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Curved-space Dirac description of elastically deformed monolayer graphene is generally incorrect
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Undistorted monolayer graphene has energy bands which cross at protected Dirac points. It elastically
deforms, and much research has assumed the Dirac description persists, now in a curved space and coupled
to a gauge field related to lattice strain. We show this is incorrect by using a real space gradient expansion to
study how the Dirac equation derives from the tight-binding model. Generic spatially varying hopping functions
give rise to large magnetic fields which spoil the truncation in derivatives. In the perturbative regime, the only
consistent truncation to Dirac is one with nontrivial gauge field but in flat space. One can instead fine-tune the
magnetic field to be small, and we derive the resulting differential condition that the hopping functions must
satisfy to yield a consistent truncation to Dirac in curved space. We consider whether mechanical effects might
impose this fine tuning but find this is not the case for a simple elastic membrane model.

DOI: 10.1103/PhysRevB.105.195412

I. INTRODUCTION

Monolayer graphene has a band structure which contains
two protected massless Dirac cones at the K and K ′ points.
When undoped the bands are at half filling, putting the chem-
ical potential at the Dirac points [1,2]. It can be bent beyond
the linear regime [3], and when freely suspended, it naturally
ripples [4,5]. When considering transport in such systems it is
imperative to derive a continuum description of such distorted
lattices.

Here we focus on the tight-binding model for graphene.
For perturbative distortions, Fourier space calculations appear
to show an effective description of Dirac fields in curved
space coupled to a gauge field proportional to the strain of
the lattice, originally for carbon nanotubes [6] and later for
graphene [7–15]. It was noted early on that the magnetic field
of this “strain gauge field” scales inversely with the lattice
spacing, �A ∼ O(1/a). This is naively concerning, as it appears
the magnetic fields induced by strain and curvature would be
very large; however, they are suppressed by the perturbative
expansion. Based on these analyses, much work has assumed
a curved-space Dirac description exists [16–25]. Our main
result is to show that actually this inverse scaling of the mag-
netic field with the lattice spacing in fact does obstruct such a
continuum Dirac description in curved space.

Here we derive an effective low-energy description from
the tight-binding model via a real space gradient expansion,
where we assume the hopping strengths vary on scales much
larger than the lattice spacing. We consider both the leading
Dirac term and the next two derivative corrections. We argue
that the previous perturbative Dirac descriptions are inconsis-
tent in that, while a correction to the frame-adding curvature
exists, it is of the same order as the higher derivative term due
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to the magnetic field scaling as 1/a. Hence in the perturbative
case the correct gauged Dirac description is one in flat space.
Worse still, in the nonlinear regime we argue that all higher
derivative terms are of the same order and so there is no
truncation whatsoever. In order to consistently keep curvature,
the hopping strengths must be fine-tuned to remove large
magnetic fields. When this unnatural fine tuning is made, we
derive a gauged Dirac description nonlinearly in the hopping
functions, which lives in a curved space with torsion-free spin
connection.

II. THE LATTICE MODEL AND THE CONTINUUM

The tight-binding Hamiltonian for graphene is

H =
∑
n,�xA

(
t
n,�xA+ a��n

2
a†

�xA
b�xA+a��n

+ H.c.
)
, (1)

where tn,�x is the (real valued) hopping strength in one of
the lattice translation directions n, a†

�xA
, b†

�xB
are creation op-

erators on the respective sublattices A and B, and a��n are
the translations from vertices in A to its neighbors, ��1 =
(
√

3/2, 1/2), ��2 = (−√
3/2, 1/2), ��3 = −��1 − ��2. Note we

have put in an explicit lattice spacing a [it is implicitly in
the lattice coordinates as, e.g., �xA = a(mA�a1 + nA�a2), �a1,2 =
��1,2 − ��3]. Note that the tn take values on the links, not the
vertices. A general one-particle state is

|�(t )〉 =
⎛
⎝∑

�yA

A�yA (t )a†
�yA

+
∑
�yB

B�yB (t )b†
�yB

⎞
⎠|0〉, (2)

and the Schrödinger equation ih̄∂t |�〉 = H |�〉 gives

ih̄∂t A�xA =
∑

n

t
n,�xA+ a��n

2
B�xA+a��n

,

ih̄∂t B�xB =
∑

n

t
n,�xB− a��n

2
A�xB−a��n

. (3)
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First we take the hopping parameters to slowly vary, so we
may write tn,�x = tn(�x), where tn(�x) are smooth functions of
the coordinates xi = (x, y). We may then think of a continuum
limit as we refine the lattice taking a → 0. We write the lattice
wave functions A, B in terms of slowly varying wave functions
F, G and a rapidly oscillating phase �(�x)/a,

A�x(t ) = F (t, �x) f (�x)ei
(

�(�x)
a + φ(�x)

2

)
,

B�x(t ) = G(t, �x) f (�x)ei
(

�(�x)
a − φ(�x)

2

)
, (4)

where we assume the phases � and φ, and the rescaling
function f are smooth functions of xi and a, so smooth in the
continuum limit a → 0. Finding a �(�x) to eliminate oscilla-

tions in �(�x) that diverge as a → 0 means that it is unique up
to O(a) corrections, which are naturally interpreted as gauge
transformations and will come with a compensating transfor-
mation of the strain gauge field, as we will see below. The
subleading correction φ(�x), under which F, G have opposite
charge, is similarly unfixed and can naturally be interpreted
as an SO(2) rotation of the frame, as we shall see shortly. As
we are interested in low-energy states and the lattice theory is
static, the only time dependence is seen in the slowly varying
modulation functions F and G. However, at this stage we will
not assume these are smooth in the a → 0 limit, only that we
may perform a gradient expansion in a∂i. Now expanding in
a we may write the Schrödinger equation as the continuum
equation,

ih̄

T
γ 0∂t� = γ a(ua + iaza + a2ra)� − iaγ a

(
wi

a − iaqi
a

)
∂i� + a2

2
γ avi j

a ∂i∂ j� + O(a3), (5)

where � = (F, G) is a complex spinor and we choose Dirac
matrices γ A = (γ 0, γ a) = (−iσ 3, σ 1, σ 2), where σ i are Pauli
matrices and ∂i = ∂/∂xi are lattice coordinate derivatives. The
quantities ua, za, ra,w

i
a, qi

a, v
i j
a are real, and the ones we re-

quire here are

Iaua = 2ieiφ

3T

∑
n

e−i∂n�tn, Iawi
a = 2eiφ

3T

∑
n

�i
ne−i∂n�tn,

Iavi j
a = 2ieiφ

3T

∑
n

�i
n�

j
ne−i∂n�tn, Iaza = − f 2

2
∂i

(
wi

f 2

)
, (6)

with Ia = (1, i) and ∂n = ��n · �∂ . We introduce the energy scale
T and think of tn(�x) = T as the undeformed model.

III. ATTEMPTING TO TRUNCATE TO DIRAC

We will now truncate this continuum Schrödinger equa-
tion to first derivative order acting on �. We should be
suspicious about whether such a truncation is valid, but for
now we will interpret (5) to order O(a) as a curved-space
Dirac equation coupled to a gauge field. We compose space-
time coordinates xμ = (t, xi ) and define the metric,

ds2 = gμνdxμdxν = −v2dt2 + gi j (�x)dxidx j . (7)

Here v will be the Fermi velocity for the undeformed model,
tn(�x) = T . This may be written in terms of a frame eμ

A and its
dual eA

μ, where

et
0 = 1

v
, et

a = ei
0 = 0, gμν = ηABeA

μeB
ν , (8)

with ηAB = diag(−1,+1,+1). We fix

f = √| det ea
i | = |g|1/4, (9)

which ensures that the U (1) charge density of the Dirac theory
is that of the original electrons,

J0 = √
g�̄γ 0� = (A, B)† · (A, B). (10)

This is equivalent to ensuring the lattice anticommutators
{a†

�x, a�y} = {b†
�x, b�y} = δ�x,�y imply the correct curved-space an-

ticommutator {�†(�x), �(�y)} = 1√
gδ

(2)(�x − �y).
Now the Schrödinger equation (5), truncated to first deriva-

tives on spinors, can be written as

aieμ
a γ aDμ� = O(a2), (11)

where we have taken v = 3aT/(2h̄), and the covariant deriva-
tive is given in terms of a magnetic gauge field Aμ = (0, Ai )
and spin connection, parameterized here by the spatial 1 form
�i,

Dt� = ∂t�, Di� =
(

∂i − iAi + i

2
σ3�i

)
�, (12)

and the frame and gauge field to this order O(a) are

ei
a = wi

a, Ai = −1

a
ea

i ua. (13)

Using the relations (6) and our choice of f we find

�i = εabe j
a∂ je

i
b, (14)

which is precisely the torsion-free spin connection that fol-
lows from the frame ei

a. While we might expect that in the
absence of lattice defects torsion vanishes in a continuum
description, it is pleasing to see this explicitly emerge.

We may understand the local freedom of shifting the
phases of the two lattice fields A and B in Eq. (4) as a local
frame rotation freedom,

φ → φ + δφ ⇒
{

ei
a → ei

a − δφ εabei
b

Ai → Ai (15)

for an infinitesimal δφ, together with a local gauge transform
on the vector Aa = ei

aAi,

� → � + δ� ⇒
{

Aa → Aa − 1
a∂aδ�

ei
a → ei

a − v
i j
a ∂ jδ�

(16)

for infinitesimal δ�.
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Now we ask whether this truncation to first derivatives
can be generally valid. We argue that for generic tn it is
not, as contributions from the standard Dirac kinetic terms
γ aeμ

a (∇μ − iAμ)� come at the same order as those from
higher derivative terms in Eq. (5), such as γ av

i j
a ∂i∂ j�. This

may be seen in two ways:
(i) The gauge field in Eq. (13) goes as Ai ∼ 1/a. The

spinor � responding to this will then generally have variation
on scales that vanish as a → 0, hence ruining the gradient
expansion. We will discuss this explicitly for perturbative
deformations.

(ii) The local phase symmetry in (16) is a gauge transfor-
mation for Aa, but ei

a transforms too, and this is inconsistent
with its interpretation as a frame which should be invariant.

On the latter issue there should be a continuum formula-
tion of (5) written to manifest these local symmetries where
the derivative expansion will be in covariant derivatives with
respect to the gauge and frame symmetry. Consider a putative
two-derivative term to match that in (5). It will have the form
a2γ av

i j
a D̃iD̃ j� where D̃i are covariant. Note that their gauge

and spin connections need not be the same as those of the
leading Dirac theory. However, by taking the gauge field to
scale as ∼1/a, we then this term contains a contribution,

a2

2
γ avi j

a D̃iD̃ j� ⊃ −ia2γ avi j
a Bi∂ j�, (17)

for some gauge connection Bi. Then (13) gains a new term,
wi

a = ei
a + av

i j
a B j , and now if Bi transforms as v

i j
a B j →

v
i j
a B j − 1

av
i j
a ∂ jδ�; then we indeed see that ei

a is invariant with
Bi accounting for the transformation of wi

a. However, then
the gauge fields mix the contribution of covariant derivative
terms between the partial derivative orders. This naturally
extends to all higher derivative terms, with higher powers of
the connection canceling the a suppression.

IV. TWO TRUNCATIONS TO DIRAC

In order to give a consistent truncation of our theory to the
leading Dirac term we must tame the lattice scale gauge field
by requiring aAi → 0 as a → 0. There are two approaches.

A. Perturbative deformation

The lattice scale of the gauge field has been previously
emphasized in [8]. In the derivation of curved-space Dirac of
[7] and following work this was addressed using a perturbative
expansion where

tn = T (1 + εδtn) (18)

with |ε| � 1. At ε = 0 we return to the undeformed lattice
Hamiltonian and can use standard momentum space tools.
With our conventions a Dirac cone sits at the K point with
wave vector �K = 1

a ( 4π

3
√

3
, 0). This means that a slowly varying

continuum field � is related to lattice wave functions via
(A, B) = ei �K ·�x�. Motivated by this, we will choose � to be
this transformation at leading order,

� = a �K · x + εχ (�x) = 4π

3
√

3
x + εχ (�x). (19)

The gauge field is then

Ai = −ε

a

(
2

3

∑
n

εi jδ
j
nδtn + ∂iχ

)
, (20)

and we see χ (�x) parameterizes the gauge freedom. While this
goes as ∼1/a, the perturbative expansion in ε controls this.
The geometry depends on this gauge, the frame leading to the
metric,

gi j = δi j − 4

3
ε
∑

n

�i
n�

j
nδtn + εKi jkεk�∂�χ, (21)

which has Ricci scalar curvature

R = 4

3
ε
∑

n

(
δi j − �i

n�
j
n

)
∂i∂ jδtn + εKi jkεk�∂i∂ j∂�χ, (22)

where we have defined Ki jk = − 4
3

∑
n �i

n�
j
n�

k
n. Taking the K ′

Dirac point corresponds to taking � → −�, ei
1 → −ei

1, and
Ai → −Ai, and the metric is invariant. For χ = 0 these re-
produce the results of [7] (when we consider the physical
metric rather than the Weyl rescaled one [22]). Previously
these results have been taken to show the perturbatively de-
formed tight-binding model is described by a curved-space
Dirac equation. However, we explicitly see here the gauge
freedom χ gives a physical contribution to the curvature. Not-
ing that two-dimensional geometry is locally characterized by
the Ricci scalar, in fact we can then choose any geometry,
including a flat one, with an appropriate gauge choice χ . The
second concerning feature highlighted in [8] is that while we
have controlled Ai ∼ ε/a, we have done this at the cost of
the spin connection being parametrically smaller, �i ∼ ε, as
a → 0. In [8] it is argued that the spin connection should
be ignored, leaving only a frame and gauge field. We will
demonstrate that for general perturbations it is inconsistent
to ignore the spin connection but not the variation of the
metric, as they are of the same order, and further that the
corrections to the frame and spin connection have the same
order as the two-derivative term. Consider in some region of
size L the perturbative deformation to be φ = χ = δt3 = 0
and δt1 = −δt2 =

√
3x

2L . This yields Ai = (0, ε
a

x
L ), a Landau

gauge magnetic field B = 1
�2

B
with �B = √

aL/ε the magnetic
length which diverges as a → 0 but may be parametrically
larger than the lattice scale. At leading order O(ε) and a � L
this may be solved by Landau levels. Here we focus on the

lowest level wave function, taking � = (0, e
− x2

2�2
B ). Now we

can evaluate the Dirac term on this leading solution and com-
pare this to the two-derivative term. Then at O(ε) we have
v

i j
a = 1

2 ek
aKkmiεm j , and find

iaei
aγ

a∇i� = − iaε

4L
σ 1�, a2γ avi j

a ∂i∂ j� = − iaε

2L
σ 1�, (23)

so both go as ∼aε/L. We emphasize that the Dirac term is
nonzero here due to the varying frame at O(ε). Thus this
simple example demonstrates that the perturbative contribu-
tion to the frame in the Dirac term is the same order as higher
derivative terms, and it is therefore inconsistent to consider it
in isolation.
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We note it is consistent to truncate to Dirac if we ignore
corrections to the frame, as then for a � L these terms are
small corrections to the flat gauged Dirac term.

B. Fine tuning

In order to preserve curvature we are forced to fine-tune
the gauge field so that aAi → 0 as a → 0, which implies the
condition ua → 0 in this limit. The condition ua = 0 is solved
by

t1 = sin[(��2 − ��3) · �∂�]

sin[(��1 − ��2) · �∂�]
t3, t2 = sin[(��1 − ��3) · �∂�]

sin[(��2 − ��1) · �∂�]
t3, (24)

so that � determines the ratios t1,2/t3. However, we wish to
specify couplings tn. We can solve (24) for Qx = ∂x� and
Qy = ∂y� independently as functions of tn [26]. Explicitly, if
we define

X = e
√

3i
2 Qx , Y = e

3i
2 Qy , (25)

then we find

Y = − t3X

t2 + t1X 2
, X 4 + t2

1 + t2
2 − t3

3

t1t2
X 2 + 1 = 0, (26)

where the two roots of the quadratic in X 2 yield the inequiva-
lent Dirac points. In the case of homogeneous tn where we can
Fourier transform and work in momentum space, �Q/a given
by the two roots are the wave vectors of the two Dirac points.

However, given �Q one can only integrate to find a phase
� if the integrability condition ∂xQy = ∂yQx holds. Using the
explicit solution for �Q above, we find this condition can be
written neatly as the constraint that the tn must obey,∑

n

V i
n

∂itn
tn

= 0,V i
m =

∑
n

(Ki jk� j
m�k

n − 1

2
�i

m)t2
n . (27)

We will physically interpret this constraint shortly.
An important solution to this is constant but unequal tn

[27], which corresponds to constant nonzero strain. As we
show below, in this case the metric has changed but is still
constant, and so there is no geometric curvature. This cor-
responds to a misalignment of the lattice and ambient space
coordinates. Using the preserved translational symmetry one
can still work in momentum space, finding that the location of
the Dirac cone has moved.

Another special solution where the tn are spatially varying
is when they are equal, so tn = t (�x). This corresponds to a
pure expansion lattice distortion, with vanishing strain.

Suppose the above condition (27) holds so we may find
a solution to (24) written as � = f (t1,2/t3). Then a second
solution is given by � = − f (t1,2/t3), corresponding to the
other Dirac point. For the two solutions we find the frames,

(
ex

1 ey
1

ex
2 ey

2

)
= − 1√

3T t3
R′ ·

(±1 0
0 1

)
·
(

� 0
t2
1 − t2

2

√
3t2

3

)
,

(28)

where R′ = (
sin(θ ) cos(θ )

− cos(θ ) sin(θ ) ) is a frame rotation with θ =
φ + ∂y� and � is given by the two solutions of

�2 =
(∑

n

t2
n

)2

− 2
∑

n

t4
n . (29)

The plus sign above corresponds to the solution which, for
undeformed tn, gives the K point. The minus sign is for the
solution giving the K ′ point for undeformed tn. For both of
these, the corresponding spatial metric that the Dirac field
sees, which we will call the “electrometric,” is

gi j = ea
i eb

jηab = 3T 2

�2

∑
n

(
δi j − 4

3
�i

n�
j
n

)
t2
n . (30)

In the special case of equal tn = t (�x), then the electrometric is
Weyl flat, gi j = [T/t (�x)]2δi j . Recalling the strain gauge field
vanishes, this case can then be interpreted as massless Dirac
fields coupled only to a curved geometry and no strain gauge
field.

Strictly imposing the constraint (27) gives an exactly van-
ishing strain gauge field. However, if we define the map from
the lattice to the hopping functions with a subleading behav-
ior,

tn,�x = tn(�x, a) = t̄n(�x) + aτn(�x) + O(a2), (31)

and for the phase we write

�(�x, a) = �̄(�x) + aχ (�x) + O(a2) (32)

and impose the constraint only on the t̄n so it is not exactly
satisfied, but is as a → 0, then we may retain an O(a0) strain
gauge field,

Ai = ± �

2
√

3t̄1t̄2

( − t̄1+t̄2
(t̄1+t̄2 )2−t̄2

3

t̄1−t̄2
(t̄1−t̄2 )2−t̄2

3

4t̄1 t̄2 t̄3
�2

1√
3

t̄1−t̄2
(t̄1+t̄2 )2−t̄2

3
− 1√

3
t̄1+t̄2

(t̄1−t̄2 )2−t̄2
3

− 4√
3

(t2
1 −t2

2 )t1t2
�2t3

)⎛
⎝τ+

τ−
τ3

⎞
⎠ − ∂iχ, (33)

where τ± = τ1 ± τ2. The signs correspond to the solutions as
for the frame in Eq. (28). Taking � → � + a δ�, then Ai

transforms by a gauge transformation, Ai → Ai − ∂iδ�, and
the frame is invariant to leading order in a as we require.

For general spatially varying hopping functions satisfying
the constraint (27) we can define a wave vector �Q[tn(�x)] by
using exactly the same expressions as in Eqs. (25) and (26) for

the homogeneous case, but now with varying tn(�x). Explicit
calculation of the magnetic field of �A from its expression
above shows it is simply related to the curl of this wave vector
�Q as

1

a
(∂xQy − ∂yQx ) = Fxy = ∂xAy − ∂yAx. (34)
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Hence up to a gauge transformation we see that �Q/a is equal
to the gauge field �A. Finally, we see that the constraint con-
dition (27), which is that ∇ × �Q vanishes, is in fact just the
requirement that the strain magnetic field is indeed finite as
a → 0.

V. FINE-TUNING AND EMBEDDING

Can this fine-tuning of Eq. (27) arise from mechanical
considerations? Consider an almost flat embedding into R3

with coordinates (X i, Z ) given by

X i = xi + εvi(�x), Z = √
εh(�x), (35)

with height function h and strain field vi. Linearizing in ε the
induced metric of this embedding is

g(ind)
i j = δi j + 2εσi j, σi j = 1

2 (∂iv j + ∂ jvi + ∂ih∂ jh), (36)

with indices lowered/raised using δi j and σi j as the strain
tensor. Assuming the hopping parameters depend on bond
length and not angle [28], then to O(ε),

tn � T (1 − εβσi j�
i
n�

j
n), (37)

where β can be estimated for graphene as β � 3.3 [29].
We may neatly express our fine-tuning condition (27) as
Ki jk∂kσi j = 0. Consider the canonical elastic energy,

Emech =
∫

d2�x
(

κ

2
(∂2h)2 + μσ 2

i j + λ

2
σ 2

ii

)
, (38)

with bending rigidity κ and Lamé coefficients μ and λ. Vary-
ing the strain field vi yields μ∂ jσ ji + λ

2 ∂iσ j j = 0. Assuming
μ, λ > 0, then this is generally incompatible with the previous
fine-tuning condition. Thus this membrane energetics does not
impose the necessary constraint on strain for a curved-space
Dirac description.

In the event that the constraint is satisfied, the perturbation
to the electrometric is gi j � δi j + 2εβσi j . As emphasized in
Refs. [10,22], this is not the same as the induced metric in
Eq. (36). Nonperturbatively, the tn(�x) will be a functional of

the induced metric g(ind)
i j (�x), and the map to the electrometric

is given by Eq. (30).

VI. CONCLUSION

We have argued that contrary to graphene folklore, the
tight-binding model with generic slow spatial variation of
the hopping functions does not have a curved-space Dirac
description coupled to a strain gauge field. We find a contin-
uum spinor description, but this is generally obstructed from
truncating to first spinor derivatives by large magnetic fields.
Making the tn vary perturbatively cannot solve this, although
it does allow a consistent flat space Dirac description with
strain gauge field. However, for generic slow nonperturbative
variation of tn there is no Dirac description at all. Related
issues have been noted in the lattice literature when studying
Euclidean theories on the honeycomb lattice as well [30].
Standard examples of constant uniaxial strain, which have
been well studied in the literature [27], do not in any way
disagree with this result, as a constant strain can be interpreted
as a constant metric deformation, which induces no curvature.

One may obtain a curved-space Dirac description if one
fine-tunes the variation of the hopping functions. However,
this fine-tuning appears unnatural, and we have shown simple
membrane energetics will not impose it. Thus we believe that
elastically deformed graphene monolayers do not generally
have a curved-space Dirac description. Likewise, optical lat-
tice constructions of graphenelike lattices [31] will need to be
highly fine-tuned to recover curved-space Dirac. This clearly
has important implications for using graphene and other lat-
tice systems as a laboratory to study curved-space quantum
field theory and analog gravity, as well as requiring a new
paradigm to understand transport.
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