25]. New guiding modes
open at the energies for which the branches touch the Dirac
cone. Figures 2(i)–2(k) show the representative current den-
sity maps for the cases of M = 1, 2, and 3, corresponding to
the points marked with the symbols in Figs. 2(a) and 2(d).

Figure 3(a) shows the SLG conductance map calculated
with sF = 6, and Fig. 3(e) its cross section at Vbg = −18 V. To
check the applicability of higher scaling factors, we compare
the cross sections of the conductance calculated with sF = 2
and sF = 6. Both lines are in a good agreement with the step
only slightly shifted in Vbg, thus we conclude with high scaling
factor the results remain valid.

To check the impact of disorder, we performed the calcu-
lations with the disorder potential present. These results are
summarized in Appendix B.

It is worth noting that for very strong potential energy
variation in space, the intervalley scattering becomes relevant
in a channel along the zigzag direction, and gives rise to
intermediate plateaus G = 4e2(M − 1/2)/h. We elaborate on
this in Appendix C.

The calculations presented in this section are obtained for
device with the hBN thickness of 4 nm based on the ex-
periment [44]. However, for a few-nanometer thin hBN and
high CNT voltage, there is a risk of a dielectric breakdown

[53]. To consider a safer design, in Appendix D we present
the calculations for the case of 10-, 15-, and 20-nm thick
hBN between the SLG and the CNT. We also consider wider
injection leads in Appendix E.

D. Other two-dimensional systems

We turn our attention to the guiding effect in other systems.
Figures 3(a)–3(d) show the conductance as a function of Vcnt

and Vbg for SLG, 2DEG, BLG, and dtBLG. Figures 3(e)–3(h)
in the middle row of the figure present the cross sections of
conductance in each system along the red lines for fixed Vbg =
−18 V, and the respective band structures are plotted in the
bottom row of the panel, in Figs. 3(i)–3(l), at selected points
marked with the stars in Figs. 3(e)–3(h). The band struc-
tures are calculated for translationally invariant systems of
width 300 nm. Below we describe the characteristics of each
system.

1. Semiconductor two-dimensional electron gas

One fundamental difference between the 2DEG and
graphene is that for the former, the dispersion relation does not
exhibit the smooth transition between electron- and hole-like
conductance. For the 2DEG model, the conduction band and
the valence band have to be introduced explicitly. We focus
on transport in the conduction band, Vcnt > 0 [see Fig. 3(b)].
The modulation of the potential profile underneath the CNT
creates a potential well, leading to electron confinement and
formation of discrete modes. The conductance steps at mul-
tiples of 2e2/h arise due to the spin degeneracy, in contrast
to the quantization at 4e2M/h typical for graphene [see the
cross sections in Figs. 3(e) and 3(f)]. An apparent effect of
the confinement seen in the dispersion relation in Fig. 3(j) is
the occurrence of distinct subbands which are well separated
from the bulk dispersion relation. The CNT gating allows ob-
taining well defined conductance steps, offering an alternative
to quantum point contacts (QPCs), which can be induced in
2DEG for example by split gates [54,55].

2. Bernal-stacked bilayer graphene

In Bernal-stacked bilayer graphene, charge carriers are de-
cribed by massive Dirac fermion band structure consisting of
two parabolic bands [56], with a band gap tunable, e.g., with
external gates. The conductance map in Fig. 3(c) is obtained
with sF = 4. It shows quantized steps, at 4e2M/h due to
the spin and valley degree of freedom, as also seen in the
cross section in Fig. 3(g). Conductance quantization in BLG
has been previously obtained with external electrostatic gates
forming QPCs, however, such an approach requires using a
combination of split gates to form a narrow channel and a top
gate to tune its density [57,58]. Our results show an alternative
approach by CNT gating, allowing for a simpler device ge-
ometry. The lowest plateau with M = 1 extends over a broad
voltage range. This feature can be used to form a quasi-1D
BLG chain, robust against the voltage changes, allowing for
example investigations of 1D superlattices in BLG. The band
structure in Fig. 3(k) consists of the bulk BLG bands, as well
as additional branches due to the CNT-induced channel.
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FIG. 4. Two-terminal conductance calculated for the (a) bottom
and (b) top graphene layer, sum of which yields Fig. 3(d). (c) Density
profiles of the top and bottom layer at Vbg = −18 V, Vcnt = 3.3 V.

3. Decoupled twisted bilayer grahpene

For dtBLG we consider the top and bottom layer ori-
ented such that the transport direction is along the armchair
and zigzag lattice orientation, respectively. This choice corre-
sponds to the relative rotation angle of 30◦ between the sheets,
which was found to lead to the interlayer decoupling near the
Dirac point [59–61]. However, the two graphene sheets are
atomically close to each other and the electric charge present
on the layers causes effective gating between them [49,62].

The dtBLG device conductance shown in Fig. 3(d) is cal-
culated for the computational box of size L × W = 160 nm ×
170 nm, with sF = 1. In the bipolar region, VbgVcnt < 0, it
exhibits two sets of plateaus, dispersing at a different rate with
Vcnt and Vbg. The cross section in Fig. 3(h) reveals conductance

FIG. 5. (a) Two-terminal conductance as a function of the mag-
netic field B of an etched graphene quantum ring and graphene gated
by bent CNTs to form the guided quantum ring, as indicated by the
insets showing the ring geometries. (b) The conductance between
the injector and the wide top/bottom leads of CNT-gated device in
the region indicated by a rectangle in (a). (c)–(d) Current densities
at a minimum and maximum of conductance of gated ring, indicated
by the vertical dashed lines in (b).

quantized at 4e2M/h. Figure 3(l) shows two overlaid band
structures: of the top and bottom layer, plotted with gray and
black lines, respectively. The band structure of the bottom,
zigzag-terminated layer, is shifted by kx = − 2π

3a , such that
only one of the Dirac cones in the zigzag ribbon band structure
is visible in the plot, centered at kx = 0. In both band struc-
tures one can spot discrete branches detached from the Dirac
cones, corresponding to the guiding modes, but due to the
electrostatic interlayer coupling described above, the onset of
the guiding modes in each layer occurs at a slightly different
Vcnt. The dtBLG conductance in Fig. 3(d) and (h) is a sum
of two individual layers conductance with the steps occurring
at different CNT voltage values. The individual layers contri-
butions to conductance are shown in Figs. 4(a) and 4(b). The
difference in the dispersion of plateaus in the two layers can be
immediately understood when comparing the top and bottom
layer density profiles in a representative case of Vbg = −18 V,
Vcnt = 3.3 V shown in Fig. 4(c). The carrier density of the top
layer is significantly higher than of the bottom one, due to
the capacitive coupling between the layers. In particular, the
CNT gates the graphene sample and induces electric charge on
the top layer which in turn leads to an effective gating of the
bottom layer. This effective CNT gating of the bottom layer is
weaker than that of the top layer, leading to different carrier
density profiles. To summarize, CNT guiding in dtBLG can be
realized in two layers in parallel, such that two independent
channels contribute to the conductance, with a full control
over the two layers by external gates.

III. ELECTRON INTERFEROMETER

As we have shown in the previous sections, a CNT used as
a gate can induce a sharp and narrow waveguide. This, as well
as the flexibility of CNTs in terms of their shapes [34,35],
makes them ideal candidates for building blocks of more
complex devices. Here we propose a ringlike Aharonov-Bohm
(AB) interferometer and a two-path interferometer.

When it comes to the characterization of interferome-
ters, their performance is determined by the visibility of the
interference pattern, defined as α = (Gmax − Gmin)/(Gmax +
Gmin), where Gmax and Gmin are the maximum and mini-
mum conductance, respectively. As we show in this section,
CNT gating is useful for obtaining conductance oscilla-
tion with high visibility in both kinds of interferometers
considered here.

A. Aharonov-Bohm interferometer

We first focus on conductance of an AB interferometer
induced by CNT gating and an etched graphene quantum ring.
The insets of Fig. 5(a) show the geometries of the considered
systems. The CNT-gated ring shape is described by a piece-
wise function [see Fig. 5(a), left inset]

y =

⎧⎪⎨
⎪⎩

0, |x| >
W

2

±D

(
cos

2πx

W
+ 1

)
, otherwise

, (4)

where W = 500
√

2 nm, D = 20π
√

2 nm, and the ring area
Ac = 2DW = 2002π nm2. The etched ring [Fig. 5(a), right
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inset] has an inner radius Rin = 160 nm and outer radius
Rout = 240 nm, and is attached to leads 400-nm wide. The
size was chosen such that the area of a circle of radius R̄ =
(Rin + Rout )/2 = 200 nm, namely Ar = π R̄2, is equal to that
of the CNT-gated ring. The choice of the ring geometry refers
to a recent experiment [63]. The transport calculation was
done with scaling factor sF = 7 (sF = 11) for the CNT-gated
(etched) ring.

1. CNT-gated Aharonov-Bohm ring

For the CNT-gated ring we choose Vbg = 7.85 V and Vcnt =
−2 V, yielding the densities nin = −4.42 × 1012 cm−2 and
nout = 5.3 × 1011 cm−2. This corresponds to M = 1 [see
Fig. 2(a)], and the guided current flows from the left narrow
lead to the right one, whereas the bulk modes are absorbed
by the top and bottom leads. The CNT-gated ring conduc-
tance is shown in Fig. 5(a) (orange line) as a function of
magnetic field. The oscillation amplitude is nearly 4e2/h,
with α = 99.87%, and the oscillation period is �B ≈ 33 mT
which is in agreement with the period evaluated with the
area enclosed by the two channels �B = h/eAc = 32.9 mT,
confirming that the oscillation is due to the AB effect within
the CNT-induced channels. At the points of completely de-
structive interference, the transmission goes mainly to the side
drain leads, as evidenced by the high value of G31 and G41

in Fig. 5(b). Figures 5(c)–5(d) show the current densities at
selected points indicated by the dashed lines in Fig. 5(b). The
current at the minimums of G21 is mainly scattered at the
point where the two paths come together close to the right
exit, as shown in Fig. 5(c). By contrast, at the maximum
the guided current flows to the right lead without scattering
[Fig. 5(d)].

2. Etched Aharonov-Bohm ring

For the etched ring, we consider carrier density equal to
n = −3.8122 × 1012 cm−2. The conductance as a function
of magnetic field is shown in Fig. 5 (blue line). The high
conductance value occurs because of multiple modes propa-
gating in the leads and ring arms. Nevertheless, we can see
clear oscillation with a period �B ≈ 33 mT, same as in the
CNT-gated ring, and in agreement with the period expected
from �B = h/eAr .

The oscillation visibility α ≈ 1.96% in the etched ring is
significantly lower than in the CNT-gated system, and we
expect that this can also be the case in experiments. The
experimentally measured visibility is expected to be lowered
by the interference of multiple paths within the ring arms, as
well as by the contact resistance and disorder, in particular
the edge roughness introduced in the etching process [21,
63–65]. The current in a CNT-gated channel is confined to
a narrow area, thus the carriers pick up nearly equivalent AB
phases on their paths in the two ring arms, leading to a perfect
destructive interference, as opposed to the etched ring with
multiple interfering paths. Furthermore, the edge disorder is
excluded in the electrostatically induced ring. Hence, overall
the visibility in the experimental CNT-gated ring can exceed
that observed in etched rings.

FIG. 6. (a) The capacitance profile of the modeled two-path in-
terferometer induced by two crossed CNTs. The solid lines show
the region considered for transport calculation, the leads are labeled
by numbers 1 to 6, and the dashed lines separate the leads from
the scattering region. (b) Zoom of the capacitance profile around
the crossing point of the CNTs within the square marked in (a).
(c) Geometry of the crossed CNTs adopted for the finite element
method electrostatic simulation. (d) Conductance between pairs of
leads labeled in (a). (e) Cross section of G41 in (d) along the red line
at Vbg ≈ −2 V.

B. Two-path interferometer

Interferometers proposed recently in graphene rely on
beam splitting at the p-n junction close to the lattice termi-
nation [11,12,66–69] or with the aid of the insulating ν = 0
quantum Hall state [22,23], and require high magnetic fields
such that the quantum Hall edge and p-n junction states are
formed. In this section, we propose a two-path interferometer
with a fully electrostatic beam splitter at the crossing of the
two guiding channels, induced by two bent CNTs placed on
top of each other. Figure 6(a) shows the considered geometry.
The electron beam from one of the injectors is split at the
crossing between the two channels. The two paths traversed
by the electrons encircle a closed area, and at the other cross-
ing either beam can end up in one of the detector leads on the
right. The magnetic flux through the area enclosed by the two
paths results in a phase difference between them which gives
rise to the conductance oscillation.

The two paths are described by the functions
±[D cos(2πx/W ) + h], with D = 50 nm, W = 300 nm,
and h = 10 nm. For modeling of a realistic device we take
into account that at the crossing point, within x ∈ (−105,

−65) nm and x ∈ (65, 105) nm [see the area marked by a
square in Fig. 6(a), and enlarged in Fig. 6(b)] one CNT lies
on top of the other and bends locally [see Fig. 6(c)] [70].
The capacitance within the square area is obtained from a
3D finite-element electrostatic simulation, and the resulting
Ccnt (x, y) [shown in Fig. 6(b)] is then combined with the
straight CNT capacitance. The overall capacitance profile is
shown in Fig. 6(a).
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Figure 6(d) shows the conductance Gi j from leads j = 1, 2
to i = 1, . . . , 6 [as labeled in Fig. 6(a)], as a function of
magnetic field and Vcnt, for a fixed Vbg = 7.85 V. We notice
that the conductance between bottom left to bottom right
(G31) and upper left to upper right (G42) is high since in
this case the current guided by the channel follows a smooth
trajectory and goes preferably along the straight part at the
crossing point of the CNTs. Splitting of the current at the
crossing still occurs and gives rise to oscillating conductance
G41 and G32 with an amplitude ≈0.2 e2/h [see the line cut
in Fig. 6(e) corresponding to the red line marked on the G41

map of Fig. 6(d)]. The oscillation is due to the magnetic flux
piercing the area enclosed by the two crossing channels, and
the oscillation period �B ≈ 0.33 T is in agreement with the
one evaluated given the loop area, �B = h/eA = 0.324 T.
The visibility of the G41 and G32 oscillation α = 95.04% is
high although the relatively low amplitude corroborates that
the beam splitting is asymmetric. This can be improved by
decreasing the crossing angle between the channels. A strong
asymmetry of the conductance G51, G61, G52, G62 at Vbg � 0
[i.e., unipolar regime–cf. Fig. 2(a)] occurs because the bulk
modes injected from the left leads preferably flow to the lead
5 (6) for positive (negative) magnetic field due to the Lorentz
force. The results shown here suggest the crossed CNTs can
be used to work as electrostatic beam splitters that operate in
moderately weak to strong magnetic fields.

IV. DIFFRACTIVE POINT INJECTOR

A. Truncated CNT gate

Point contacts in graphene are becoming an essential com-
ponent in a number of electron optical application such as
Dirac fermionic optics cavities [16] and electron collimation
[3,71]. In particular, approaching the limit of quantum-to-
classical correspondence of the focused electron waves [3]
requires a pointlike injector. However, the state-of-the-art ex-
perimental realization of point contacts is limited to 100 nm
in diameter currently, using the prepatterning of the top
hBN [72]. We propose an alternative scheme for a point-
like injector using a truncated CNT gate. The termination
of the highly spatial-confined channel in graphene induced
by the truncated CNT gate naturally forms an electron point
injector that scales down to the order of 10 nm. For the
modeling of the electrostatic coupling between the truncated
CNT gate and graphene, we use sF = 7, and consider the
capacitance in Fig. 1(c), multiplied by a smoothness func-
tion, (1 + tanh((xtruncation − x)/dsmooth ))/2, where xtruncation =
−60 nm and dsmooth = 3 nm, as shown in Fig. 7(a). An exam-
ple of the current density for Vbg = 7.39 V and Vcnt = −2 V,
where a single mode emerges in the guiding channel, is shown
in Fig. 7(b). The small section of the lower current density in
the channel results from the standing wave due to the partial
reflection from the truncation point. The angular distribution
of the current density in Fig. 7(g) shows its directional char-
acteristic: higher intensity is seen at small angles, as opposed
to an ideal point injector which does not show any directional
dependence. Also, in contrast to the current injected from a
lead [Fig. 7(c)], the truncated CNT forms a current source
of a smaller size. Nevertheless, for certain applications a uni-

FIG. 7. (a) Modeled capacitance between the truncated CNT gate
and graphene. (b),(c) Current density maps at Vbg = 7.39 V and
Vcnt = −2 V, with and without the CNT gate, respectively. (d) Carrier
density of the lensing apparatus composed of a CNT gate truncated
at the focal point of a parabolic interface where the symmetric p-n
junction forms. (e),(f) Current density maps with and without a CNT
gate, respectively. (h) The vector components of current along the
blue line cut in (e). (g) The angular distribution of current along
the dashed line in (b) where radius r = 30 nm, with respect to the
terminal point.

form current distribution is not crucial, one of the examples
being collimation of electron beams, described in the next
subsection.

B. Generating electron beam

To further demonstrate the utility of the truncated CNT
gate, we combine the pointlike injector with a parabolic-
shaped p-n junction to form an electron beam generator,
following Ref. [3]. The difference here is that the role of the
pointlike injector is played by the CNT gate truncated at the
focal point of the parabolic p-n junction, instead of a pointlike
contact [3,73]. The p-n junction symmetric in the carrier den-
sity is modeled by a smooth function, njunction tanh[(xparabola −
x)/dsmooth] describing the x dependence and a quadratic func-
tion and xparabola = −y2/4 f accounting for the y dependence,
where the carrier density njunction = 5.78 × 1011 cm−2, the
smoothness parameter dsmooth = 15 nm, and the focal length
f = 200 nm.

Figure 7(d) shows an exemplary carrier density n(x, y)
considering Vcnt = −3.5 V. The resulting current density map
is shown in Fig. 7(e), where a well collimated electron beam
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FIG. 8. Sketch of the approximated capacitance induced by a
curved CNT with the shape described by a function f (x).

at the right side of the parabolic p-n junction can be seen.
The generated electron beam, as explained already in Ref. [3],
is a consequence of the negative refraction combined with
the Klein collimation [6], which describes the transmission
function that decays with the incidence angle, from perfect
at normal incidence, known as Klein tunneling [6,73,74], to
zero at a certain finite angle depending on the smoothness of
the p-n junction [6]. The nearly perfectly collimated electron
beam is further examined by showing the x and y components
of the 2D current density J = (Jx, Jy). Figure 7(h) shows the
line cut of Jx and Jy along the path marked on Fig. 7(e). The
vanishing Jy shows the efficient collimation of the current as
a consequence of negative refraction of the pointlike source
positioned at the focal point of the parabolic p-n junction.
The collimated current density at the right side of the junction
exhibits a Jx distribution that peaks around the parabola axis at
y = 0, as a consequence of the Klein collimation. On the other
hand, current injected directly from a lead without a CNT is
not collimated, as shown in Fig. 7(f).

V. CONCLUDING REMARKS

In summary, we investigated the guiding effect in
CNT-gated two-dimensional systems, and found well-defined
conductance plateaus when discrete guiding modes and bipo-
lar junctions–in graphene-based systems–are formed in the
channel. This mechanism of conductance quantization in SLG
is an alternative to QPCs which were so far created by etching
graphene rather than gating it due to the difficulty in inducing
a bandgap in graphene. The conductance plateaus obtained by

FIG. 9. (a) One of the random configurations of the disorder
parameter ξ . (b) Conductance line cut at Vbg = −18 V and sF = 6
with a few disorder strength values Udis.

FIG. 10. Conductance linecuts with the channel along the zigzag
direction for Vbg = −18 V with sF = 1 and sF = 2.

CNT gating are sharper compared to the plateaus in etched
graphene QPCs as well as other systems, which can be electro-
statically depleted to form QPCs, including BLG and 2DEG.
Moreover, CNT guiding works well in curved channels,
making them useful as building blocks for electro-optical
devices, including quantum rings and other interferometers.
Thanks to the character of carrier confinement in CNT gated
channels, they are not limited to the operation at strong
magnetic fields, as opposed to interferometers based on p-
n junctions or the insulating ν = 0 quantum Hall state. As
presented here, this can also be used to create point injectors
simply by gating with a CNT with an abrupt termination. CNT
gating allows electrostatic confinement of carriers which is a
way to exclude imperfections like edge roughness introduced
in the etching process in lithographically defined gates, offer-
ing a versatile tool for electro-optical components.
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thickness 10, 15 and 20 nm.

195416-8



MANIPULATING ELECTRON WAVES IN GRAPHENE USING … PHYSICAL REVIEW B 105, 195416 (2022)

APPENDIX A: CURVED CNT CAPACITANCE PROFILE

In Sec. III we consider devices gated with curved CNTs.
For simplicity and to avoid the need for electrostatic sim-
ulation for each system, the capacitance of a curved CNT
C̃cnt (x, y) is calculated using C(y), the transverse capacitance
profile of a straight CNT, as illustrated in Fig. 8. For a CNT
shape described by a function f (x), the original 1D profile is
shifted in the y coordinate, and next, to take into account the
channel slope f ′(x) = tan θ , it is scaled by cos θ . The resulting
formula reads

C̃cnt (x, y) = Ccnt ( cos θ (x)[y − f (x)]). (A1)

APPENDIX B: DISORDER

To check if the guiding effect is robust against disorder, we
added an on-site potential ξUdis, with ξ being a random num-
ber, ξ ∈ (−0.5, 0.5) [see Fig. 9(a)], and Udis is the maximum
disorder strength. We calculated the conductance averaged
over 200 disorder configurations for a fixed Udis (for Udis =
0.2 eV, we used 1000 configurations). Figure 9(b) shows the
conductance for Vbg = −18 V and sF = 6 [see Fig. 3(e) in
the main text]. For moderate disorder with Udis � 0.05 eV
the plateaus are slightly disturbed but close to the expected
value G = 4e2M/h. However, for considerably strong disor-
der of the order of Udis = 0.2 eV, the steps are destroyed.
Disorder of few meV has been observed in graphene samples
encapsulated in hBN [75], so the present results allow us to
conclude that the quantization can be observed in realistic
samples.

APPENDIX C: INTERVALLEY SCATTERING

For a potential that varies strongly on the length scale of
a lattice spacing, the intervalley scattering is present. The
CNT-induced potential profile is not sharp enough to cause the
intervalley scattering for realistic gate voltages. However, for
high gate voltages, in the case of scaled lattice, the potential
variation over the lattice spacing is strong. As a result, in a
channel induced along the zigzag direction we observe inter-
mediate conductance plateaus at G = 4e2(M − 1/2)/h, M =
1, 2, . . . , as seen in a conductance line cut for Vbg = −18 V
presented in Fig. 10, for sF = 1 and sF = 2.

APPENDIX D: THICKER HBN

For a direct connection with the experimental work in
Ref. [44], we consider 4 nm hBN layer between the CNT

FIG. 12. (a) Conductance as a function of Vcnt and Vbg with
180 nm wide injection lead. (b) Line cut with Vbg = −18 V.

and graphene. However, for a safer design, a thicker hBN is
required to prevent the possible dielectric breakdown. We per-
formed calculations for the hBN thicknesses of 10 nm, 15 nm,
and 20 nm, for which the breakdown field was shown to be
about 13 MVcm−1, 12 MVcm−1, and 11 MVcm−1, respec-
tively [76]. The breakdown voltage corresponds to about 14 V,
19 V, and 22 V, respectively, and a wide gate voltage range
considered in this work is more reasonable experimentally.
The conductance map obtained for the 10-nm thick hBN is
presented in Fig. 11(a). The conductance plateaus are present
up to about M = 3 for moderately low gate voltages. The
line cuts for Vbg = −18 V for the three cases are presented in
Fig. 11(b). The conductance quantization is visible, although
the steps become smoothened for thicker hBN.

APPENDIX E: WIDER INJECTION LEAD

Throughout this work we used narrow injector and collec-
tor leads. Here, we consider a system with the lead width w =
180 nm, and the computational box size L × W = 1000 nm ×
360 nm. In the conductance map in Fig. 12(a) the plateaus
are present despite the large lead width. This is better seen in
Fig. 12(b) which shows the conductance line cuts at Vbg =
−18 V for w = 180 nm and w = 34 nm for comparison.
Figure 12(c) presents the ratio of the transmission to the top
and bottom drain leads Tleak to the transmission summed over
the drains and right lead Tsum. Whereas in the narrow lead the
leakage may nearly drop to zero, in the wide lead the leakage
is high because of the large number of bulk modes. However,
the bulk modes could carry additional currents to the right
lead, if the leads are very wide and the system is short, such
that the conductance plateaus are no longer intact.
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