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Efficient high-harmonic generation in graphene with two-color laser field at orthogonal polarization
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High-order frequency mixing in graphene using a two-color radiation field consisting of the fundamental and
the second harmonic fields of an ultrashort linearly polarized laser pulse is studied. It is shown that the harmonics
originated from the interband transitions are efficiently generated in the case of the orthogonally polarized two-
color field. In this case, the generated high harmonics are stronger than those obtained in the parallel polarization
case by more than two orders of magnitude. This is in sharp contrast with the atomic and semiconductor systems,
where the parallel polarization case is more preferable. The physical origin of this enhancement is also deduced
from the three-step semiclassical electron-hole collision model, extended to graphene with pseudorelativistic
energy dispersion. In particular, we discuss the influence of the many particle Coulomb interaction on the high-
order harmonics (HHG) process within dynamical Hartree-Fock approximation. Our analysis shows that in all
cases we have an overall enhancement of the HHG signal compared with the free-charged carrier model due to
the electron-hole attractive interaction.
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I. INTRODUCTION

Significant experimental and theoretical efforts have re-
cently been invested in the generation of high-order harmonics
(HHG) of a laser field interacting with the condensed phase
of the matter. The generation of harmonics has recently been
reported in solid-state materials with crystalline symmetry
[1–16], in amorphous solids [17], and in liquids [18], which
ensures that the condensed phase of the matter has the po-
tential of becoming a compact and efficient attosecond light
source of the next generation due to the high density of
the emitters, compared with a gaseous medium. HHG gives
access to a frequency range that is difficult to achieve in
other ways [19], and provides a frequency-domain view of
the electron dynamics in quantum systems [20]. The complete
characterization of the radiated harmonic spectrum, phase,
and polarization will allow one to recover the underlying
quasiparticle dynamics in solids. In particular, using HHG one
can reconstruct the crystal potential and electrons density with
a spatial resolution of about 10 picometers [21], which can be
used for the direct investigation of the electronic and topolog-
ical properties of the materials. From the spectra of HHG in
crystals one can observe the dynamical Bloch oscillations [5],
Mott [22], and Peierls [23] transitions and retrieve the band
structure [24,25] or the band topology [26].

The HHG in atomic gases has been intensively investigated
since the 1990s of the past century [27] and now with the
advent of controlled few-cycle light waves is the basis of the
attosecond science [28,29]. In view of the vast theoretical
and experimental methods developed for atomic HHG, it is
of interest to analyze whether methods that were developed
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for enhancing HHG in the gas phase are also applicable to
HHG in solid state nanostructures. Among the existing nanos-
tructures, the graphene due to its more pronounced properties
allows one to use it as a more effective nonlinear optical mate-
rial and has triggered many studies devoted to nonperturbative
HHG [11,30–44]. Specifically, diverse polarization and ellip-
ticity dependence effects in the total HHG spectrum [41–44]
are revealed in a monolayer graphene where interaction with
the pump wave drives charged carriers far away from the Dirac
cones. The latter opens up wide opportunities for increasing
the HHG yield in graphene by choosing the parameters of the
driving wave.

An efficient option for increasing the HHG yield in atomic
systems is the use of multicolor driving pulses. High-order
wave mixing processes with multicolor laser fields have
gained enormous interest due to the additional degrees of
freedom, such as relative polarizations, intensities, phases,
and wavelengths of involved pump waves. In atomic systems,
it has been shown that adding an additional second or third
harmonic field can enhance the HHG in the plateau region by
several orders of magnitude [45–47]. The HHG with different
compositions of the driving laser pulses was addressed also
for solid targets and nanostructures considering two distinct
regimes: first, if the driving field consists of the fundamental
wave and its harmonics [4,24,48–54] and, second, if one of
the involved wave frequencies is significantly higher than
the other one [2,8,55–60]. Two-color high-order wave mix-
ing research reported so far has mainly been performed for
gapped systems. For 2D semimetals, two-color high-order
wave mixing was considered in Ref. [59] in the case when one
of the frequencies is significantly higher than the other one.
In Ref. [54] valley-selective HHG in pristine graphene was
considered by using a combination of the two counter-rotating
circularly polarized fields. For solid targets with an energy gap
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exposed to two- or three-color laser pulses [48,51,53] of par-
allel polarizations the enhancement of HHG has been shown
in an analogy with the atomic HHG [45], where the HHG in
the orthogonally polarized two-color field is suppressed. The
latter is intuitively clear in terms of a simple quasiclassical
three-step model [28,29]. As long as the polarization of the
resultant field is no longer linear, the ionized electron will, in
general, never return to the parent ion. However, for gapless
systems, as will be shown in the current paper, this conclusion
does not hold, and the opposite applies: the HHG yield will
be increased considerably at the orthogonally polarized two-
color driving wave fields.

In this paper the high-order frequency mixing in graphene
using a two-color radiation field that consisted of the
fundamental and the second harmonic (SH) fields of an ul-
trashort linearly polarized laser pulse is studied. It is shown
that the harmonics originated from the interband transitions
are efficiently generated in the case of the orthogonally polar-
ized two-color laser field. This is in sharp contrast with the
atomic [45] and semiconductor cases [53], where the parallel
polarization case is more preferable.

We consider a rather general model, including many-
particle Coulomb interaction, since the Coulomb interaction
is known to be generally stronger in low-dimensional struc-
tures. The importance of Coulomb interaction for ultrafast
many-particle kinetics in graphene has been theoretically and
experimentally verified [61–63]. The significance of many-
body Coulomb interaction at the high harmonic generation
process in graphene has been shown in Ref. [39]. The
latter study was conducted near the Dirac points and the open
question of interest remains: to develop the theory of HHG
with many-body Coulomb interaction beyond the Dirac cone
approximation that is applicable to the full Brillouin zone
(BZ) [62]. As a first step, the combined carrier-carrier and
carrier-phonon scatterings are taken into account phenomeno-
logically with relaxation rate in femtosecond time scale [61].

The paper is organized as follows. In Sec. II the evolution-
ary equation for the single-particle density matrix is presented.
The electron-electron Coulomb interaction is taken into ac-
count within the dynamical Hartree-Fock (HF) approximation
[63,64] beyond the Dirac cone approximation and applicable
to the full Brillouin zone of a hexagonal tight-binding nanos-
tructure. In Sec. III, we consider HHG spectra and present the
main results. Finally, conclusions are given in Sec. IV.

II. EVOLUTIONARY EQUATION FOR THE
SINGLE-PARTICLE DENSITY MATRIX

We consider the interaction of a strong two-color laser field
E(t ) with graphene. The waves propagate in a perpendicular
direction to the monolayer plane (XY ) of graphene with the
electric field strength:

E(t ) = f1(t )E01ê1 cos (ωt ) + f2(t )E02ê2 cos (2ωt ), (1)

where E01 and E02 are the amplitudes of the laser pulses,
ω is the fundamental frequency, and ê1 and ê2 are the unit
polarization vectors. The envelopes of the two wave pulses

FIG. 1. Schematic representation of the Coulomb-induced MA
processes near the Dirac cone for destruction (a) and multiplication
(b) of carriers in one specific band at the expense of another band.

are described by the sin-squared functions

f1,2(t ) =
{

sin2 (πt/τ1,2), 0 � t � τ1,2,

0, t < 0, t > τ1,2,
(2)

where τ1 and τ2 characterize the pulse duration. The carrier-
envelope phases for both wave pulses are set to zero. The
dynamics of the system is governed by the total Hamiltonian:

Ĥ = Ĥfree + ĤC + Ĥint, (3)

where

Ĥ free =
∑
λ,k

Eλ(k)ê†
λkêλk (4)

is the free particle Hamiltonian, with êλk (ê†
λk) the annihilation

(creation) operators for an electron with the momentum k
and band index λ = ±1=̂c, v [for conduction (λ = 1) and
valence (λ = −1) bands]. In Eq. (4) Ec(k) and Ev (k) are the
corresponding band energy dispersions. The specific expres-
sions for the single-particle Hamiltonian and other derived
quantities are given in the Appendix. In HF approximation,
we reduce the Coulomb interaction Hamiltonian ĤC into the
mean-field Hamiltonian:

ĤC = −
∑
αβγ δ

∑
k �=k′

gα,δ
γ ,β

(k, k′)V2D(k′ − k)ργδ (k′, t )ê†
αkêβk,

(5)

where V2D(k) is the Fourier transform of the electron-electron
interaction potential and the form factor reads

gα,δ
γ ,β

(k, k′) = 1
4 [1 + αγ δβ + (δβ + αγ ) fc(k, k′)

+ i(δβ − αγ ) fs(k, k′)]. (6)

In Eq. (5) ργδ (k′, t ) = 〈̂e†
δk′ êγ k′ 〉 is the single particle density

matrix, and the functions

fc(k, k′) = Re

{
f ∗(k) f (k′)

| f (k)|| f (k′)|
}
,

fs(k, k′) = Im

{
f ∗(k) f (k′)

| f (k)|| f (k′)|
}

are defined via the structure function f (k) (A2). The terms in
Eq. (5) proportional to fs(k, k′) are nonzero when δβ = −αγ ,
and describe Meitner-Auger processes [65–67]. A Meitner-
Auger (MA) process is a Coulomb-induced interaction for
which the number of carriers in the bands are not conserved
individually; cf. Fig. 1. In graphene, due to a vanishing band
gap, these processes cannot be neglected, in contrast to con-
ventional semiconductors when a large band gap suppresses
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the MA effect by the demand of energy conservation. The
two major MA processes for electrons, corresponding to the
Coulomb matrix elements g−1,1

1,1 (k, k′) and g1,1
1,−1(k, k′) for

destruction (a) and multiplication (b) of carriers in one specific
band at the expense of another band are displayed in Fig. 1.
For holes, similar processes occur.

The last term in Eq. (3)

Ĥint = ieE(t )
∑
αβ

∑
kk′

∫
(∂kei(k′−k)r )dr〈αk||βk′〉 ê†

αkêβk′ (7)

is the light-matter interaction Hamiltonian in the length gauge,
e is the elementary charge, and

〈αk||βk′〉 = 1
2 [ fc(k, k′) + i fs(k, k′) + αβ].

Now, from the Heisenberg equation ih̄∂t ê
†
αkêβk = [ê†

αkêβk, Ĥ ]
one can obtain the closed set of evolutionary equations for
a density matrix ρβ,α (k, t ) = 〈ê†

αkêβk〉. The diagonal ele-
ments represent particle distribution functions for conduction
Nc(k, t ) = ρ1,1(k, t ) and valence Nv (k, t ) = ρ−1,−1(k, t )
bands, and the nondiagonal element is the interband polariza-
tion P (k, t ) = ρ1,−1(k, t ). On the HF level for an undoped
system in equilibrium, the initial conditions P (k, 0) = 0,
N 0

c (k) = 0, and N 0
v (k) = 1 are assumed, neglecting thermal

occupations or doping. Since Nv (k, t ) = 1− Nc(k, t ), the
equation for Nv (k, t ) is superficial. Thus the graphene inter-
action with a strong laser field is modeled as

∂tNc(k, t ) − h̄−1eE(t )∂kNc(k, t )

= −2 Im{[h̄−1E(t )Dtr (k) + �c(k, t ;P,Nc )]P∗(k, t )},
(8)

∂tP (k, t ) − h̄−1eE(t )∂kP (k, t )

= −ih̄−1[Ec(k) − Ev (k) − c(k, t ;P,Nc) − ih̄�]P (k, t )

+i[h̄−1E(t )Dtr (k) + �c(k, t ;P,Nc )][1 − 2Nc(k, t )],

(9)

where Dtr (k) = −e〈c, k|i∂k|v, k〉 is the transition dipole mo-
ment and � is the phenomenological relaxation rate. The
many-body Coulomb interaction renormalizes the light-matter
coupling via the internal dipole field of all generated electron-
hole excitations:

�c(k, t ;P,Nc ) = h̄−1

(2π )2

∫
BZ

dk′V2D(k − k′)

×{P ′(k′, t ) + i fc(k, k′)P ′′(k′, t )

− i fs(k, k′)Nc(k′, t )}, (10)

as well as the transition energies:

c(k, t ;P,Nc) = 2

(2π )2

∫
BZ

dk′V2D(k − k′)

×{ fc(k, k′)Nc(k′, t ) + fs(k, k′)P ′′(k′, t )}.
(11)

From Eqs. (8) and (9) one can recover semiconductor
Bloch equations for an ideal 2D semiconductor [68] taking
fc(k, k′) = 1 and fs(k, k′) = 0. The Coulomb contribution

(11) in Eq. (9) describes the repulsive electron-electron in-
teraction and leads to a renormalization of the single-particle
energy Ec,v (k). Note that the Coulomb-induced self-energy
has been absorbed into the definition of the single-particle en-
ergy and will not be written explicitly hereafter. The Coulomb
contribution Eq. (10) leads to a renormalization of the Rabi
frequency and accounts for electron-hole attraction. Already
in linear spectroscopy this term is responsible for the forma-
tion of excitons in semiconductors. In graphene, it gives rise to
the so-called saddle-point exciton [69,70] near the van Hove
singularity of graphene BZ.

The optical excitation induces a surface current that can be
calculated by the following formula:

j(t ) = −2e
∑

k,λ,λ′
ρλ,λ′ (k, t )〈λ′, k|̂v(k)|λ, k〉. (12)

Here v̂(k) is the velocity operator and factor 2 takes into
account spin degeneracy. Note that since we are integrating
over the entire Brillouin zone, only the spin degeneracy has
been taken into account.

For the numerical solution of Eqs. (8) and (9), we can
make a change of variables and transform the partial dif-
ferential equations into ordinary ones. The new variables
are t and k0 = k − kE , where kE (t ) = −e/h̄

∫ t
0 E(t ′)dt ′ is

the classical momentum given by the wave field. The
latter can be expressed by the vector potential of the laser
field: AL= −c−1

∫ t
0 E(t ′)dt ′ (c is the light speed in vacuum).

Throughout this paper, for compactness of equations we will
use the notation A =eAL/ch̄ for the vector potential. In the
new variables Eqs. (8) and (9) read

∂tNc(k0, t ) = −2 Im{[h̄−1E(t )Dtr (k0 + A)

+�c(k0 + A, t ;P,Nc)]P∗(k0, t )}, (13)

∂tP (k0, t ) = −ih̄−1[Eeh(k0 + A) − ih̄�]P (k0, t )

+ i[h̄−1E(t )Dtr (k0 + A)

+�c(k0 + A, t ;P,Nc )]

×[1 − 2Nc(k0 + A, t )], (14)

where Eeh(k) = Ec(k) − Ev (k) − c(k, t ;P,Nc) is the
electron-hole energy. This set of equations is equivalent to
Eqs. (8) and (9), since the gradient term E(t )∂k and the
time-dependent crystal momentum k0 + A(t ) in Eqs. (13)
and (14) describe the same effect. Without Coulomb terms
Eqs. (13) and (14) are semiconductor-Bloch equation within
the Houston basis [71,72]. The surface current Eq. (12) can
be split into the interband and intraband parts as follows:

je(t ) = − 2e

(2π )2

∫
B̃Z

dk0[v∗
tr (k0 + A)P (k0, t ) + c.c], (15)

ja(t ) = − 2e

(2π )2

∫
B̃Z

dk0[vc(k0 + A)Nc(k0, t ) + c.c], (16)

where vtr (k) = i[Ec(k) − Ev (k)]Dtr (k)/eh̄ is the transition
matrix element for velocity and vc(k) = h̄−1∂Ec(k)/∂k is the
mean velocity of the conduction band. In Eqs. (15) and (16)
we have taken into account electron-hole symmetry and the
BZ is also shifted to B̃Z = BZ − A.
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The electron-electron interaction potential is modeled by
the screened Coulomb potential [62]:

V2D(q) = 2πe2

εεq|q| , (17)

which accounts for the substrate-induced screening in the 2D
nanostructure (ε) and the screening stemming from other va-
lence electrons (εq). Here, ε ≡ (ε1 + ε2)/2, with the dielectric
constants of the above ε1 and below ε2 surrounding media.
Assuming a graphene layer on a SiO2 substrate (ε1 = 1, ε2 =
3.9), we approximate ε = 2.45. The screening induced by
graphene valence electrons is calculated within the Lindhard
approximation of the dielectric function εq, which in a static
limit reads �

εq = 1 − 4πe2

ε|q|

×
∑
λ,λ′,k

�λ,λ′ (k, q)
N 0

λ′ (k − q) − N 0
λ (k)

Eλ′ (k − q) − Eλ(k)
, (18)

where �λλ′ (k, q) = 1
2 [1 + λ′λ fc(k, k − q)] is the band over-

lap function.

III. RESULTS

In this section we discuss the full numerical solution of the
quantum HF equations (Sec. III A) and, to get more analytical
insight, we study which effects can be already observed in a
semiclassical approach (Sec. III B).

A. Fully quantum calculations

We explore the nonlinear response of graphene in a two-
color laser field of ultrashort duration. We take a five-cycle
fundamental laser field. The envelopes and amplitudes of fun-
damental and SH fields are taken to be the same: E0 ≡ E01 =
E02 and τ ≡ τ1 = τ2. The amplitude of fundamental field
was varied up to 8 MV/cm (intensity 8.5 × 1010 W/cm2).
Hence the maximal intensity 1.7 × 1011 W/cm2 impending
on graphene is below the damage threshold for monolayer
graphene [12,73,74]. For all calculations, the relaxation time
is taken to be equal to the wave period �−1 = T = 2π/ω.
For the considered frequencies we will have �−1 = 20–40 fs,
which is close to the experimental data [61]. The combined
laser field possesses C1 symmetry [75]; hence the allowed
harmonic orders are n ± 1, i.e., we have both even and
odd harmonics. For a sufficiently large 2D sample the gener-
ated electric field far from the graphene layer is proportional
to the surface current: E(g)(t ) = −2π [je(t ) + ja(t )]/c. The
HHG spectral intensity is calculated from the Fourier trans-
form of the generated field.

Thus we have a set of nonlinear integro-differential equa-
tions (13) and (14), which have been solved numerically.
The time propagation is considered via the fourth-order
Runge-Kutta method. The numerically demanding parts at
each time step are the Coulomb contributions (10) and (11),
which are integrated over the full BZ divided to ∼105 parts.
These terms are calculated using the convolution theorem
along with the fast Fourier transform. This procedure de-
creases computational time by two orders compared with the

FIG. 2. Particle distribution function Nc(k, t f ) (in arbitrary
units) after the interaction for graphene, as a function of scaled
dimensionless momentum components (kx/kb, ky/kb) for different
relative polarizations of the fields. The fundamental frequency is ω =
0.1 eV/h̄ and the field strength is taken to be E01 = E02 = 4 MV/cm
(intensity 2. 13 × 1010 W cm−2).

direct evolution. For integration, we take rhombic BZ, where
the �-K line is the x axis. For the convergence of the results
we take 400 × 400 k points running parallel to the reciprocal
lattice vectors (A3).

In Fig. 2, we depict excitation of the Fermi-Dirac sea,
i.e., the electron distribution function Nc(k, t f = τ ) after the
interaction for graphene, as a function of scaled dimensionless
momentum components for different relative polarizations of
the fields. In the left corner of each density plot, we also show
the Lissajous figures of corresponding vector potentials A. It
is clearly seen that the excitation patterns in the Fermi-Dirac
sea follow the Lissajous diagrams. The latter is the conse-
quence of Eqs. (13) and (14). As is seen for the orthogonal
fields xω + y2ω and yω + x2ω, we have eightlike excitation
shapes, while in the two parallel polarized fields xω + x2ω and
yω + y2ω we have cigar-shape figures. As a consequence, in
former cases the excitation areas are considerably larger.

In Fig. 3, the HHG spectra in logarithmic scale with
ω + 2ω frequency mixing for graphene in the strong-field
regime for different relative polarizations of fundamental and
SH pump fields is presented. From top to bottom we show
the total, interband, and intraband parts of spectra. The insets
show the fine structure of HHG in the middle and in the
beginning of the spectra. As is seen from Fig. 3, in the case
of the orthogonally polarized two-color field the generated
high harmonics are stronger than those obtained in the parallel
polarization case by more than two orders of magnitude. Such
enhancement is colossal mainly for the interband part of HHG
which is predominant for the plateau part of the spectrum. For
the beginning of the spectrum where the intraband current is
dominant, we also have differences but not so noticeable. This
tendency is preserved also for the higher carrier frequency
and intensity of laser pulses. This is seen in Fig. 4, where we
plotted the results of our calculations for larger field strength,
Fig. 4(a), and for larger carrier frequency, Fig. 4(b), com-
pared with Fig. 3. Note that our finding is in sharp contrast
with the atomic [45] and semiconductor cases [53] where the
parallel polarization case is more preferable. The reason for
such discrepancy is the vanishing gap for graphene, which
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FIG. 3. HHG spectra in logarithmic scale for graphene in the
strong-field regime for different relative polarizations of fundamental
and SH pump fields. The insets show the middle and the beginning
of the spectra. The fundamental frequency is ω = 0.1 eV/h̄ and the
field strength is taken to be E01 = E02 = 4 MV/cm.

ensures efficient creation of electron-hole pairs with a large
crystal momentum [see Figs. 2(b) and 2(d)] in the case of
orthogonally polarized two-color field. The nonzero crystal
momentum components eventually lead to reencounter and
annihilation of these pairs after the acceleration in the laser
fields with the subsequent emission of high harmonics.

The polarization of harmonics depends on the symmetries
of the mean velocity vc(k) Eq. (A8) and the transition matrix
element vtr (k) which is determined by the transition dipole
moment Dtr (k) [see Eq. (A7)]. In the parallel polarization
cases the polarizations of harmonics are evident. In Figs. 3
and 4 for the xω + y2ω case the plateau harmonics are pre-
dominantly polarized along the y axis, since Dxtr (kx,−ky ) =
−Dxtr (kx,−ky ); meanwhile, the excitation pattern is almost
symmetrical with respect to the ky axis; cf. Fig. 2(b).

Now, we will investigate the influence of the Coulomb
interaction on the HHG in graphene. Due to the vanishing
band gap, the screening is expected to be large. On the
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FIG. 4. HHG spectra for graphene in the strong-field regime
for different relative polarizations of fundamental and SH pump
fields. (a) The fundamental frequency is ω = 0.1 eV/h̄ and the field
strength is taken to be E01 = E02 = 6 MV/cm. (b) The fundamental
frequency is ω = 0.2 eV/h̄ and the field strength is taken to be
E01 = E02 = 8 MV/cm.

other hand, the Coulomb interaction is known to be generally
stronger in low-dimensional structures. The comparison of
ω + 2ω frequency mixing signals for graphene with indepen-
dent charged carriers and with Coulomb interaction in the
HF level for different relative polarizations of fundamental
and SH pump fields is presented in the upper three panels of
Fig. 5. As is seen from these figures, in all cases we have an
overall enhancement of HHG signal due to Coulomb inter-
action. To obtain a better insight, we also made calculations
when electron-hole interaction is switched off in Eqs. (13)
and (14). The results in comparison with HF approximation
when only the repulsive part of the electron-electron inter-
action is switched on are presented in Figs. 5(d)–5(f). The
light-matter coupling (10) and the transition energies (11)
contain contributions from the population and the polarization
via the MA processes. For the systems with a vanishing gap,
as in graphene, MA processes will be essential especially for
anisotropic excitation of the Fermi-Dirac sea. To show the
contribution of MA processes, in Figs. 5(g)–5(i) we present
the results of calculations when the terms describing MA
processes are switched off in Eqs. (13) and (14). As is seen,
in a linear scale, MA processes have sizeable contributions
in the enhancement of the HHG yield in the middle part
of the spectrum where the interband current is dominant.
From Figs. 5(a)–5(i) we conclude that the electron-hole in-
teraction is responsible for the enhancement of the interband
HHG signal by almost one order of magnitude compared
with the independent charged carriers. Since this enhance-
ment takes place for all polarizations of driving waves, we
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FIG. 5. Influence of the Coulomb interaction on the HHG process. The fundamental frequency is ω = 0.1 eV/h̄ and the field strength is
taken to be E01 = E02 = 4 MV/cm. (a)–(c) Comparison of ω + 2ω frequency mixing signals for graphene with independent particles (IP) and
with screened Coulomb interaction in the HF level for different relative polarizations of fundamental and SH pump fields. (d)–(f) Comparison
of full HF results with HF approximation when only the repulsive part of the electron-electron interaction is switched on. (g)–(i) Comparison
of full HF results with HF approximation when MA processes are switched off.

can also conclude that Coulomb interaction is not the reason
for the enhancement of the HHG signal stemming from the
orthogonal polarization of two-color laser fields.

To clarify the observed enhancement further, in particular
with respect to the vanishing band gap, we made a paral-
lel consideration with gaseous and semiconductor HHG and
investigated ω + 2ω wave mixing for graphene with artifi-
cially constructed energy gap (gapped graphene). For the
gap energy, we take �g = 2 eV. The Coulomb interaction is
switched off to avoid excitonic effects. In Fig. 6, we plot the
HHG spectra with ω + 2ω wave mixing for gapped graphene
in the strong-field regime at different relative polarizations.
The laser parameters in Figs. 6(a) and 6(b) are the same as in
Figs. 3 and 4(b), respectively. Comparing Fig. 6 with Figs. 3
and 4 we see that the general picture in considering regime
for HHG is reverse, i.e., it is more preferably the parallel
polarization case. For the atomic HHG this is explained by
the three-step semiclassical recollision model. For the gapped
solid state system, HHG is similar to the atomic one [4] and
can be modeled based on the classical trajectory analysis of
electron-hole pairs (Sec. III B). In this model interband HHG
occurs through the laser induced tunneling or multiphoton cre-
ation of electron-hole pairs, which are accelerated in the laser
field. When pairs reencounter, they recombine and a harmonic
photon is created. If the gap is considerably larger �g 	 h̄ω

than the pump wave photon energy the tunneling is the main
mechanism for creation of electron-hole pairs. Thus electron-
hole pairs are created near the minimum of the electron-hole
energy Eeh(k), i.e., near the Dirac points. For this case the
particle distribution function Nc(k, t f ) after the interaction is
shown in Fig. 7. As is expected, the creation of electron-hole
pairs out of the Dirac points is exponentially suppressed and
the main contribution of electron-hole pairs are Dirac points,
which correspond to pairs with approximately zero energy. It

is also obvious that the tunneling probability will be larger for
the parallel polarization case. Besides, it is also clear that for
the orthogonally polarized two-color field to have reencoun-
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FIG. 6. HHG spectra with ω + 2ω frequency mixing for gapped
graphene with �g = 2 eV in the strong-field regime for differ-
ent relative polarizations of fundamental and SH pump fields. The
electron-electron interaction is switched off to avoid excitonic ef-
fects. (a) The fundamental frequency is ω = 0.1 eV/h̄ and the field
strength is taken to be E01 = E02 = 4 MV/cm. (b) The fundamental
frequency is ω = 0.2 eV/h̄ and the field strength is taken to be
E01 = E02 = 8 MV/cm.
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FIG. 7. Particle distribution function Nc(k, t f ) after the interac-
tion for gapped graphene with �g = 2 eV, as a function of scaled
dimensionless momentum components (kx/kb, ky/kb) for different
relative polarizations of the fields. The electron-electron interaction
is switched off to avoid excitonic effects. The remaining parameters
correspond to those of graphene.

tering trajectories one needs electron-hole pairs created with
both nonzero crystal momentum components, i.e., out of the
Dirac points. The latter is suppressed for the gapped system.
For graphene, due to the vanishing band gap, all these con-
clusions do not hold, since the electron-hole pairs are created
with nonzero energy and the main question remains: can we
extend the semiclassical collision model for the considered
case? The next subsection will be devoted to investigation of
this problem.

B. Semiclassical collision model

To this end we need the evolution of the high harmonic
spectrum as a function of time; we perform the time-frequency
analysis by means of the wavelet transform [76] of the inter-
band part of the surface current:

Jα (t, ω) =
√

ω

σ

∫ τ

0
dt ′ je,α (t ′)eiω(t ′−t )e− ω2

2σ2 (t ′−t )2

. (19)

We have chosen Morlet wavelet with σ = 4π . The
spectrogram of the HHG process via the wavelet transform of
the interband part of the surface current |J(t, ω)| is shown in
Fig. 8. The laser parameters are the same as in Fig. 3. In Fig. 8,
for the xω + y2ω case we have HHG emission peaks with

period 0.5T starting at t ≈ 1.25T and ending at 4.25T . These
peaks coincide with the peaks of the vector potential, i.e.,
when the absolute value of the classical momentum given by
the wave field is maximal. For the parallel polarization cases,
the peaks also are near the peaks of the vector potential. This
indicates that in some sense the above-obtained results can
also be understood in the scope of the semiclassical collision
model [4]. For this purpose, we now extend the semiclassical
collision model to include graphene without applying Keldysh
approximation [77] at Nc � 1. Thus the formal nonexplicit
solution of Eq. (14) for the interband polarization can be
written as

P (k0, t ) =
∫ t

0
dt ′e− i

h̄ S(k0,t ′,t )−�(t−t ′ )Keh(k0, t ′), (20)

where

S(k0, t ′, t ) =
∫ t

t ′
[Eeh(k0 + A(t ′′))]dt ′′ (21)

is the classical action and

Keh(k0, t ′) = i

h̄
[E(t ′)Dtr (k0 + A(t ′)) + h̄�c(k0 + A(t ′))]

× [1 − 2Nc(k0 + A(t ′), t ′)] (22)

is the electron-hole creation amplitude. The latter is maximal
near the peaks of the total Rabi frequency and also includes
the band filling factor 1 − 2Nc, which reduces the electron-
hole creation amplitude due to Pauli blocking. Taking into
account the definition (15), the interband part of the surface
current can be represented in the following form:

je,α (t ) = − 2

(2π )2

∫
BZ

dk0

∫ t

0
dt ′Keh(k0, t ′)

× exp
[
− i

h̄
S(k0, t ′, t ) − �(t − t ′)

]
Aeh

α (k0, t )

+ c.c., (23)

which have a transparent physical interpretation in analogy
with the atomic three-step model: electron-hole creation at
t ′ with the amplitude Keh(k0, t ′), then propagation in the BZ ,
which is defined by the classical action (21). At that, the prop-
agation amplitude is diminished because of damping. Finally,
the electron-hole pair annihilates at t with the amplitude

Aeh
α (k0, t ) = vtr,α (k0 + A(t )). (24)

FIG. 8. Spectrogram of the HHG process via the wavelet transform of the interband part of the surface current |J(t, ω)| (color box in
arbitrary units). The laser parameters are the same as in Fig. 3. The red dots over the spectrograms are the annihilation energies versus
recollision times corresponding to the solutions of saddle-point equations (26), (27), and (28). The insets for each case show the solutions of
the saddle-point equations for crystal momenta obtained with the same resolution for half of the BZ.
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For the Fourier transform of the interband current, we
will have

je,α (ω) = − 2

(2π )2

∫ τ

0
dt

∫
BZ

dk0

∫ t

0
dt ′e−�(t−t ′ )

[
Keh(k0, t ′)

× exp
(
− i

h̄
S(k0, t ′, t ) + iωt

)
Aeh

α (k0, t ) + c.c.

]
.

(25)

As is seen from this formula, the HHG can be driven by
the nonlinearity of the transition velocities by which the
annihilation amplitude (24) is defined, or by the fast oscil-
latory part stemming from the classical action. Assuming
that the HHG is mainly driven by the last mechanism we
can further extend the collision model evaluating integrals in
Eq. (25) with the saddle point method. However, in contrast
to the gapped system [77] one should relax the saddle point
conditions for the following reasons: since the gap is zero,
the electron and hole can be created with the initial energy
(�ε) and due to the wave packet spreading annihilation can
take place at relative distance ρ0. Thus we set the following
conditions:

−∂t ′S < �ε, |∂k0 S| < ρ0, ∂t S = h̄ω,

which give

Eeh(k0 + A(t ′)) < �ε, (26)

|�r| < ρ0, (27)

Eeh(k0 + A(t )) = h̄ω, (28)

where

�r =
∫ t

t ′
[vc(k0 + A(t ′′)) − vv (k0 + A(t ′′))]dt ′′ (29)

is the electron-hole separation vector and vc,v =
h̄−1∂k0Ec,v (k0) are the group velocities. Saddle point
equations (26), (27), and (28) have the following
interpretation. The first one defines the birth time (t ′) at
which the electron-hole pair is formed. It also states that
the electron-hole pair is created with initial momentum
defined by the area of the excited Fermi-Dirac sea. According
to the second condition the laser accelerates the electron
and hole with the instantaneous group velocities vc,v and
depending on the creation time the electron hole may
recollide at the time t with final momentum k0 + A(t ) and
relative distance ρ0. The third condition is the conservation
of energy: the electron hole annihilate, emitting the energy
in the form of a single photon. Taking into account Fig. 2,
for �ε we take 2 eV and ρ0 = 2a. We then integrate
the equation re(t ′, t )= ∫ t

t ′ [vc(k0 + A(t ′′))]dt ′′ to obtain
the classical motion of the electron. Since we have electron-
hole symmetry, for the hole we have rh(t ′, t ) = −re(t ′, t ). We
also calculate the electron-hole distance ρ(t ′, t ) = |re − rh|.
The colliding trajectories are assumed if at t > t ′ we have a
local minimum of the electron-hole distance ρm(t ′, t ) < ρ0.
Then we fix the time and the corresponding energies
Eeh(k0 + A(t )).

In Fig. 9 the typical colliding trajectories of an electron and
a hole are shown. In Fig. 9(a) both fields are in the x direction
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FIG. 9. Colliding trajectories of an electron and a hole. (a) The
electron (hole) is created at the tc = 1.5T with the initial crystal
momentum kx/kb = 0.57 (−0.57), ky/kb = 0(0), which corresponds
to initial energy 0.3 eV. The colored trajectory and colored box show
the energies acquired by carriers along the trajectory. (b) The electron
(hole) is created at tc = 1.575T , with the initial crystal momentum
kx/kb = 0.6 (−0.6), ky/kb = −0.05 (0.05), which corresponds to
initial energy 2 eV.

and we have one-dimensional motion. The electron-hole pair
is created near the Dirac point. The laser field accelerates
the electron and hole with the instantaneous group velocities
ve = −vh. The colored trajectory and colored box show the
energies acquired by carriers along the trajectory. We see two
collisions: with the low energy 1.2 eV and the second one
at t = 2.2T with the high energy Eeh(k0 + A(t ))/h̄ω � 71.
In Fig. 9(b) wave fields are perpendicular to each other. In
this case for the colliding trajectories, one needs electrons
and holes created with both nonzero crystal momentum com-
ponents. In this case we have two-dimensional motion. The
electron-hole pair is created at the tc = 1.575T with the initial
energy 2.0 eV. Then, after the laser acceleration, the electron
and hole collision/annihilation take place at ta = 2.2T . Here
the collision is not perfect because of two- dimensional mo-
tion. The minimal distance is 0.6a.

Varying the creation time t ′ from 0.5T to 4.5T we
have solved Eqs. (26), (27), and (28). The corresponding
annihilation/recombination energies versus recollision times
are plotted in Fig. 8 over the spectrograms of the HHG
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process. As is seen from these plots, we have a fairly good
agreement with fully quantum calculations.

The semiclassical approach has transparent physical in-
terpretation in terms of Feynman’s path integral [78]. An

infinite-dimensional functional integral is reduced to a coher-
ent sum over the finite quantum trajectories defined by the
saddle point equations [79,80]. This way, Eq. (25) can be
approximated as

je,α (ω) ∝
∑

k0n,tn,t ′
n

Ane−�(tn−t ′
n )

[
Keh(k0n, t ′

n) exp
(
− i

h̄
S(k0n, t ′

n, tn) + iωtn
)
Aeh

α (k0n, tn) + c.c.

]
, (30)

where k0n, tn, t ′
n are the solutions of the saddle point equa-

tions (26)–(28), An is an amplitude, and S is defined in (21).
One obtains qualitatively and quantitatively different results
depending on how many and which trajectories are involved
in Eq. (30). The insets in Fig. 8 for each case show the
solutions of the saddle-point equations for crystal momenta
obtained with the same resolution for half of BZ. Note that
for each solution k0n there may be several trajectories that
can interfere constructively or destructively in Eq. (30) de-
pending on the phase factor. In the case of an orthogonally
polarized two-color field, the crystal momenta obeying saddle
point equations (26)–(28) and, consequently, the trajectories
are an order of magnitude larger than in the case of parallel
polarization; cf. Fig. 8. At that, a large number of trajectories
with the different k0n but the close t ′

n, tn considerably enlarges
the number of constructively interfering terms in Eq. (30).
For this reason, je,α (ω) enhances in an orthogonally polar-
ized two-color field. For the gapped system this favorable
condition disappears. Thus the saddle point equation (26) that
defines the birth time (t ′) becomes Eeh(k0 + A(t ′)) ≈ −�g,
which cannot be satisfied for any real time. Because of the
imaginary solution t ′, we have an exponential suppression
of the probability of electron and hole production, especially
with momenta outside the Dirac points. In addition, tunneling
occurs near the maxima of the electric field strength [77] and
is more probable for parallel polarization of a two-color field
(1). These are the main reasons why in the gapped nanos-
tructure HHG in an orthogonally polarized two-color field is
suppressed compared with the case of parallel polarization.
Also, note that for the observation of the HHG yield in the
orthogonally polarized two-color field the incident intensity
of the SH wave should be comparable to or larger than the
incident fundamental wave intensity to ensure the existence
of reencountering trajectories Eq. (27), which maximize the
recombination probability.

IV. CONCLUSION

We have presented the microscopic theory of nonlinear
interaction of a monolayer graphene with a strong bichromatic
few-cycle driving pulse that is composed of the superposition
of an infrared fundamental pulse of linear polarization and its
second harmonic at the parallel and orthogonal polarizations.
The electron-electron Coulomb interaction has been taken
into account in the scope of HF approximation beyond the
Dirac cone approximation, which is applicable to the full
Brillouin zone of the hexagonal tight-binding nanostructure.
The obtained results show that in all cases we have an overall
enhancement of HHG yield compared with the independent

charged carrier model due to the electron-hole attractive inter-
action. We have shown that in the case of the orthogonally
polarized two-color field the generated high harmonics are
stronger than those obtained in the parallel polarization case
by more than two orders of magnitude. This enhancement is
colossal mainly for the interband part of HHG that is pre-
dominant for the plateau part of the spectrum. This tendency
persists for a wide range of intensities and frequencies of
driving waves. The physical origin of polarization-dependent
strong enhancement in graphene is also deduced from the
three-step semiclassical electron-hole collision model, ex-
tended to graphene with pseudorelativistic energy dispersion
and without Keldysh approximation.
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APPENDIX: SINGLE-PARTICLE HAMILTONIAN AND
OTHER DERIVED QUANTITIES

In this section we consider the details of the single-particle
Hamiltonian and give concrete expressions for the used
physical quantities. The single-particle Hamiltonian is taken
to be

Ĥ =
[

0 −γ0 f (k)
−γ0 f ∗(k) 0

]
, (A1)

where γ0 = 2.8 eV. The structure function is

f (k) = ei
aky√

3 + 2e−i
aky
2
√

3 cos

(
akx

2

)
, (A2)

where a is the lattice spacing. The reciprocal lattice unit cell
is a rhombus formed by two vectors:

b1 =
(

2π

a
,− 2π

a
√

3

)
, b2 =

(
2π

a
,

2π

a
√

3

)
. (A3)

The low-energy excitations are centered around the two points
K+ and K−represented by the vectors

K+ = kb√
3

x̂, K− = 2kb√
3

x̂, (A4)

where kb = 4π/
√

3a. Note that near the two Dirac
points γ0 f (k) = ivF h̄ky ∓ vF h̄kx, where vF = √

3aγ0/2h̄ is
the Fermi velocity. The eigenstates of the Hamiltonian
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(A1) are

|λ, k〉 = 1√
2

[− f (k)
| f (k)|
λ

]
, (A5)

corresponding to energies

Eλ(k) = λγ0| f (k)|. (A6)

Here the band index λ = ±1 [for conduction (λ = 1) and
valence (λ = −1) bands]. The transition dipole moment is
explicitly given by

Dtr (k) = − ea

2| f (k)|2 sin

(√
3

2
aky

)
sin

(
akx

2

)̂
x + ea

2
√

3| f (k)|2
[

cos (akx ) − cos

(√
3

2
aky

)
cos

(
akx

2

)]̂
y. (A7)

The band velocity is given by the formula

vc(k) = −vF
2√

3| f (k)|

[
cos

(√
3

2
aky

)
sin

(
akx

2

)
+ sin (akx )

]̂
x − vF

2

| f (k)| sin

(√
3

2
aky

)
cos

(
akx

2

)̂
y. (A8)

For the gapped graphene we used general formulas [81] taking also into account Berry connections.
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