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Valley transport driven by dynamic lattice distortion
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Angular momentum conversion between mechanical rotation and the valley degree of freedom in 2D Dirac
materials is investigated theoretically. Coupling between the valley and vorticity of dynamic lattice distortions is
derived by applying the k · p method to 2D Dirac materials with an inertial effect. Lattice strain effects are also
incorporated. Valley transfer and valley-dependent carrier localization are predicted using the dynamic lattice
distortions. The transport properties are found to be controllable, allowing the system to be insulating and to
generate pulsed charge current. Our formalism offers a route toward mechanical manipulation of valley dynamics
in 2D Dirac materials.
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I. INTRODUCTION

Valleytronics is an emerging field that uses the valley de-
grees of freedom, i.e., the local extrema of the electronic
band structure, with the aim of developing innovative ap-
proaches to information processing, optoelectronic devices,
and quantum computation [1–3]. In 2D Dirac materials such
as gapped graphene [4,5] and monolayer transition-metal
dichalcogenides (TMDCs) [6], the electrons carry valley-
dependent orbital angular momentum that originates from the
Berry curvature caused by inversion symmetry breaking [5,7].
As a result, the valleys in these systems can be identified based
on the intrinsic orbital angular momentum of the electrons, as
illustrated in Fig. 1(a). This means that the valleys can be con-
trolled using an external field coupled to the orbital angular
momentum. In fact, it has been demonstrated experimentally
that circularly polarized light beams [8–12] and magnetic
fields [13–16] can be used to manipulate the valley degree
of freedom. Since these demonstrations, more versatile valley
control methods have been desired. One candidate method
taken from familiar phenomena is the gyroscopic effect, by
which the angular momentum is coupled with mechanical
rotation.

This gyroscopic coupling technique has been observed
and used in a variety of systems. For example, gyroscopes
are used to measure the gravitomagnetic field precisely in
a curved space near the earth [17]. The quantum version of
the gyroscopic effect is called the gyromagnetic effect, where
both the orbital and spin angular momenta are coupled to the
mechanical rotation. The gyromagnetic effect was discovered
during an attempt to explore the origins of magnetism [18–20]
and led to the discovery of electron spin angular momentum
before quantum mechanics was established.

While the original targets in these gyromagnetic experi-
ments were limited to ferromagnetic materials, gyromagnetic
coupling itself is a universal phenomenon that occurs even
in nonmagnetic materials. Indeed, gyromagnetic coupling has
been observed in various branches of physics, including spin-
tronics [21–35], ultrafast demagnetization processes [36], and
quark-gluon many-body systems [37]. These studies have
shown that the coupling between angular momentum and rota-
tion emerges universally in a variety of systems and continues
to have a tremendous impact on a wide range of topics in
fundamental physics.

In this paper, we propose an alternative valley manipu-
lation technique that uses gyroscopic coupling between the
valley and the local rotational motion (or vorticity) excited by
dynamic distortion in 2D Dirac materials. Figure 1(b) shows
schematic images of systems in which 2D Dirac materials are
placed on a substrate and dynamic lattice distortion is then
applied. We consider a Love wave, which is a type of hori-
zontally polarized surface acoustic wave (SAW). This SAW
leads to two effective magnetic fields: The strain-induced
pseudomagnetic field Bs

z and the vorticity field ωz as shown
in Fig. 1(c).

Both of these effective fields couple to the valley orbital an-
gular momentum, thus allowing the valley to be manipulated
using the SAW. We also consider electron doping of these 2D
materials. In the presence of a standing SAW, valley transfer
and dynamic valley polarization can be realized, depending on
the Fermi energy εF and the strengths of Bs

z and ωz.
We also discuss the charge transport when an external DC

electric field is applied to 2D Dirac materials in the pres-
ence of the SAW. We find that the conductivity is suppressed
by the SAW and that a pulsed charge current is generated;
this current can be used as a broadband microwave source.
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FIG. 1. (a) Intrinsic valley-dependent orbital angular momentum for two inequivalent valleys. (b) 2D Dirac materials on a substrate in the
presence of Love-type SAWs. The sum of the pseudovalley Zeeman coupling (pVZC), and the valley-vorticity coupling (VVC) is shown for
three cases. (i) The carriers are trapped at the bottom of U and the SAW conveys the valley degree of freedom. (ii) The carriers are localized
when the pVZC exceeds the Fermi energy. Both the K+ and K− valleys are localized at the same location. (iii) The carriers are localized when
the VVC exceeds the Fermi energy. Here, the K+ and K− valley carriers are localized at different locations. (c) The dynamic lattice distortion
leads to two effective magnetic fields: The strain-induced pseudomagnetic field Bs and the vorticity field ω.

Our findings presented here pave the way towards valley
device applications for 2D Dirac materials using the SAW
devices [38].

The paper is organized as follows. The emergent gauge
fields induced by the dynamic lattice distortion are introduced
in Sec. II. The mechanism and procedure to incorporate the
emergent gauge fields are explained. Finally, two kinds of
the Zeeman like coupling are derived. The valley manipula-
tion using the SAW are proposed in Sec. III. Furthermore,
pulsed current generation and microwave radiation based on
the proposed valley manipulation mechanism are discussed
as application examples in Secs. IV and V, respectively. A
conclusion is given in Sec. VI.

II. GAUGE FIELDS INDUCED BY THE DYNAMIC
LATTICE DISTORTION

We consider 2D Dirac materials in which the dynamic
lattice distortion is induced by the SAW in the substrate.
The dynamic lattice distortion leads to two kinds of emergent
gauge fields, the velocity fields due to the inertial effect [39]
and the strain-induced gauge field [40–42]. They originate
from the different mechanism. In the following subsections,
we describe how each gauge field arises and how it is incor-
porated into the low-energy effective Hamiltonian of 2D Dirac
materials.

A. Velocity field due to the inertial effect

In this subsection, we focus on the inertial effect. The pe-
riod of the SAW is about a nanosecond and the typical lifetime
of electrons would be about a picosecond, so that an adi-
abatic approximation is valid, where electrons adiabatically
follow the dynamic lattice distortion. As a result, the effect
of the dynamic lattice distortion is incorporated as the inertial
effect [39]. Starting from the generally covariant Dirac La-
grangian, which governs the dynamics of the spin-1/2 particle
in curved spacetime, the inertial effect is incorporated into the

nonrelativistic Hamiltonian as a U (1) potential

H = (p + eAv )2

2m
+ V (r), (1)

where V (r) is a periodic potential of a crystal and Av is the
emergent gauge field

Av = −m

e
(u̇x, u̇y, u̇z ), (2)

with the velocity field of the lattice u̇. The detailed derivation
is explained in the Appendix. Therefore, the inertial effect is
incorporated into the low-energy effective model as conven-
tional electromagnetic field.

Based on the discussion in the above paragraph, the low-
energy effective Hamiltonian for 2D Dirac materials, e.g.,
gapped graphene [4,5] and TMDCs [6], is given by

H2D = v(ξσxπx + σyπy) + �σz, (3)

where v is the velocity, σ are Pauli matrices that describe
the pseudospin, ξ = ±1 specifies the states at the K+ and K−
valleys, π is the kinetic momentum, and � is an asymmetric
potential breaking the inversion symmetry. The effect of the
dynamic lattice distortion can be incorporated as emergent
gauge fields. We then substitute π = p + eAv into the above.

B. Strain-induced gauge field

In addition to the velocity field, the dynamic lattice dis-
tortion also leads to the strain-induced gauge field given by
[40–42]

ξAs = ξ
E0

ev
(uxx − uyy,−2uxy), (4)

with the strain tensors ui j = (∂ jui + ∂iu j )/2 and the material
parameter E0. There are two ways to derive the strain-induced
gauge field, starting from the tight-binding model and argu-
ment based on the symmetry. In addition to the velocity field
Av , the strain-induced gauge field ξAs has to be incorporated
into the kinetic momentum π as π = p + eξAs + eAv . Note
here that both the velocity field and the strain-induced gauge
field are induced by the dynamic lattice distortion, but it is
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not always the case that both fields will be generated. For
example, when a rigid-body rotation is considered, only the
velocity field due to the inertial effect arises.

C. Hamiltonian near the conduction band bottom

Although the electronic states in 2D Dirac materials is
obtained by solving Eq. (3), it is convenient to reduce the
two-band model to a one-band model to examine the physics
near the conduction band bottom. Using the Schrieffer-Wolff
transformation [43], the two-band model given in Eq. (3)
can be reduced to a one-band model. The Schrieffer-Wolff
transformation is a widely-used technique that perturbatively
incorporates the effect of off-diagonal matrix elements and
systematically reduces the size of the matrix to be solved.
Consequently, the effective Hamiltonian near the conduction
band bottom is given by

H eff
2D = π2

2m∗ + l
γ Bs

z

2
− ξ l

ωz

2
, (5)

where m∗ = �/v2 is the effective mass, ξ l = ξ h̄m/m∗ is
the intrinsic valley-dependent orbital angular momentum
[5,7,44,45], γ = e/m is the gyromagnetic ratio, Bs

z = ∂xAs
y −

∂yAs
x is the strain-induced pseudo-magnetic field, and ωz =

∂xu̇y − ∂yu̇x is the vorticity field. The first term is the con-
ventional kinetic energy term with the effective mass m∗.
The second term describes the coupling between the valley
magnetic moment and the pseudo-magnetic field, which we
call the pseudo valley Zeeman coupling (pVZC). The second
term is independent of the valley index because the strain
field preserves the time-reversal symmetry. The third term
describes the coupling between the valley orbital angular
momentum and the vorticity field, which we call the valley-
vorticity coupling (VVC). The VVC is similar to the valley
Zeeman coupling, which describes the coupling between the
valley magnetic moment and a magnetic field [13–16]. The
derivation of the VVC is one of the main results reported
in this paper. Note here that the acoustoelectric effect in the
TMDC was discussed previously in a system similar to our
setup [46,47].

III. VALLEY MANIPULATION USING SAW

In our setup, the Love wave is excited in the substrate by an
external force, which leads to the dynamic lattice distortion in
2D Dirac materials. The detailed properties of the Love wave
are explained in the Appendix. The lattice displacement vector
in 2D Dirac materials is given by

u = (0, u0 sin(kx) sin(ωt ), 0), (6)

which means that the vorticity field and the pseudomagnetic
field are given by

ω = (0, 0, ω0 cos(kx) cos(ωt )) (7)

with ω0 = u0ω
2/cs and

Bs = (
0, 0, Bs

0 sin(kx) sin(ωt )
)

(8)

with Bs
0 = ω0E0/evcs, respectively. As shown in the

Appendix, the dispersion relation is approximately linear, so
that we use the dispersion relation ω = csk, where cs is the

SAW velocity. The sum of the pVZC and the VVC can then
be treated as a periodic potential

U = l
ω0

2
[R sin(kx) sin(ωt ) − ξ cos(kx) cos(ωt )], (9)

where the dimensionless material parameter R is introduced

R = γ E0

evcs
. (10)

Different valley manipulations are possible, depending on the
value of R. Note that the dynamic lattice distortion induced
here is not directly related to the phonon modes in the 2D
Dirac materials. We expect that the effect due to the pVZC and
the VVC can be detected even in the presence of the thermally
activated phonon modes. Indeed, phenomena related to our
proposal, such as strain induced Landau level formation in
graphene [48] and spin manipulation using the SAW device
[28,31,49], have been observed at room temperature.

We consider three cases showing characteristic carrier dis-
tribution in the electron-doped system:

(i) When the Fermi energy is sufficiently smaller than
both the pVZC and the VVC (i.e., when εF � |lγ Bs

0|, |lω0|),
the carriers are trapped at the bottom of potential and are
transferred in the opposite direction for each valley, as shown
in Fig. 1(b)(i). This is a promising candidate mechanism to
convey the valley information. This case can be realized using
any value of R.

(ii) When the Fermi energy is sufficiently larger than the
VVC but smaller than the pVZC (i.e., when |lω0| � εF �
|lγ Bs

0|), the carriers are then localized at the time ωt = (N +
1/2)π, (N = 0,±1, · · · ), as shown in Fig 1(b)(ii). In this
case, the spatial distribution of the carriers is almost indepen-
dent of the valley. This case can be realized when R � 1.

(iii) When the Fermi energy is sufficiently larger than
the pVZC but smaller than the VVC (i.e., when |lγ Bs

0| �
εF � |lω0|), the carriers are then localized at the time ωt =
Nπ, (N = 0,±1, · · · ), as shown in Fig. 1(b)(iii). In contrast
to the second case, each valley’s carrier is localized in a
different location separated by π/q. This case can be realized
when R � 1.

The valley transfer shown in Fig. 1(b)(i) and the carrier lo-
calizations shown in Figs. 1(b)(ii) and 1(b)(iii) are detectable
experimentally using time-resolved optical diffraction mea-
surements. Because the carrier density pattern is periodic,
diffraction patterns will appear under coherent illumination.
The periods shown in Figs. 1(b)(ii) and 1(b)(iii) are different
and thus the corresponding diffraction patterns are also differ-
ent. Furthermore, the valley dependence of the carriers is also
detectable using Kerr rotation microscopy, because the valleys
carry an orbital magnetic moment [50]. The experimental
signatures are listed in Table I.

Next, we estimate the strengths of the vorticity field and
the pseudo-magnetic field. Using the parameters of graphene
from the previous study [40], the relationship for the strengths
of the vorticity field and the pseudomagnetic field is given as
ω0/γ ∼ 10−3 × Bs

0, and when the parameters of MoS2 from
the previous study [51] are used, the relationship is given
as ω0/γ ∼ Bs

0. The experimentally feasible parameters for
the SAW are u0 ≈ 100 pm, ct ≈ 103 m/s, and ω ≈ 30 GHz,
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TABLE I. Experimental signatures to detect the valley manipu-
lations discussed in this paper.

Case (i) (ii) (iii)

Optical diffraction � � �
Kerr rotation � �
Pulsed current � �

meaning the strength of the vorticity field can be estimated to
be ω0/γ ∼ 0.01 T.

IV. MANIPULATION OF TRANSPORT PROPERTIES

In addition to the spatial distribution of the carriers, the
carrier transport properties are also modulated by the SAW.
Here, we discuss their longitudinal transport properties along
the x direction in the three cases described above based on
the semiclassical Boltzmann transport theory. In case (i), the
carriers are trapped at the bottom of the potential U at any
time, which means that the system becomes insulating. In
cases (ii) and (iii), conversely, the system undergoes repeated
carrier localization and delocalization when the amplitude
of U exceeds and falls below εF , respectively, because of
the time dependence of U . To investigate the longitudinal
transport properties in the latter cases, we use semiclassical
Boltzmann transport theory. In the following discussion, we
focus on the second case and omit the VVC for simplicity,
which corresponds to the assumption that R � 1. This simpli-
fication does not affect the main results given below because
the effect of the VVC is negligible due to the condition
|lω0| � εF . As shown in Eq. (9), although there is a phase
difference between the pVZC and the VVC, their qualitative
effects on the longitudinal transport properties are almost the
same. Therefore, the results are also applicable to the third
case.

The semiclassical Boltzmann kinetic equation is given by

∂ fξ
∂t

+ ṙ · ∂ fξ
∂r

+ ṗ · ∂ fξ
∂ p

=
(

∂ fξ
∂t

)
coll

, (11)

where fξ is the distribution function for the valleys K+ and
K−, and the equations of motion are given by

ṙ = ∂εξ,p

∂ p
− ṗ × �ξ , (12)

ṗ = −eE + mṙ × ω − eṙ × ξBs, (13)

where εξ,p is the energy band in the presence of the pVZC,
�ξ = h̄∇p × i〈uξ,p|∇p|uξ,p〉 is the Berry curvature for each
valley, and |uξ,p〉 is the periodic part of the Bloch wave func-
tion. The second term in Eq. (12) is the anomalous velocity
[7], the second term in Eq. (13) is the Coriolis force that
originates from the vorticity field of the lattice [39], and the
third term in Eq. (13) is the valley-dependent Lorentz force
that originates from the pseudomagnetic field.

Next, we consider the charge transport along the x direction
in the presence of the external electric field E = (Ex, 0, 0). We

use the following relaxation time approximation:(
∂ fξ
∂t

)
coll

= − fξ − f (0)
ξ

τ
, (14)

where τ is the valley-independent relaxation time and
f (0)
ξ = 1/(1 + exp[(εξ,p − εF )/kBT ]) is the Fermi distribu-

tion function. The above expression of the relaxation time
approximation is based on the three assumptions. First, the
valley quantum number is treated as a conserved quantity.
This assumption is reasonable if the sample is sufficiently
clean that the effect of the atomic scale scatterers is negligible
and there is no intervalley scattering process. In addition, the
SAW rarely leads to intervalley scattering because the wave-
length of the SAW is much larger than the lattice constant.
Next, the relaxation time approximation is valid even in the
presence of the time-dependent potential because the SAW
period is much larger than the lifetime of the electron. In
our setup, the SAW period is about a nanosecond, and the
lifetime of the electron would be about a picosecond. Finally,
the relaxation time is independent of the valley quantum num-
ber. This assumption is reasonable if the scatterers have no
characteristic feature that breaks the valley degeneracy.

Assuming a weak vorticity field and a weak pseudomag-
netic field (i.e., ω0m|�ξ,z| � 1, ω0τ � 1, and ωcτ � 1 with
ωc = eBs

0/m∗), the anomalous velocity, the Coriolis force, and
the Lorentz force then only give corrections for the longitudi-
nal conductivity and have almost no effect on the qualitative
behavior of the longitudinal conductivity. Based on this as-
sumption, we can omit these three terms. Note here that there
is no Hall voltage in the current setup because the net vorticity
field is zero. The SAW dynamics are much slower than the
dynamics of the electrons, which means that the adiabatic ap-
proximation is valid and it can be assumed that the steady state
is achieved at each moment. Finally, the charge current can
be calculated by deriving the steady state of the distribution
function at each moment and using snapshot energy bands.
We define δ fξ as fξ = f (0)

ξ + δ fξ , and δ fξ is given by

δ fξ = τeExvx

(
∂ fξ
∂εξ,p

)
, (15)

where vx = ∂εξ,p/∂ px. Using δ fξ , the charge current at T = 0
can be given by

jx =
∑
ξ=±1

e2τEx

∫
d p

(2π h̄)2
v2

x δ(εF − εξ,p). (16)

Figures 2(a)–2(c) show snapshot energy bands as a func-
tion of px with a fixed py = 0 at several values of ωt . The
pVZC is treated as a spatially periodic potential in each
case, which means that the energy gap opens and the group
velocity decreases as the amplitude Bs

z increases. Therefore,
the charge current is suppressed by the SAW. Figure 2(d)
shows the charge current as a function of ωt and the Fermi
energy εF . At a fixed εF , the charge current changes with the
period π and reaches a maximum value at ωt = Nπ, (N =
0,±1, · · · ). The charge current is almost zero around ωt =
(N + 1/2)π, (N = 0,±1, · · · ) when the Fermi energy is suf-
ficiently small in comparison to the pVZC. Figure 2(e) shows
the charge current as a function of ωt at several fixed εF .
One can see that the sharp pulsed current is generated when
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FIG. 2. [(a)–(c)] Snapshot energy bands at several values of ωt .
(d) Charge current as a function of both εF and ωt . (e) Charge current
as a function of ωt at several values of εF . We set |lγ Bs

0|/2 = 1.5ε0,
where ε0 = h̄2q2/2m∗. The unit of jx is given by j0 = (n0e2τ/m∗)Ex

with carrier density n0 = ε0m∗/2π h̄2.

εF � |lγ Bs
0|. At a finite temperature, the pulsed current is

subject to thermal broadening. The sharp pulsed current can
still be generated in a condition that the thermal broaden-
ing energy is much smaller than the pVZC (i.e., kBT �
|lγ Bs

0|). Using the parameters for graphene with energy gap
� = 0.1 eV [52,53], the pVZC is estimated as |lγ Bs

0/2| ∼
30 meV, which is the same order of the thermal broaden-
ing energy at room temperature. Therefore, the condition to
generate the sharp pulsed current is expected to be exper-
imentally feasible. Within the quadratic approximation, the
Fermi energy εF is proportional to the carrier density n (i.e.,
εF = 2π h̄2n/m∗), so that one can replace the Fermi energy
in Fig. 2 with the carrier density by multiplying the factor
m∗/2π h̄2.

To summarize the discussion of the transport properties
above, when the Fermi energy is sufficiently smaller than both
the pVZC and the VVC, the system becomes insulating, but
when the Fermi energy is larger than either the pVZC or the
VVC, the conductivity is then suppressed and a pulsed current
can be generated, as listed in Table I.

V. BROADBAND MICROWAVE SOURCES

The charge current obtained above can be divided into
an AC component and a DC component using the form
jx(t ) = jac

x (t ) + jdc
x , with jdc

x = jx(π/2ω). The DC compo-
nent jdc

x corresponds to the minimum value of the charge
current and becomes finite when εF /ε0 � 0.54. The oscil-
lating current jac

x (t ) can be used for broadband and tunable
microwave sources, which is useful for device applications
[54]. A schematic image of the microwave radiation in our
setup is shown in Fig. 3(a).

Figure 3(b) shows the Fermi energy dependence of the full
width at half maximum (FWHM) value of the pulse. When
the Fermi energy increases, the FWHM also increases, and
the range of Fourier components decreases. There is a kink

FIG. 3. (a) Schematic image of the microwave radiation pro-
duced by jac

x (t ). (b) Pulse FWHM as a function of the Fermi energy.
The inset shows the Fourier components of the pulse at εF /ε0 =
0.35. (c) Averaged radiation intensity as a function of the Fermi
energy. The unit is set as I0 = Z0

2

√
ε+√

ε++√
ε− j2

0 .

structure of the FWHM at εF /ε0 ≈ 0.54 because jdc
x becomes

finite and increases above this point.
The averaged radiation intensity of the microwave in the

upper half space I is given by

I = Z0

2

√
ε+√

ε+ + √
ε−

∫ π/ω

0

d (ωt )

π

[
jac
x (t )

]2
, (17)

where Z0 ≈ 377 � is the characteristic impedance of free
space, and ε+ and ε− are permitivity of free space and sub-
strate, respectively. Figure 3(c) shows the averaged intensity
as a function of the Fermi energy. The averaged radiation
intensity becomes a local maximum at εF /ε0 ≈ 0.54 above
which jdc

x becomes finite. Setting the charge current as j0 ∼
1 A/m and the permitivity as ε± ∼ 1, the averaged radiation
intensity is estimated as I ∼ 0.1 mW/cm2 in the energy range
considered here.

VI. CONCLUSIONS

In this paper, we have presented an investigation of the
low-energy effective Hamiltonian of 2D Dirac materials in the
presence of the dynamic lattice distortions. We have derived
the valley-vorticity coupling (VVC), which is regarded as an
inertial effect. In addition to the VVC, we also incorporated
the strain-induced pseudomagnetic field into the analysis. We
have proposed mechanisms for both valley transfer and valley-
dependent carrier localization using an SAW.

We have also investigated the electronic transport prop-
erties in the presence of the SAW. The conductivity along
the direction of propagation of the SAW is suppressed by
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the dynamic lattice distortions. Periodic modulation of the
conductivity results in a pulsed charge current when an elec-
trostatic field is applied along the SAW. This pulsed charge
current act as a broadband microwave source and can be used
for optoelectronic device applications. These results pave the
way toward the realization of next-generation valleytronics
device applications using the SAW devices.
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APPENDIX A: INERTIAL EFFECT DUE TO DYNAMIC
LATTICE DISTORTIONS

Let us consider the inertial effects due to dynamic lattice
distortions such as elastic motion in the presence of SAWs.
Previous studies have shown that the strain field caused by
these lattice distortions leads to an strain-induced gauge field
[40–42]. In the following subsequent discussion, we omit the
the strain-induced gauge field and focus on the inertial effect.

The generally covariant Dirac Lagrangian, which governs
the dynamics of the spin-1/2 particle in curved spacetime, is
[55,56]

L = �̄
[
iγ âeâ

μ(x)(pμ − Aμ) − mc
]
�, (A1)

where m and c represent the mass of an electron and the
speed of light, respectively. The spin connection Aμ is given
by Aμ = ih̄ωâb̂μ[γ â, γ b̂]/8, where h̄ represents the Planck’s

constant, ωâb̂ is related to the tetrad eâ as deâ = ωâ
b̂ ∧ eb̂, and

γ â is the gamma matrix. Note that μ in Eq. (A1) represents
the vector indices in curved spacetime and the hatted indices
â, b̂ represent the local Lorentz indices.

We can describe the relationship between a local rest
frame on the lattice and an inertial frame in terms of
the lattice displacement vector u and the lattice velocity
field u̇(x) (|u̇|/c � 1), dr′ = dr + u̇(x)dt . We can explic-
itly write the tetrad e0̂

0 = 1, e0̂
i = −u̇i/c, e ĵ

0 = 0, e ĵ
i = δi

j .

As a result, the generally covariant Dirac Lagrangian
(A1) leads to the Dirac Hamiltonian in the local rest
frame [39]

HD = βmc2 + (cα − u̇(x)) · p − � · ω(x)

2
, (A2)

where β = γ 0 and αi = γ 0γ i are the Dirac matrices, and
�a = h̄

2 εabc[γ b, γ c] is the spin operator, and ω(x) = ∇ × u̇(x)
is the vorticity field of the lattice distortion. Here, two inertial
effects on the spinor field due to the lattice velocity field u̇(x)
are included in the Hamiltonian. First, the velocity operator
of the Dirac spinor in the inertial frame cα is replaced with
cα − u̇(x). Second, we include the spin-vorticity coupling
−� · ω(x)/2.

The lowest order of the Foldy-Wouthuysen-Tani transfor-
mation [57,58] for Eq. (A2) leads to the Pauli-Schrödinger

FIG. 4. The slab medium M1 of thickness H is stacked on the
semi-infinite medium M2.

equation for an electron in the local rest frame on the
lattice

ih̄
∂ψ

∂t
= H ′ψ, H ′ = (p + eAv (x))2

2m
− s · ω(x)

2
, (A3)

where s is the spin angular momentum of the electron,
which obeys the commutation relation [si, s j] = ih̄εi jksk .
This result shows that the inertial effects can be intro-
duced into the conventional Hamiltonian in an inertial frame
via the following two emergent gauge fields: the U(1)
potential

Av (x) = −m

e
u̇(x) = −m

e
(u̇x(x), u̇y(x), u̇z(x)), (A4)

and the spin-vorticity coupling, or the SU(2) scalar poten-
tial, −s · ω(x)/2. Consequently, the inertial effect of the U(1)
potential Av is incorporated into the low-energy effective
Hamiltonian by the Peierls substitution p → p + eAv as the
conventional electromagnetic field. In the main text, we omit
the spin-vorticity coupling, based on the assumption that its
effect is small when compared with the orbital effect that
originates from the Peierls substitution. This assumption is
valid for the 2D Dirac materials because the intrinsic orbital
angular momentum is larger than the spin angular momentum.
Adding the periodic potential of the lattice, which is omitted
in the above discussion, gives the non-relativistic Hamiltonian
Eq. (1) used in the main text.

APPENDIX B: SURFACE ACOUSTIC WAVE: LOVE WAVE

In this section, we explain the Love wave, a hori-
zontally polarized (transverse) surface acoustic wave. The
equation of motion for an isotropic elastic body is given
by [59–61]

∂2u
∂t2

= c2
t �u + (

c2
� − c2

t

)∇(∇ · u), (B1)

where u is the displacement vector, and ct and c� are the ve-
locities of the transverse and longitudinal waves, respectively.
In the following, we focus on transverse waves oscillate in
the y direction [i.e., u = (0, uy, 0)]. From the transversality
condition (i.e., ∇ · u = 0), the second term on the right-hand
side vanishes.

We consider a slab medium M1 with a thickness of H on
a semi-infinite medium M2, as shown in Fig. 4. We assume
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solutions of Eq. (B1) of the form

ua(x, z, t ) = ha(z)ei(kx−ωt ), (B2)

where ua(x, z, t ) (a = 1, 2) is the y component of the dis-
placement vector in medium Ma. Substituting Eq. (B2) into
Eq. (B1), we obtain the differential equation for ha(z)(

k2 − ω2

c2
a

)
ha(z) = ∂2ha(z)

∂z2
, (B3)

where ca is the velocity of transverse waves in each medium.
Since we consider surface waves, we assume a solution, which
vanishes at negative infinity [i.e., limz→−∞ h2(z) = 0]. There-
fore, the solutions ha(z) are written as

h1(z) = Aeiqz + Be−iqz, (B4)

h2(z) = Ceκz, (B5)

where q and κ are positive numbers given by

q =
√

ω2

c2
1

− k2, (B6)

κ =
√

k2 − ω2

c2
2

. (B7)

The velocities c1 and c2 have to satisfy c1 < c2 since both q
and κ are positive numbers.

The values of q and κ are determined by finding solutions
under appropriate boundary conditions. Here, we apply the
free surface boundary condition at z = 0, where the stress on
the surface vanishes, and the continuities of displacement and
stress at the boundary between M1 and M2:

∂h1(z)

∂z

∣∣∣
z=0

= 0, (B8)

h1(−H ) = h2(−H ), (B9)

ρ1c2
1
∂h1(z)

∂z

∣∣∣
z=−H

= ρ2c2
2
∂h2(z)

∂z

∣∣∣
z=−H

, (B10)

where ρa is the density of Ma. Substituting Eqs. (B4) and (B5)
into the above equations, we obtain an equation system for the
coefficients A, B, and C,

A − B = 0, (B11)

Ae−iqH + BeiqH = Ce−κH , (B12)

iρ1c2
1q

(
Ae−iqH − BeiqH

) = ρ2c2
2κCe−κH . (B13)

To obtain nontrivial solutions, we should have

κ

q
= ρ1c2

1

ρ2c2
2

tan (qH ). (B14)

Substituting Eqs. (B6) and (B7) into Eq. (B14) to find ω and k
that satisfy the boundary conditions, we obtain the dispersion
relation. Figures 5(a) and 5(b) show the dispersion relation
and the amplitude of the Love waves, respectively. The phase
velocity of the Love waves cs is also obtained from the disper-
sion relation. Using the obtained displacement ua and phase

FIG. 5. (a) The red, green, and blue curves represent the disper-
sion relation of the Love waves. The dotted lines are ω = c1k and
ω = c2k. We set the parameters as indicated in the figure legends.
(b) The amplitude of the Love wave ha(z) at k = 30 μm−1, where
a = 1 for −1 < z < 0 and a = 2 for z < −1. The red, green, and
blue curves correspond to the red, green, and blue branches in the
left panel, respectively.

velocity cs, the intensity of the Love waves Is is given by

Is =
∫ 0

−H
dz

1

2
csρ1|u̇1|2 +

∫ −H

−∞
dz

1

2
csρ2|u̇2|2. (B15)

The 2D Dirac material follows the excited Love wave on
the substrate, which dynamically distorts the lattice of the
2D material. By superimposing of the traveling-wave-type
solutions (B2), we can get the dynamic lattice distortion of
the standing-wave type, which is employed in the main text.

APPENDIX C: MICROWAVE RADIATION

In our setup, we have an oscillating electric current in the
x direction; hence, the magnetic (electric) field emitted by
the current should oscillate in the y (x) direction. Integrating
Maxwell’s equations gives the electric field continuity and the
magnetic field discontinuity at boundaries. In the frequency
domain, we can write

lim
δh→0

[Ex(z, ω)]z=+δh
z=−δh = 0, (C1)

lim
δh→0

[Hy(z, ω)]z=+δh
z=−δh = −Jx(ω), (C2)

where the electric current on the 2D material J is given in
[A/m]. We have the current but no incoming electromagnetic
waves. Only outgoing waves are present, e.g.,

Ex(z, ω) =
{

E+
x (ω)e+i(ω/v+ )z z > 0,

E−
x (ω)e−i(ω/v− )z z < 0,

(C3)

where v± = c/
√

ε± is the speed of light in each medium with
each permittivity ε±. The magnetic field is associated with the
electric field via the characteristic impedance [62],

E±
x (ω) = ± Z0√

ε±
H±

y (ω), (C4)

where Z0 ≡ √
μ0/ε0 ≈ 377 � is the characteristic impedance

of free space. We rearrange Eqs. (C1) and (C2) in a matrix
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form, (
1 −1√
ε+

√
ε−

)(
E+

x (ω)
E−

x (ω)

)
=

(
0

Z0Jx(ω)

)
. (C5)

Inverting, we can find

E±
x (ω) = Z0Jx(ω)√

ε+ + √
ε−

, H±
y (ω) = ±√

ε±Jx(ω)√
ε+ + √

ε−
, (C6)

The radiation intensities in the upper and lower
media are calculated from the Poynting vector as

following:

dw±
dω

= ±1

2
Re[{E±

x (ω)}∗H±
y (ω)], (C7)

= 1

2

√
ε±√

ε+ + √
ε−

Z0|Jx(ω)|2. (C8)

This is the radiation intensity between an frequency interval
[ω,ω + dω]. By integrating this quantity, we can obtain av-
eraged radiation intensity. Remind that the integration over
the frequency is equivalent to taking the average in the time
domain [Eq. (17) in the main text].
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